MoO_x-modified bimetallic alloy nanoparticles for highly efficient hydrogen production from hydrous hydrazine

Qilu Yao, Meng He, Xiaoling Hong, Xiaoliang Zhang, Zhang-Hui Lu*

Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China.

E-mail: luzh@jxnu.edu.cn

Table S1 Catalysts composition determined by inductively coupled plasma atomic

 emission spectroscopic (ICP-AES).

Catalysts	Ni/Pt	Mo
Catalysts	(molar ratio)	(mol%)
Ni _{0.2} Pt _{0.8} -MoO _x (16.7mol% Mo)	0.23/0.77	16.3
Ni _{0.4} Pt _{0.6} -MoO _x (16.7mol% Mo)	0.38/0.62	16.2
$Ni_{0.6}Pt_{0.4}$ -MoO _x (16.7mol% Mo)	0.61/0.39	16.5
Ni _{0.8} Pt _{0.2} -MoO _x (16.7mol% Mo)	0.82/0.18	16.8
Ni-MoO _x (16.7mol% Mo)	~	16.6
Pt-MoO _x (16.7mol% Mo)	~	16.3

Fig. S1 Particle size distribution of NiPt-MoO_x catalyst.

Fig. S2 The corresponding EDX spectrum of the NiPt-MoO_x catalyst. The Cu signal originates from Cu grid.

Fig. S3 HRTEM image of the NiPt-MoO_x catalyst.

Fig. S4 Particle size distribution of NiPt catalyst.

Fig. S5 N_2 adsorption-desorption isotherms for NiPt-MoO $_{x}$ and NiPt catalyst.

Fig. S6 (a) Time course plots and (b) the related hydrogen selectivity and TOF values for H_2 evolution from N_2H_4 · H_2O (200 mM, 5 mL) decomposition over $Ni_{0.6}Pt_{0.4}$ -MoO_x catalysts with different Mo contents in the presence of NaOH (1.0 M) at 323 K.

Fig. S7 Time course plots for H₂ evolution from N_2H_4 ·H₂O (200 mM, 5 mL) decomposition over $Ni_{0.6}M_{0.4}$ -MoO_x and $Ni_{0.6}M_{0.4}$ (M = Pt, Rh, Ir, Au, Ag, and Ru) catalysts in the presence of NaOH (1.0 M) at 323 K.

Fig. S8. (a) Time course plots and (b) the related hydrogen selectivity and TOF values for H_2 evolution from N_2H_4 · H_2O (200 mM, 5 mL) decomposition over NiPt-MoO_x catalysts with different concentrations of NaOH at 323 K.

Fig. S9 Time course plots for H_2 evolution from N_2H_4 · H_2O (200 mM, 5 mL) decomposition in the presence of NaOH (1.0 M) at 323 K.

Fig. S10 (a) Time course plots for H_2 evolution from N_2H_4 aqueous solution (200 mM, 5 mL) over $Ni_{0.6}Rh_{0.4}$ -MoO_x catalyst at different temperatures. (b) The corresponding TOF values and Arrhenius plots (ln k versus 1/T) for H_2 evolution from N_2H_4 aqueous solution.

Fig. S11 (a) Time course plots for H_2 evolution from N_2H_4 aqueous solution (200 mM, 5 mL) over $Ni_{0.6}Ir_{0.4}$ -MoO_x catalyst at different temperatures. (b) The corresponding TOF values and Arrhenius plots (ln k versus 1/T) for H_2 evolution from N_2H_4 aqueous solution.

Fig. S12 TEM images of $Ni_{0.6}Pt_{0.4}$ -MoO_x after the durability test.

Fig. S13 Stability test for H_2 evolution from N_2H_4 aqueous solution (200 mM, 5 mL) over $Ni_{0.6}Rh_{0.4}$ -MoO_x NPs at 323 K.

Fig. S14 Stability test for H_2 evolution from N_2H_4 aqueous solution (200 mM, 5 mL) over $Ni_{0.6}Ir_{0.4}$ -MoO_x NPs at 323 K.

Catalysts	Т	H ₂ Selectivity	TOF	Ea	Ref.
	(K)	(%)	(h-1)	(kJ mol ⁻¹)	
Pt _{0.6} Ni _{0.4} /PDA-rGO	30	100	903	33.39	S1
$Ni_{0.6}Pt_{0.4}$ -MoO _x	50	100	822	49.6	This work
(Ni ₃ Pt ₇) _{0.5} - (MnO _x) _{0.5} /NPC-900	50	100	706	50.15	S2
$Ni_{0.8}Pt_{0.2}/MIL\text{-}101\text{-}NH_2$	50	100	676	53.2	S 3
Ni ₄₀ Pt ₆₀ -CNDs	50	100	594	43.9	S4
Ni ₈₄ Pt ₁₆ /graphene	50	100	415	40	S 5
Ni ₃ Pt ₇ /graphene	50	100	416	49.36	S 6
Ni ₈₈ Pt ₁₂ /MIL-101	50	100	350	55.5	S7
Ni@Ni-Pt/La2O3	50	100	312	56.20	S8
G_4 -OH(Pt ₁₂ Ni ₄₈)	70	100	240	-	S9
PtNi/C	50	100	210	55.3	S10
Ni ₃ Pt ₇ /BNG-1000	25	100	199.4	28.4	S11
$Ni_{87}Pt_{13}/meso-Al_2O_3$	50	100	160	55.7	S12
Ni ₆ Pt ₄ -SF	25	100	150	-	S13
Ni ₈₀ Pt ₂₀ @ZIF-8	50	100	90	-	S14
$Ni_{0.90}Pt_{0.05}Rh_{0.05}/La_2O_3$	25	100	45.9	-	S15
$Ni_{0.9}Pt_{0.1}/Ce_2O_3$	25	100	28.1	42.3	S16
NiPt _{0.057} /Al ₂ O ₃	30	99	16.5	34.0	S17

Table S2 Comparison of activities of different catalysts for hydrogen evolution from N_2H_4 · H_2O aqueous solution.

Calculation method for TOF

The turn over frequency (TOF) reported in this work is an apparent TOF value based on the number of metal (Ni + Pt) atoms in catalysts, which is calculated from the equation as follows:

$$\text{TOF} = \frac{2P_{atm}V_{H_2 + N_2}/RT}{3n_{\text{Ni} + \text{Pt}} \times t}$$
(S1)

Where P_{atm} is the atmospheric pressure, $V_{H_2+N_2}$ is the volume of generated gas when the conversion reached 50%, R is the universal gas constant, T is the room temperature, $n_{\text{Ni+Pt}}$ is the total number of moles of (Ni + Pt) atoms in the catalyst and tis the time in hour when the conversion reached 50%.

References

- S1 F. Z. Song, Q. L. Zhu and Q. Xu, J. Mater. Chem. A, 2015, 3, 23090-23094.
- S2 B. Xia, T. Liu, W. Luo and G. Cheng, J. Mater. Chem. A, 2016, 4, 5616–5622.
- S3 P. L. Liu, X. J. Gu, Y. Y. Wu, J. Cheng, H. Su, Int. J. Hydrogen Energy, 2017, 42, 19096–19105.
- S4 J. K. Sun and Q. Xu, ChemCatChem, 2015, 7, 526–531.
- S5 Y. Du, J. Su, W. Luo and G. Z. Cheng, ACS Appl. Mater. Interfaces, 2015, 7, 1031–1034.
- S6 N. Cao, L. Yang, C. Du, J. Su, W. Luo and G. Z. Cheng, *J. Mater. Chem. A*, 2014, 2, 14344–14347.
- S7 N. Cao, J. Su, W. Luo and G. Z. Cheng, Int. J. Hydrogen Energy, 2014, 39, 9726– 9734.
- S8 Y. J. Zhong, H. B. Dai, Y. Y. Jiang, D. M. Chen, M. S. Zhu, X. Li and P. Wang, J. Power Sources, 2015, 300, 294–300.
- S9 K. Aranishi, A. K. Singh and Q. Xu, ChemCatChem, 2013, 5, 2248–2252.
- S10 S. N. Oliaee, C. Zhang, S. Y. Hwang, H. M. Cheung and Z. Peng, J. Phys. Chem. C, 2016, 120, 9764–9772.
- S11 X. Q. Du, C. Du, P. Cai, W. Luo and G. Z. Cheng, *ChemCatChem*, 2016, 8, 1410–1416.
- S12 Y. Jiang, Q. Kang, J. Zhang, H. B. Dai and P. Wang, J. Power Sources, 2015, 273, 554–560.
- S13 A. K. Singh and Q. Xu, Int. J. Hydrogen Energy, 2014, 39, 9128-9134.
- S14 A. K. Singh and Q. Xu, ChemCatChem, 2013, 5, 3000-3004.
- S15 S. I. O, J. M. Yan, H. L. Wang, Z. L. Wang and Q. Jiang, J. Power Sources, 2014, 262, 386–390.
- S16 H. L. Wang, J. M. Yan, Z. L. Wang, S. I. O and Q. Jiang, J. Mater. Chem. A, 2013, 1, 14957–14962.
- S17 L. He, Y. Huang, A. Wang, Y. Liu, X. Liu, X. Chen, J. J. Delgado, X. Wang and T. Zhang, *J. Catal.*, **2013**, *298*, 1–9.