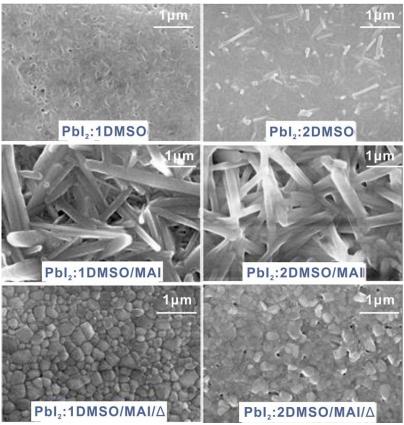
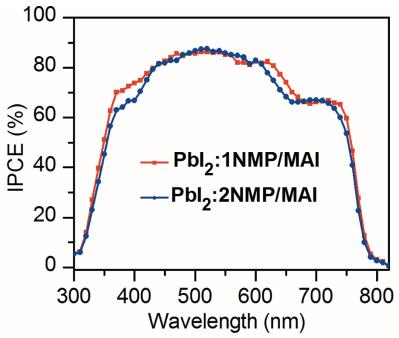
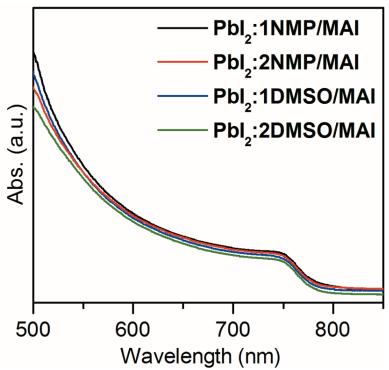
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

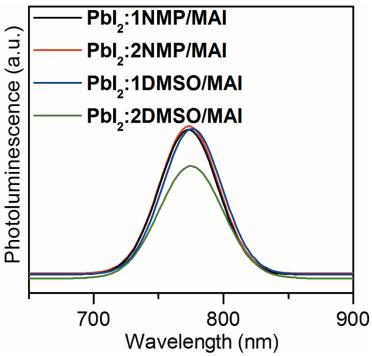

Electronic Supplementary Information for

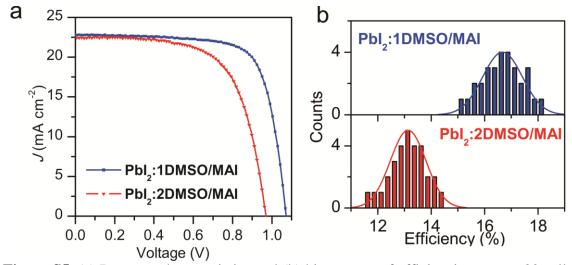
N-methyl-2-pyrrolidone as an Excellent Coordinative Additive with a Wide Operating Range for Fabricating High-Quality Perovskite Films

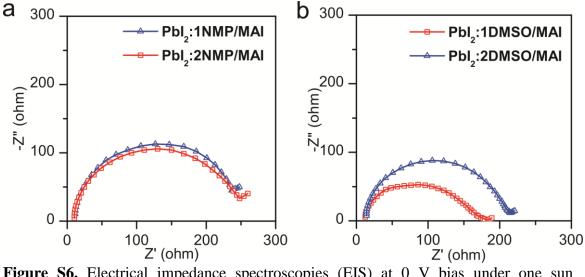

Fangwen Cheng,[†] Xiaojing Jing,[†] Ruihao Chen, Jing Cao, Juanzhu Yan, Youyunqi Wu, Xiaofeng Huang, Binghui Wu* and Nanfeng Zheng*

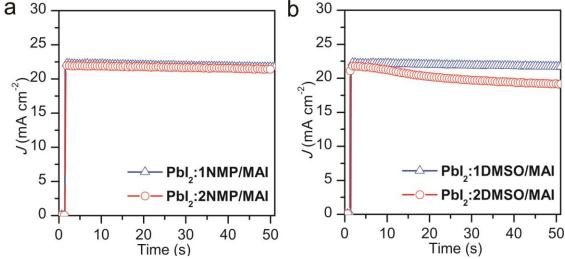
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.

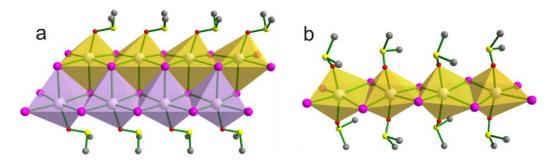

E-mails: binghuiwu@xmu.edu.cn; nfzheng@xmu.edu.cn. Fax: +86-592-2183047.

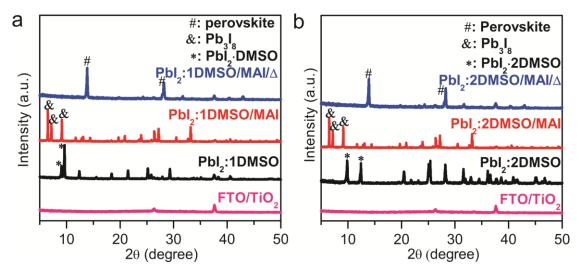

Figure S1. SEM images of PbI_2 precursor films and the reaction with MAI before and after annealing (Δ) prepared with $PbI_2/DMSO$ molar ratios of 1:1 and 1:2.

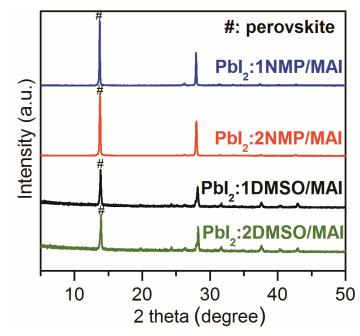

Figure S2. Best IPCE characteristics of perovskite films prepared with PbI₂/NMP molar ratios of 1:1 and 1:2.

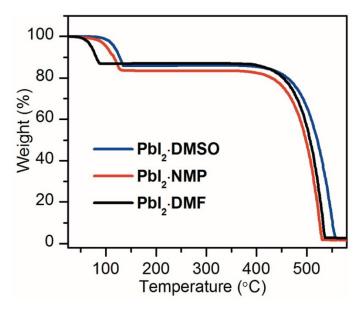

Figure S3. UV-vis absorption spectra of perovskite films prepared with different PbI₂/NMP ratios.

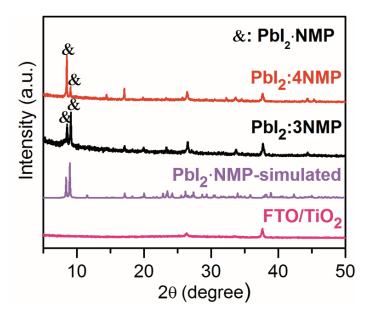

Figure S4. Steady-state photoluminescence spectra of perovskite films prepared with different PbI₂/NMP ratios. The quality of perovskite films made from NMP showed no dependence on PbI₂/NMP ratio, however, the PbI₂/DMSO ratio obviously affected the the quality of as-prepared perovskite films.

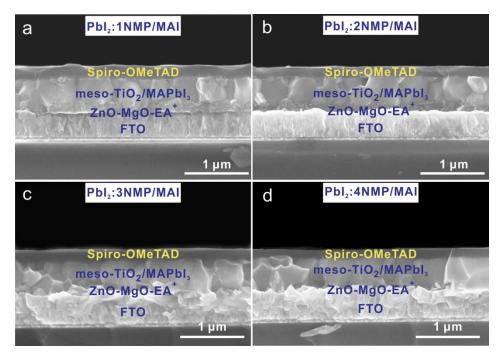

Figure S5. (a) Best *J-V* characteristics and (b) histograms of efficiencies among 30 cells of PSC devices with PbI₂:DMSO molar ratios of 1:1 and 1:2.

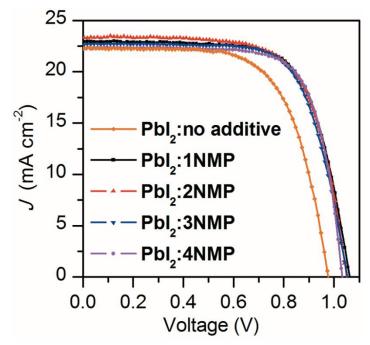

Figure S6. Electrical impedance spectroscopies (EIS) at 0 V bias under one sun illumination on whole devices with different perovskite layers: (a) PbI₂:1NMP and PbI₂:2NMP; (b) PbI₂:1DMSO and PbI₂:2DMSO. These impedances refer to the charge recombination rates in perovskite films.


Figure S7. Stabilized outputs of current density measured as a function of time for devices fabricated with (a) PbI₂:1NMP and PbI₂:2NMP at their maximum power points (0.89 V bias and 0.88 V bias, respectively) and (b) PbI₂:1DMSO and PbI₂:2DMSO at their maximum power points (0.88 V bias and 0.82 V bias, respectively). The output of PbI₂:1NMP, PbI₂:2NMP and PbI₂:1DMSO devices maintained stable over 50 s, which was in good agreement with the *J-V* tests. In contrast, the PbI₂:2DMSO devices continuously degraded probably due to the presence of pinholes in the perovskite film (Figure S1).


Figure S8. Crystal structure of (a) PbI₂·DMSO and (b) PbI₂·2DMSO.


Figure S9. XRD patterns of the precursor films and the perovskite films (before and after annealing Δ) in the case of (a) PbI₂:1DMSO and (b) PbI₂:2DMSO.


Figure S10. XRD patterns of the perovskite films deposited with PbI₂:1NMP, PbI₂:2NMP, PbI₂:1DMSO and PbI₂:2DMSO.


Figure S11. TGA curves of PbI₂·DMF, PbI₂·NMP and PbI₂·DMSO powder samples.

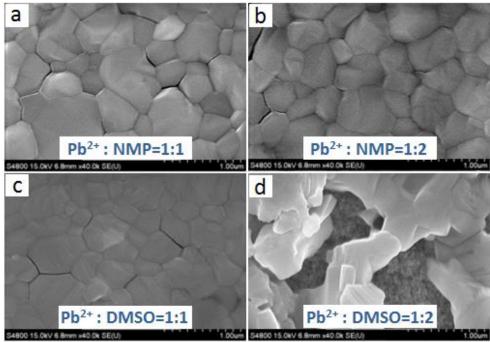

Figure S12. Comparison of simulated and experimental XRD patterns of precursor films prepared with PbI₂/NMP molar ratios of 1:3 and 1:4.

Figure S13. Cross-sectional SEM images of devices fabricated with PbI₂/NMP molar ratios of (a) 1:1, (b) 1:2, (c) 1:3 and (d) 1:4.

Figure S14. *J-V* characteristics of MAPbI₃ PSCs fabricated with different PbI₂/NMP ratios (from 1:0 to 1:4).

Figure S15. SEM images of Cs/FA/MA perovskite films prepared with Pb²⁺/NMP molar ratios of (a) 1:1 and (b) 1:2 and Pb²⁺/DMSO molar ratios of (c) 1:1 and (d) 1:2.

Table S1. Photovoltaic parameters of the champion cells with different molar ratios of PbI_2/NMP and different fabricated methods.

Devices	$J_{sc}/\text{mA}\cdot\text{cm}^{-2}$	V _{oc} /V	FF/%	η/%	$Rs/\Omega\cdot\text{cm}^{-2}$
PbI ₂ :1NMP/MAI	23.5	1.07	75.6	19.1	3.41
PbI ₂ :2NMP/MAI	23.5	1.06	77.1	19.2	3.90
Pb ²⁺ :1NMP/CsI-FAI-MABr	24.5	1.07	76.5	20.1	3.36
Pb ²⁺ :2NMP/CsI-FAI-MABr	24.5	1.06	76.8	20.1	3.66

Table S2. Crystal data and structure refinement for $PbI_2 \cdot NMP$.

Complexes	PbI ₂ NMP		
Formula	C ₅ H ₉ I ₂ NOPb		
M/g mol ⁻¹	560.12		
T/K	100.01(10)		
Crystal system	Monoclinic		
Space group	P2/m		
$a/ m \AA$	4.6337(2)		
$b/ m \AA$	19.1129(8)		
$c/ ext{Å}$	12.1265(5)		
α/deg	90		
β /deg	98.144(4)		
γ/deg	90		
V / $\mathring{\mathbf{A}}^3$	1063.13(8)		
Z	4		
$d_{cal}/g cm^{-3}$	3.499		
	$-5 \le h \le 6$,		
Limiting indices	$-23 \le k \le 24$,		
	-15 <= 1 <= 11		
Reflections	2422/2177		
collected /	[R(int) =		
unique	0.0655]		
Goodness-of-fit on F^2	1.049		
Final <i>R</i> indices	$R_1 = 0.0564$		
$[I > 2\sigma(I)]$	$wR_2 = 0.1386$		