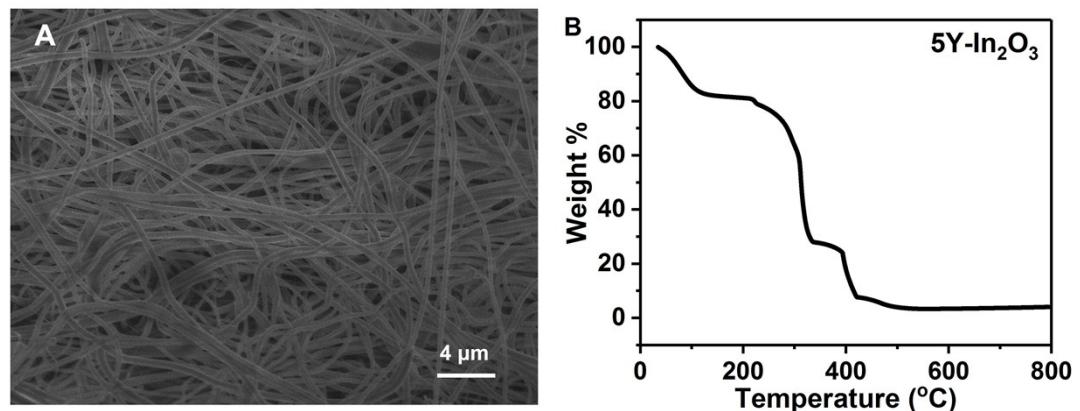


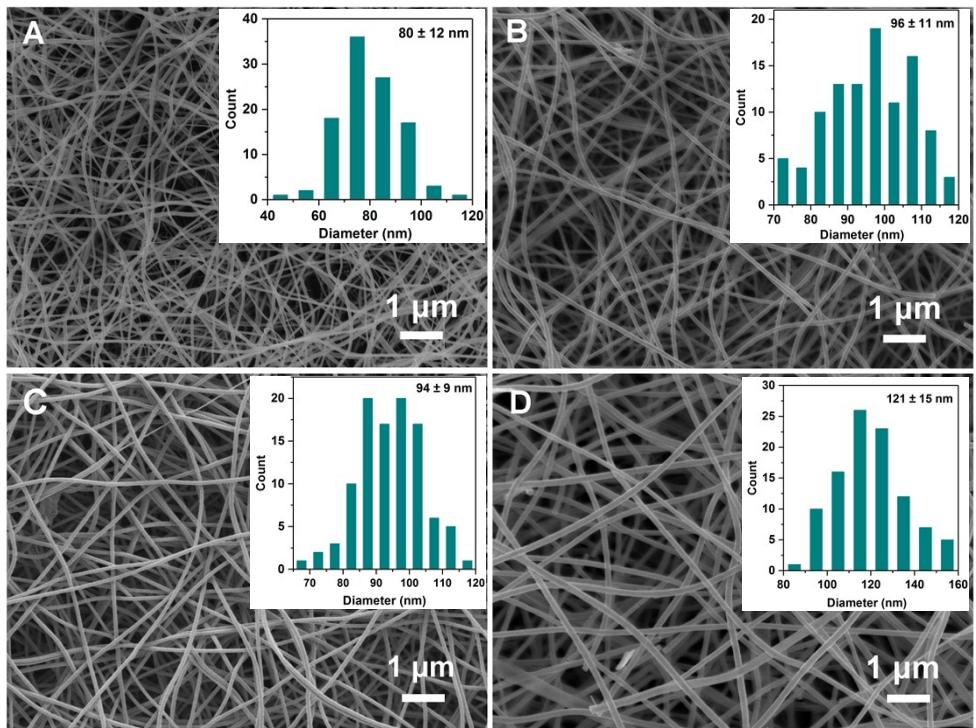
Supporting Information

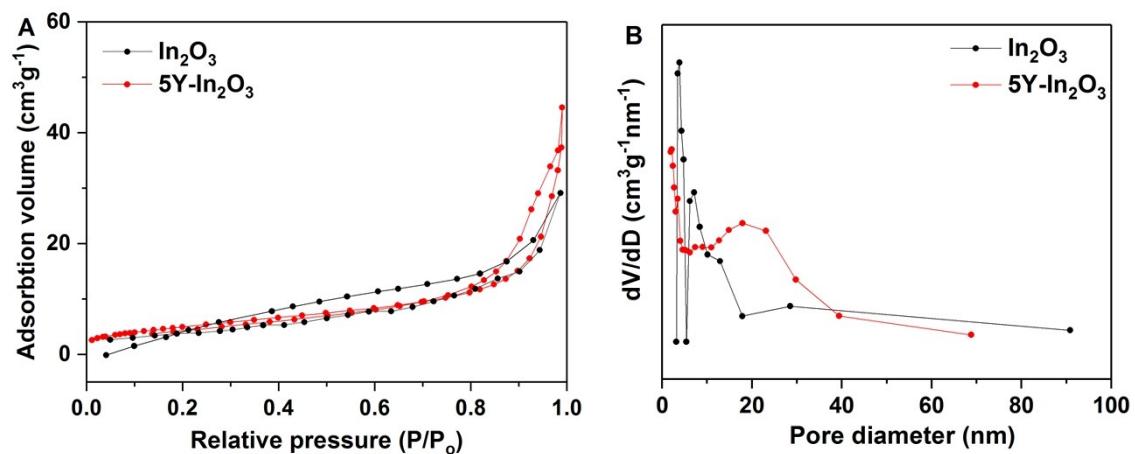
Tailoring Energy Level and Surface Basicity of Metal Oxide Semiconductor by Rare-Earth Incorporation for High Performance Formaldehyde Detection

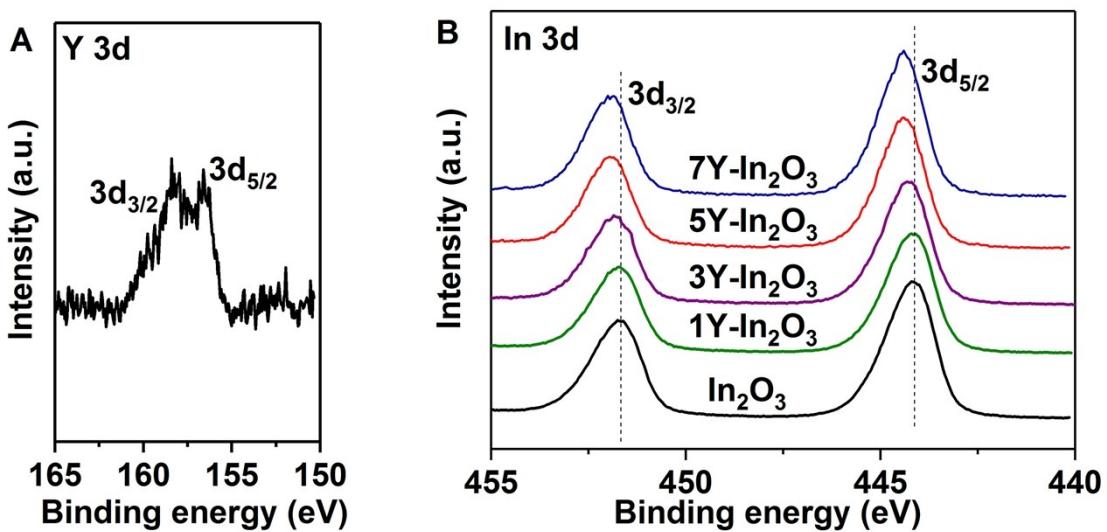
Yanfang Zhao,^a Xiaoxin Zou,^a Hui Chen,^a Xuefeng Chu,^b Guo-Dong Li*,^a

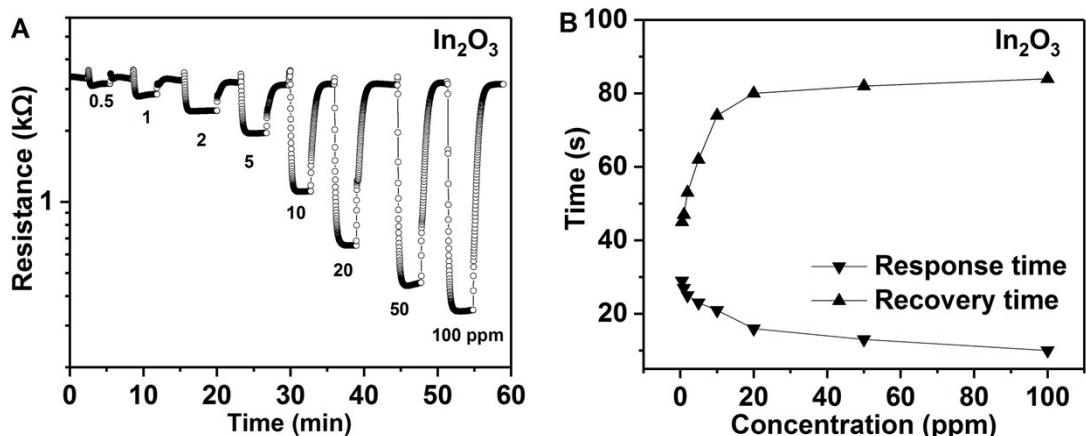

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

^b Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China


* Corresponding author. E-mail address: lgd@jlu.edu.cn


Figure S1 The thickness of the sensing film was measured by SEM.


Figure S2 (A) SEM image and (B) Thermogravimetric (TG) curve of as prepared nanofiber precursor containing Y, In and PVP.


Figure S3 SEM images and corresponding nanofibers size-distribution diagrams of (A) In_2O_3 , (B) 1Y- In_2O_3 , (C) 3Y- In_2O_3 and (D) 7Y- In_2O_3 .

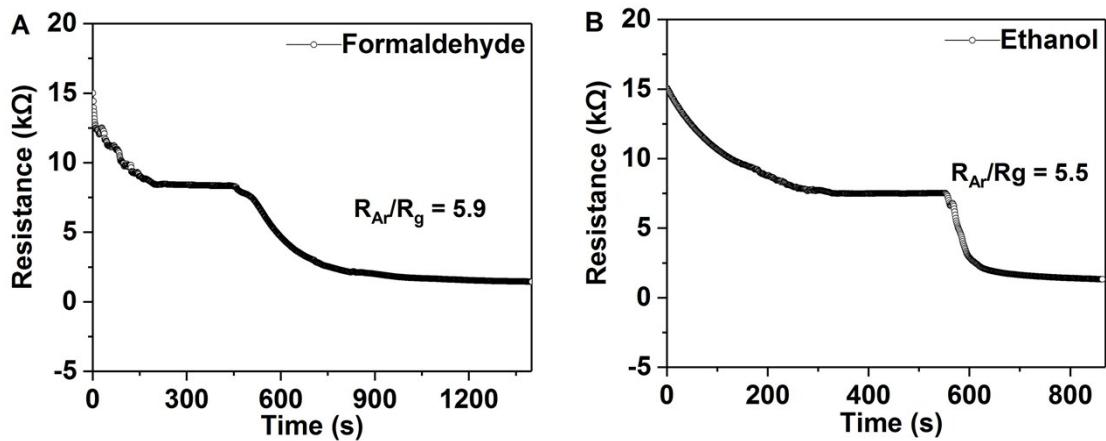

Figure S4 (A) N_2 adsorption-desorption isotherms and (B) pore size distribution curves of In_2O_3 and 5Y- In_2O_3 .

Figure S5 XPS of (A) Y 3d for 5Y-In₂O₃ and (B) In 3d for x Y-In₂O₃.

Figure S6 (A) The dynamic resistance of the In₂O₃ sensor toward various concentration of formaldehyde at 120 °C, (B) Response time and recover time of 5Y-In₂O₃ toward formaldehyde at 120 °C.

Figure S7 In argon atmosphere, the responses of 5Y-In₂O₃ sensor to 100 ppm (A) formaldehyde and (B) ethanol at 120 °C.

Table S1 Comparison of 5Y-In₂O₃ and In₂O₃-based sensing materials reported in literature for formaldehyde sensing performance.

Sensing material	Formaldehyde concentration	Response time (s)	Recovery time (s)	Operating Temperature	Response	Reference
5Y-In₂O₃	100 ppm	1	105	120 °C	91.7	This work
In ₂ O ₃ /1% Co	10 ppm	60	120	130 °C	23.2	1
Al _{0.15} In _{1.85} O ₃	100 ppm	2	103	150 °C	60.3	2
Ga _{0.6} In _{1.4} O ₃	100 ppm	1	70	150 °C	52.4	3
Au-loaded In ₂ O ₃	100 ppm	3	8	240 °C	37	4
1 at% Pt-In ₂ O ₃	10 ppm	2	51	120 °C	26	5
Ag-loaded In ₂ O ₃	20 ppm	0.9	14	240 °C	113	6
In ₂ O ₃ -H10	100 ppm	100	70	230 °C	80	7

Table S2 BET specific surface area (S_{BET}), pore volume and average pore size distribution of 5Y-In₂O₃ and In₂O₃ were determined by N₂ adsorption-desorption measurement.

Sample	S_{BET} (m ² /g)	Average pore size (nm)	pore volume (cm ³ /g)
In ₂ O ₃	18	13	0.041
5Y-In ₂ O ₃	19	14	0.044

Table S3 The binding energy and relative percentage of oxygen species in In₂O₃ and 5Y-In₂O₃ according to their fitted O 1s XPS Spectra.

Sample	Oxygen species	Binding energy (eV)	Relative percentage (%)
In ₂ O ₃	Chemisorbed oxygen	531.9	22
	Oxygen vacancy	530.5	24
	Lattice oxygen	529.8	54
5Y-In ₂ O ₃	Chemisorbed oxygen	532.2	34
	Oxygen vacancy	530.8	36
	Lattice oxygen	530.1	30

Table S4 Work functions and Fermi levels of RE-In₂O₃ and In₂O₃, and the responses of RE-In₂O₃ and In₂O₃ sensor to 100 ppm formaldehyde at 120 °C.

Sample	Work function (eV)	Fermi level (eV)	Responses (R _a /R _g)
In ₂ O ₃	5.08	-5.08	12.6
5Y-In ₂ O ₃	4.94	-4.94	91.7
5La-In ₂ O ₃	4.95	-4.95	52.4
5Nd-In ₂ O ₃	4.97	-4.97	49.1
5Ho-In ₂ O ₃	4.94	-4.94	41.4
5Tm-In ₂ O ₃	4.93	-4.93	40.5

References

- 1 Z.H. Wang, C. L. Hou, Q. M. De, F. B. Gu, D. M. Han, One-Step Synthesis of Co-Doped In₂O₃ Nanorods for High Response of Formaldehyde Sensor at Low Temperature, *AcS Sensors*, 2018, **3**, 468-475.
- 2 H. Chen, Y. Zhao, L. Shi, G. D. Li, L. Sun and X.X. Zou, Revealing the Relationship between Energy Level and Gas Sensing Performance in Heteroatom-Doped Semiconducting Nanostructures, *ACS Appl. Mater. Interfaces*, 2018, **10**, 29795-29804.
- 3 H. Chen, J. Hu, G. D. Li, Q. Gao, C. Wei and X. X. Zou, Porous Ga-In Bimetallic Oxide Nanofibers with Controllable Structures for Ultrasensitive and Selective Detection of Formaldehyde, *ACS Appl. Mater. Interfaces*, 2017, **9**, 4692-4700.
- 4 S. Zhang, P. Song, J. Li, J. Zhang, Z. X. Yang, Q. Wang, Facile approach to prepare hierarchical Au-loaded In₂O₃ porous nanocubes and their enhanced sensing performance towards formaldehyde, *Sens. Actuators, B*, 2017, **241**, 1130-1138.

5 R. J. Ma, X. Zhao, X. X. Zou, G. D. Li, Enhanced formaldehyde sensing performance at ppb level with Pt-doped nanosheet-assembled In_2O_3 hollow microspheres, *J. Alloy. Compd.* 2018, **732**, 863-870.

6 S. M. Wang, B. X. Xiao, T. Y. Yang, P. Wang, C. H. Xiao, Z. F. Li, R. Zhao, M. Z. Zhang, Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In_2O_3 hierarchical nanostructures, *J. Mater. Chem. A*, 2014, **2**, 6598-6604.

7 F. B. Gu, C. J. Li, D. M. Han, Z. H. Wang, Manipulating the Defect Structure (V-O) of In_2O_3 Nanoparticles for Enhancement of Formaldehyde Detection, *ACS Appl. Mater. Interfaces*, 2018, **10**, 933-942.