Supporting Information for

Tailored Ni₂P nanoparticles supported on N-doped carbon as a superior anode material for Li-ion batteries

Huinan Guo,^{§a} Haichao Cai,^{§a} Weiqin Li,^a Chengcheng Chen,^c Kai Chen,^a Yan Zhang,^a Yunwei Li,^a

Mengying Wang,^a and Yijing Wang*a,b

a Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai

University, Tianjin 300071, China.

b Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin

300071, China. E-mail: wangyj@nankai.edu.cn; Tel: +86 2223503639

c China Electronic Product Reliability and Environmental Testing Research Institute (CEPREI),

Guangzhou 510610, China.

§*These authors contributed equally to this work.*

Figure S1. XRD patterns of the synthesis Ni-NTA with different molar ratio of Ni^{2+}

and NTA.

Figure S2. SEM images of Ni-NTA with different molar ratios of Ni^{2+} and NTA: (a, b)

NTA, (c, d) 1:1 (e, f) 2:1, (g, h) 3:1.

Figure S3. SEM images of Ni-NTA with different hydrothermal time: (a) NTA, (b) 10

min, (b) 30 min, (b) 2 h, (b) 4 h, (b) 6 h.

Figure S4. XRD patterns (a) and FTIR spectra (b) of Ni-NTA with different

hydrothermal time.

Figure S5. TGA-DTA of NTA.

Figure S6. Raman spectra of pyrolysis product Ni@C with different molar ratios of

Ni²⁺ and NTA.

Figure S7. XRD patterns of $Ni_2P@NPC$ with different: (a) molar ratios of Ni@C and

 NaH_2PO_2 , (b) phosphating temperature.

Figure S8. Raman spectra of (a) Ni_2P/PC , (b) Ni_2P/NPC

Figure S9. N_2 adsorption/desorption isotherms (a) pore size distribution plots, (b) of

Ni₂P/PC and Ni₂P/NPC.

Figure S10. High resolution XPS spectra of (a) Ni 2p, (b) P 2p, (c) C 1s, (d) N 1s for

Ni₂P/PC and Ni₂P/NPC.

Figure S11. Charge/discharge curves of the Ni₂P@PC at a current density of

100 mA g⁻¹.

Figure S12. TEM image of Ni₂P@NPC after 178 cycles.

Elemental Analysis Results		
	C (wt%)	N (wt%)
Ni ₂ P/PC	11.39	0
Ni ₂ P/NPC	10.53	1.22

Table S1. The elemental analysis results of Ni_2P/PC and Ni_2P/NPC .