Electronic Supplementary Information

Boosting charge separation of Sr₂Ta₂O₇ by Cr doping for enhanced

visible light-driven photocatalytic hydrogen generation

Weixuan Zeng,^a Sheng Cao,^b Lulu Qiao,^a Anquan Zhu,^a Quanyin Ma,^a Xiewen Xu,^c Yi Chen,^{d*} Jun Pan^{a*}

^aState Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China

^bSchool of Physical Science and Technology, Guangxi University, Nanning 530004, P.

R. China

^cCollege of Material Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410083, P. R. China

^dHunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, 412007, P. R. China

Deposition of cocatalysts

Cocatalysts Pt were deposited by an impregnation method and subsequent H_2 reduction. In brief, 200 mg of the as-obtained photocatalysts were poured into a small beaker, and then 2 mL of H_2PtCl_6 aqueous solution (10 mg mL⁻¹) was added under ultrasonic conditions and held for 5 min. After that, the beaker was placed in a thermostatic water bath, and the temperature was controlled at 353 K. Until the solution was entirely evaporated, the resulting products were put into an alumina crucible. Finally, the product was placed in a tube furnace under the reduction atmosphere (5% H_2/Ar , 200 mL min⁻¹) at 623 K for 1 h.

Preparation of working electrodes

The working electrodes were fabricated in the following steps: 20 mg photocatalyst was dispersed in 1500 μ L ethanediol and 500 μ L deionized water that contained 50 μ L Nafion aqueous solution, and then the solution was fully stirred. Next, 100 μ L of the above slurry was dropped on a fluorine-doped tin oxide (1 cm × 1 cm) conducting glass and then annealed for 2 h in a vacuum oven at 473 K.

Biexponential mode

The PL decay curves were fitted using a biexponential mode:¹

$$I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2),$$

The average fluorescent lifetime of as-prepared photocatalysts are estimated by the equation:

$$\tau = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

where A_1 , A_2 and y_0 are amplitude coefficient. τ_1 and τ_2 are the lifetimes corresponding to different recombination pathways.

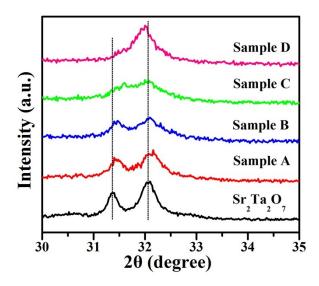


Fig. S1. Magnified (002) and (022) peaks of of $Sr_2Ta_2O_7$ obtained by hydrothermal method and Cr-doped $Sr_2Ta_2O_7$ with different Cr doping content.

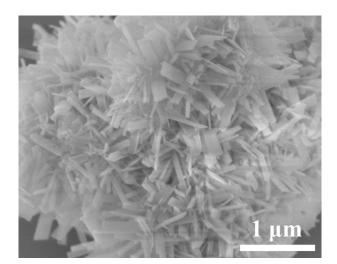


Fig. S2. SEM image of Sr₂Ta₂O₇.

Fig. S3. Digital photograph of (a) $Sr_2Ta_2O_7$ and (b) Sample C.

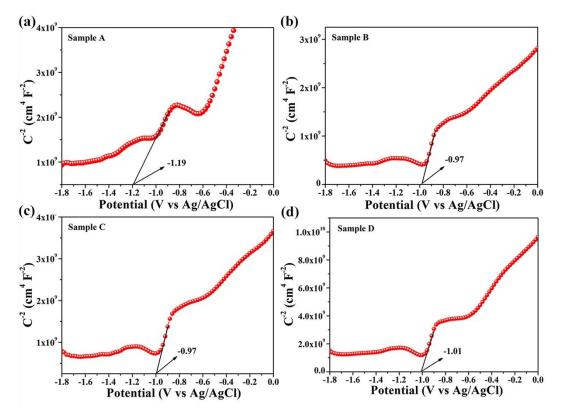


Fig. S4. Mott-Schottky curves of Sr₂Ta₂O₇ and Sample A-D.

Entry	Photocatalyst	H ₂ evolution rates	Sacrificial agent	Reaction	Reference
		$(\mu mol h^{-1} g^{-1})$		Temperature	
1	Cr-doped	9.32	15 vol%	279 K	Our work
	$Sr_2Ta_2O_7$		methanol		
2	Ta ₃ N ₅ @NaTaON	~8.80	methanol	-	2
	nanocubes (1 wt%				
	Pt cocatalyst)				
3	Pt@Ta ₃ N ₅ -WO _{2.72}	7.74	20 vol%	-	3
			methanol		
4	Ta ₃ N ₅ /BTON (0.	182	20 vol%	Room	4
	3wt% Pt)		methanol	temperature	
5	SrTaO ₂ N	14.75	10 vol%	-	5
	nanoplates		methanol		
6	BMTON/Ta ₃ N ₅ (0.	68	Nal solution (0.8	Room	6
	4)(0.5 wt% Pt)		mM)	temperature	

Table S1. Photocatalytic performance comparison of our work and some of the tantalum oxynitrides under visible-light irradiation ($\lambda \ge 420$ nm)

References:

1. Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu and B. Dong, *Adv. Mater.*, 2017, **29**, 1606688.

2. J. Hou, Y. Wu, S. Cao, F. Liang, Z. Lin, Z. Gao and L. Sun, *Adv. Energy Mater.*, 2017, **7**, 1700171.

3. W.-P. Hsu, M. Mishra, W.-S. Liu, C.-Y. Su and T.-P. Perng, *Appl. Catal.*, *B*, 2017, **201**, 511-517.

4. B. Dong, J. Cui, Y. Gao, Y. Qi, F. Zhang and C. Li, *Adv. Mater.*, 2019, **31**, 1808185.

5. J. Fu and S. E. Skrabalak, Angew. Chem., 2017, 129, 14357-14361.

6. J. Cui, Y. Qi, B. Dong, L. Mu, Q. Ding, G. Liu, M. Jia, F. Zhang and C. Li, *AAppl. Catal.*, *B*, 2019, **241**, 1-7.