Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic Supplementary Information

Reactivity Difference in Oxidative Nucleophilic Reaction of Peroxonickel(III) Intermediates with Open-Chain and Macrocyclic Ligands

Seonggeun Yun,‡^a Nam Kwon,‡^a Seonghan Kim,^a Donghyun Jeong,^a Takehiro Ohta,^{b,c} and Jaeheung Cho*^a

^aDepartment of Emerging Materials Science, DGIST, Daegu 42988, Korea

^bPicobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UHLP Center, Hyogo 679-5148,

Japan

^cPresent Address: Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-

Onoda, Yamaguchi 756-0884, Japan

‡ These authors contributed equally to this work.

*Corresponding author: jaeheung@dgist.ac.kr

Experimental Section

Materials and Instrumentation. All chemicals obtained from Aldrich Chemical Co. were the best available purity and used without further purification unless otherwise indicated. The solvents acetonitrile (CH₃CN) and diethyl ether (Et₂O) were passed through solvent purification columns (JC Meyer Solvent Systems) prior to use. $H_2^{18}O_2$ (95% ¹⁸O-enriched, 2.2% $H_2^{18}O_2$ in water) was purchased from ICON Services Inc. (Summit, NJ, USA).

UV-vis spectra were recorded on a Hewlett Packard 8453 diode array spectrophotometer equipped with a UNISOKU Scientific Instruments for low-temperature experiments or with a circulating water bath. Electrospray ionization mass spectra (ESI-MS) were collected on a Waters (Milford, MA, USA) Acquity SQD quadrupole Mass instrument, by infusing samples directly into the source using a manual method. The spray voltage was set at 2.5 kV and the capillary temperature at 80 °C. Resonance Raman spectra were obtained using a liquid nitrogen cooled CCD detector (CCD-1024×256-OPEN-1LS, HORIBA Jobin Yvon) attached to a 1-m single polychromator (MC-100DG, Ritsu Oyo Kogaku) with a 1200 groovs/mm holographic grating. An excitation wavelength of 441.6-nm was provided by a He-Cd laser (Kimmon Koha, IK5651R-G and KR1801C), with 20 mW power at the sample point. All measurements were carried out with a spinning cell at -60 °C. Crystallographic analysis was conducted with an SMART APEX II CCD equipped with a Mo X-ray tube at CCRF in DGIST. EPR spectra were also recorded at 77 K with the use of a JEOL X-band spectrometer (JES-FA200) at CCRF in DGIST. Product analysis was performed on a Thermo Fisher Trace 1310 gas chromatograph (GC) system equipped with a flame ionization detector (FID) and mass spectrometer (GC-MS).

Preparation of Complexes

[Ni(Me₆-trien)](ClO₄)₂. To an acetone solution (2 mL) of Ni(ClO₄)₂·6H₂O (0.37 g, 1 mmol), a acetone solution (2 mL) of Me₆-trien (0.23 g, 1 mmol) was added slowly. The mixture was stirred for overnight. The solvents were removed under vacuum to yield pink powder, which was recrystallized from acetone/Et₂O solution as a red product. Yield: 0.46 g (95%). UV-vis (acetone): λ_{max} (ε) = 500 nm (100 M⁻¹ cm⁻¹). ESI-MS (acetone): m/z = 144.2 for [Ni(Me₆-trien)]²⁺. Anal. Calcd for C₁₂H₃₀Cl₂N₄NiO₈: C, 29.54; H, 6.20; N, 11.48. Found: C, 29.49; H, 6.53; N, 11.08. X-ray crystallographically suitable crystals were obtained by slow diffusion of Et₂O into acetone solution of [Ni(Me₆-trien)](ClO₄)₂ in the presence of NaBPh₄.

[Ni(Me₆-trien)(NO₃)](BPh₄). To an acetone solution (2 mL) of Ni(NO₃)₂·6H₃O (0.29 g, 1 mmol), a acetone solution (2 mL) of Me₆-trien (0.23 g, 1 mmol) was added slowly. The mixture was stirred for overnight. The solvents were removed under vacuum to yield green powder, which was recrystallized from acetone/Et₂O solution as a green product. X-ray crystallographically suitable crystals were obtained by slow diffusion of Et₂O into acetone solution of the green product in the presence of NaBPh₄.

Crystalline yield: 0.44 g (65%). UV-vis (acetone): λ_{max} (ε) = 390 nm (46 M⁻¹ cm⁻¹), 630 nm (24 M⁻¹ cm⁻¹), 1040 nm (14 M⁻¹ cm⁻¹). ESI-MS (acetone): m/z = 350.2 for [Ni(Me₆-trien)(NO₃)]⁺. Anal. Calcd for C₃₆H₅₀BN₅NiO₃: C, 64.50; H, 7.52; N, 10.45. Found: C, 64.30; H, 7.56; N, 10.45.

[Ni(12-TMC)(NO₃)](BPh₄)(H₂O). To an CH₃CN solution (2 mL) of Ni(NO₃)₂·6H₂O (0.29 g, 1 mmol), a CH₃CN solution (2 mL) of 12-TMC (0.23 g, 1 mmol) was added slowly. The mixture was refluxed for overnight. The solvents were removed under vacuum to yield blue powder, which was recrystallized from CH₃CN/Et₂O solution as a blue product. X-ray crystallographically suitable crystals were obtained by slow diffusion of Et₂O into CH₃CN solution of the blue product in the presence of NaBPh₄. Crystalline yield: 0.27 g (41%). UV-vis (acetone): λ_{max} (ε) = 375 nm (56 M⁻¹ cm⁻¹), 590 nm (35M⁻¹ cm⁻¹), 970 nm (34 M⁻¹ cm⁻¹). ESI-MS (acetone): m/z = 348.2 for [Ni(12-TMC)(NO₃)]⁺. Anal. Calcd for C₃₆H₅₀BN₅NiO₄: C, 63.00; H, 7.34; N, 10.20. Found: C, 62.74; H, 6.90; N, 10.26.

	[Ni(Me ₆ -	[Ni(Me ₆ -	[Ni(12-
	trien)](ClO ₄)(BPh ₄)((CH ₃) ₂ CO)	trien)(NO ₃)](BPh ₄)	TMC)(NO ₃)](BPh ₄)
Empirical formula	C ₃₉ H ₅₆ BClNiN ₄ O ₅	C ₃₆ H ₅₀ BN ₅ NiO ₃	C ₃₆ H ₄₈ BNiN ₅ O ₃
Formula weight	765.84	670.33	668.31
Temperature (K)	133(2)	133(2)	143(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system/space	orthorhombio Pra?	Monoalinia P2./a	orthorhombia Pra?
group	orthornonion, <i>Fna2</i> ₁	Wonochine, F_{21}/c	ormomonio, <i>F na2</i>]
Unit cell dimensions			
<i>a</i> (Å)	35.547(2)	11.6991(7)	29.560(3)
<i>b</i> (Å)	11.6830(7)	9.8702(6)	11.5592(14)
<i>c</i> (Å)	9.2810(6)	30.3175(16)	9.7924(11)
α (°)	90.00	90.00	90.00
β (°)	90.00	97.873(2)	90.00
γ (°)	90.00	90.00	90.00
Volume (Å ³)	3454.4(3)	3467.8(3)	3346.0(6)
Ζ	4	4	4
Calculated density	1.320	1.284	1.327
(g/cm^{-3})			
Absorption	0.620	0.602	0.624
coefficient (mm ⁻¹)			
Reflections collected	167965	161772	155805
Independent	9597 [0.1506]	8706 [0.0822]	8401 [0.1668]
reflections [R(int)]			
Refinement method	Full-matrix	Full-matrix	Full-matrix
	least-squares on F^2	least-squares on F^2	least-squares on F^2
Data/restraints/para	9597/1/469	8706/0/422	8401/1/419
meters			
Goodness-of-fit on <i>F</i> ²	1.146	1.094	0.973
Final R indices	$R_1 = 0.0725$	$R_1 = 0.0644,$	$R_1 = 0.0549,$
$[I > 2 \operatorname{sigma}(I)]$	$wR_2 = 0.1426$	$wR_2 = 0.1457$	$wR_2 = 0.1267$
R indices (all data)	$R_1 = 0.1039,$	$R_1 = 0.0896$,	$R_1 = 0.0881,$
	$wR_2 = 0.1546$	$wR_2 = 0.1341$	$wR_2 = 0.16432$

-

Table S1. Crystal data and structure refinement for [Ni(Me₆-trien)](ClO₄)(BPh₄)((CH₃)₂CO), [Ni(Me₆trien)(NO₃)](BPh₄) and [Ni(12-TMC)(NO₃)](BPh₄)

Bond Distances (Å)							
[Ni(Me ₆ -							
trien)](ClO ₄)(BPh ₄)((CH ₃) ₂ CO)		[Ni(Me ₆ -trien)(NO ₃)](BPh ₄)		[Ni(12-TMC)(NO ₃)](BPh ₄)			
Ni-N1	1.944(5)	Ni-01	2.151(2)	Ni-O1	2.141(4)		
Ni-N2	1.925(4)	Ni-O2	2.117(2)	Ni-O2	2.143(4)		
Ni-N3	1.928(5)	Ni-N1	2.158(3)	Ni-N1	2.134(3)		
Ni-N4	2.003(6)	Ni-N2	2.078(3)	Ni-N2	2.084(4)		
		Ni-N3	2.200(3)	Ni-N3	2.131(4)		
		Ni-N4	2.148(3)	Ni-N4	2.085(5)		
Bond Angles (°)							
[Ni(Me ₆ -							
trien)](ClO ₄)(BPh ₄)((CH ₃) ₂ CO)		[Ni(Me ₆ -trien)(NO ₃)](BPh ₄)		[Ni(12-TMC)(NO ₃)](BPh ₄)			
N1-Ni-N2	86.80(2)	01-Ni-O2	60.71(8)	01-Ni-O2	60.23(13)		
N1-Ni-N3	162.0(2)	N1-Ni-N2	85.19(10)	N1-Ni-N2	84.55(18)		
N1-Ni-N4	102.9(3)	N1-Ni-N3	166.82(9)	N1-Ni-N3	160.34(14)		
N2-Ni-N3	87.66(19)	N1-Ni-N4	88.08(13)	N1-Ni-N4	84.34(19)		
N2-Ni-N4	161.4(3)	N2-Ni-N3	83.44(10)	N2-Ni-N3	83.88(18)		
N3-Ni-N4	87.4(3)	N2-Ni-N4	109.23(11)	N2-Ni-N4	109.18(15)		
		N3-Ni-N4	101.94(13)	N3-Ni-N4	84.53(19)		
		Ni-O1-N5	91.36(16)	Ni-01-N5	92.1 (3)		
		Ni-O2-N5	92.37(17)	Ni-O2-N5	91.8 (3)		

Table S2. Selected bond distances (Å) and angles (°) for [Ni(Me₆-trien)](ClO₄)(BPh₄)((CH₃)₂CO), [Ni(Me₆-trien)(NO₃)](BPh₄) and [Ni(12-TMC)(NO₃)](BPh₄)

	Bond Distances	(Å)		
1		2		
Ni-O1	1.88	Ni-O1	1.89	
Ni-O2	1.93	Ni-O2	1.89	
Ni-N1	2.22	Ni-N1	2.21	
Ni-N2	2.10	Ni-N2	2.05	
Ni-N3	2.25	Ni-N3	2.22	
Ni-N4	2.09	Ni-N4	2.06	
01-02	1.40	01-02	1.40	
	Bond Angles (°)		
1		2		
01-Ni-02	43.0	01-Ni-O2	43.5	
N1-Ni-N2	83.2	N1-Ni-N2	84.0	
N1-Ni-N3	164.2	N1-Ni-N3	159.3	
N1-Ni-N4	85.9	N1-Ni-N4	84.4	
N2-Ni-N3	82.5	N2-Ni-N3	84.2	
N2-Ni-N4	113.2	N2-Ni-N4	109.8	
N3-Ni-N4	106.2	N3-Ni-N4	83.8	
Table S4. Mulliken spin density	y on Ni(O _{Total}) ^a of [Ni(Me6-1	$(O_2)^+ (1)$ and $[Ni(1)^+ ($	2-TMC)(O ₂)] ⁺ (2).	
Model complex	1	2	3	
1	36.0 (51.4)	64.5 (5.0)	47.9 (38.0)	
2	36.1 (51.4)	65.8 (2.1)	46.2 (40.7)	

Table S3. Selected DFT parameters for $[Ni(Me_6-trien)(O_2)]^+(1)$ and $[Ni(12-TMC)(O_2)]^+(2)$

^{*a*}1, 2 and 3 represent the electron density composition of the α -*LUMO*, β -*LUMO* and β -*LUMO*+1 orbitals, respectively.

Fig. S1. ESI-MS spectrum of $[Ni(Me_6-trien)](ClO_4)_2$ in acetone. Mass peak at m/z = 144.2 is assigned to $[Ni(Me_6-trien)]^{2+}$ (calcd. m/z = 144.2). The inset shows the simulated (upper) and experimental (lower) isotope distribution patterns of the peak at m/z = 144.2.

Fig. S2. (a) UV-vis spectrum of $[Ni(Me_6-trien)(NO_3)]^+$ in acetone at -40 °C. (b) ESI-MS spectrum of $[Ni(Me_6-trien)(NO_3)]^+$ in acetone. Mass peak at m/z = 350.2 is assigned to $[Ni(Me_6-trien)(NO_3)]^+$ (calcd. m/z = 350.2). The inset shows the simulated (upper) and experimental (lower) isotope distribution patterns of the peak at m/z = 350.2.

Fig. S3. (a) UV-vis spectrum of $[Ni(12-TMC)(NO_3)]^+$ in acetone at -40 °C. (b) ESI-MS spectrum of $[Ni(12-TMC)(NO_3)]^+$ in acetone. Mass peak at m/z = 348.3 is assigned to $[Ni(12-TMC)(NO_3)]^+$ (calcd. m/z = 348.3). The inset shows the simulated (upper) and experimental (lower) isotope distribution patterns of the peak at m/z = 348.3.

Fig. S4. Space-filling diagrams for the DFT-optimized structures of (a) $[Ni(Me_6-trien)(O_2)]^+$ (1) and (b) $[Ni(12-TMC)(O_2)]^+$ (2) (gray, C; blue, N; red, O; green, Ni). Hydrogen atoms are omitted for clarity.

Fig. S5. ESI-MS spectrum taken after the completion of the reaction. Mass peak at m/z = 415.2 is assigned to [Ni(Me₆-trien)(HCOO)]⁺. The inset shows the simulated (upper) and experimental (lower) isotope distribution patterns of the peak at m/z = 415.2.

Fig. S6. Reactions of $[Ni(12-TMC)(O_2)]^+$ (2) with cyclohexylcarboxaldehyde (CCA). (a) UV-vis spectral changes of 2 (2 mM) upon addition of 40 equiv of CCA at 10 °C. Inset shows the time course of the absorbance at 410 nm (black). (b) Plot of first-order rate constants against 1/T to determine activation parameters.

Fig. S7. Hammett plot of $\ln k_2$ against σ_p^+ of benzoyl chloride derivatives in the reaction of [Ni(12-TMC)(O₂)]⁺ (**2**) with *para*-substituted benzoyl chloride, *para*-X-Ph-COCl (X = F, H, Cl, Br, NO₂) in acetone at 10 °C.

Fig. S8. (a) UV-vis spectra showing the formation of **1** in the reaction $[Ni(Me_6-trien)(NO_3)]^+$ (2 mM; black line and 32 mM; red line) with 10 equiv of H₂O₂ and 5 equiv TEA in the presence of H₂O (9 M) in acetone at -50 °C. (b) CSI-MS spectrum of the reaction solution obtained in the reaction of $[Ni(Me_6-trien)(NO_3)]^+$ with 10 equiv of H₂O₂ and 5 equiv TEA in the presence of H₂O (9 M) acetone at -50 °C. Asterisks are some unidentified species. The inset shows the expansion from 318 to 325 *m/z*.