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Figure S1 The thickness of the sensing film was measured by SEM.
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Figure S2 (A) SEM image and (B) Thermogravimetric (TG) curve of as prepared

nanofiber precursor containing Y, In and PVP.
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Figure S3 SEM images and corresponding nanofibers size-distribution diagrams of (A)
In203, (B) lY-In203, (C) 3Y-In203 and (D) 7Y-In203.
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Figure S4 (A) N, adsorption-desorption isotherms and (B) pore size distribution curves

of In,O3 and 5Y-In,0s.
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Figure S5 XPS of (A) Y 3d for 5Y-In,O3 and (B) In 3d for x Y-In,0s.
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Figure S6 (A) The dynamic resistance of the In,O sensor toward various concentration

of formaldehyde at 120 °C, (B) Response time and recover time of 5Y-In,O; toward

formaldehyde at 120 °C.
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Figure S7 In argon atmosphere, the responses of 5Y-In,O3 sensor to 100 ppm (A)

formaldehyde and (B) ethanol at 120 °C.

Table S1 Comparison of 5Y-In,O; and In,Os-based sensing materials reported in

literature for formaldehyde sensing performance.

Sening Formaldehyde Response Recovery Operating
) : . . Response  Reference
material concentration time (s) time (s) Temperature
5Y-In,0; 100 ppm 1 105 120 °C 91.7 This work
In,03/1% Co 10 ppm 60 120 130°C 23.2 1
A10_15In1'8503 100 ppm 2 103 150°C 60.3 2
Gaggln; 40; 100 ppm 1 70 150°C 52.4 3
Au-loaded
100 ppm 3 8 240°C 37 4
11’1203
1 at% Pt-
10 ppm 2 51 120°C 26 5
11’1203
Ag-loaded
20 ppm 0.9 14 240°C 113 6
In203
In,O3-H10 100 ppm 100 70 230°C 80 7
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Table S2 BET specific surface area (SBer), pore volume and averaage pore size
distribution of 5Y-In,O; and In,O; were determined by N2 adsorption-desorption

measurement.

Average pore size pore volume
Sample Sget (M%/g)
(nm) (cm¥/g)
5Y-In,04 19 14 0.044

Table S3 The binding energy and relative percentage of oxygen species in In,O3 and

5Y-In,05 according to their fitted O 1s XPS Spectra.

Sample Oxygen species Binding energy (eV) Relative percentage (%)
Chemisorbed oxygen 531.9 22
In,04 Oxygen vacancy 530.5 24
Lattice oxygen 529.8 54
Chemisorbed oxygen 532.2 34
5Y-In,05 Oxygen vacancy 530.8 36
Lattice oxygen 530.1 30
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Table S4 Work functions and Fermi levels of RE-In,O3 and In,03, and the responses
of RE-In,0; and In,O; sensor to 100 ppm formaldehyde at 120 °C.

Sample Work function Fermi level Responses
(eV) (eV) (Ra/Ry)

In,0; 5.08 -5.08 12.6
5Y-In,04 4.94 -4.94 91.7
5La-In,05 4.95 -4.95 52.4
5Nd-In,0; 4.97 -4.97 49.1
5Ho-In,0; 4.94 -4.94 41.4
5Tm-In, 05 4.93 -4.93 40.5
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