Electronic Supplementary Information

Experimental

Materials

Carbon cloth (CC) was used as the substrate. Cobalt nitrate hexahydrate $(Co(NO_3)_2 \cdot 6H_2O) \ge 99\%$ and sodium sulfide $(Na_2S \cdot 9H_2O) \ge 98\%$ were obtained from Aladdin Industrial Corporation. 2-Methylimidazole $(C_4H_6N_2) \ge 99.0\%$ was received from Sinopharm Chemical Reagent Co. Ltd. All chemicals employed were analytical grade. Experimental water was deionized water.

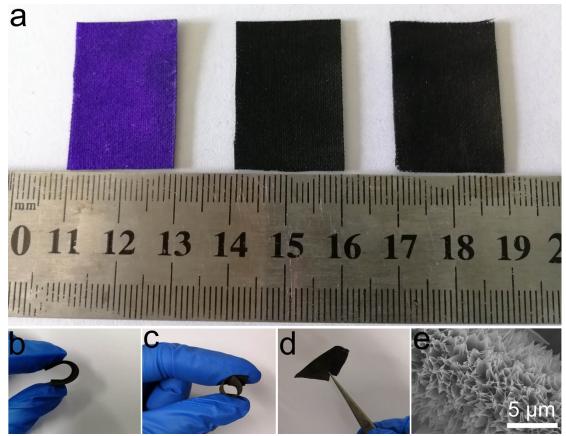
Synthesis of Co-MOF Nanoflakes Array on CC

At first, the bare CC was pretreated by immersing in concentrated nitric acid and maintaining at 100 °C for 3 h in a Teflon-lined stainless steel autoclave. Co-MOF NF/CC was synthesized by a simple precipitation method. Specifically, 0.582 g of $Co(NO_3)_2 \cdot 6H_2O$ and 1.312 g of 2-methylimidazole ($C_4H_6N_2$) were dissolved respectively in 40 mL of deionized water to form solution A and solution B. After the solution B being rapidly added into the solution A to form a homogeneous suspension, a piece of pretreated CC substrate ($2 \times 3 \text{ cm}^2$) was quickly immersed in the above mixed solution. After reaction for 4 h at the room temperature, the material was taken out, cleaned with deionized water and dried at 60 °C overnight.

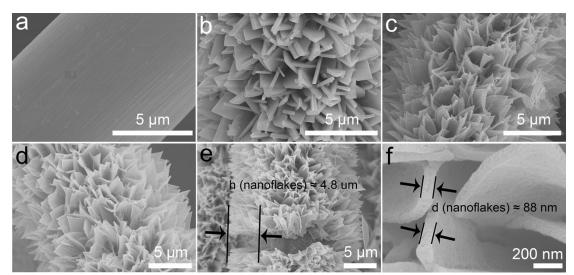
Synthesis of CoS Nanoflakes Array on CC

Firstly, the Co₃O₄ NF/CC was obtained by annealing the prepared Co-MOF NF/CC in a tube furnace at 400 °C for 2 h with the heating rate of 2 °C min⁻¹ in air. Then, the preparation of CoS NF/CC was carried out through hydrothermal ion-exchange method. Concretely, 0.1 M Na₂S·9H₂O aqueous solution served as reaction solution with a piece of obtained Co₃O₄ NF/CC as precursor. After reaction at 120 °C for 9 h and naturally cooled down to ambient temperature, the CoS NF/CC was synthesized, then washed thoroughly with water and dried at 60 °C in a vacuum environment. The loading masses of Co₃O₄ and CoS nanoflakes on CC are ~0.32 and ~0.72 mg cm⁻², respectively.

Synthesis of RuO₂


RuO₂ powder was obtained in the light of a previously reported method. Specifically, 50 mL RuCl₃·3H₂O solution (0.1 M) and 15 mL KOH (1.0 M) were mixed and stirred gently at 100 °C for 45 min. Then, the precipitation was collected by centrifugation for 10 minutes at the rotation speed of 10000 r min⁻¹, and washed with deionized water for three times. Finally, the dried collection was annealed at 300 °C for 3 h in the air. Afterwards, 0.01 g of synthesized RuO₂ powder was dispersed in 0.5 mL ethanol/water/Nafion (v:v:v = 12:12:1) solution to form uniformly dispersed suspension with sonication for 30 min. Subsequently, 9 μ L of the ink was dropped on CC (0.25 cm²) and dried at room temperature.

Physical characterization


Scanning electron microscope (SEM), elemental mappings test and energy-dispersive spectrometry (EDS) were performed on Hitachi S-4800 operated at an accelerating voltage of 10 kV. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and corresponding elemental mappings images were obtained by a Hitachi H-8100 electron microscopy (Hitachi, Tokyo, Japan) operated at 200 kV. X-ray diffraction (XRD) dates were gained from a Bruker D8 Advanced Diffractometer System with Cu K α (1.5418 Å) as the radiation source (40 kV, 40 mA). X-ray photoelectron spectroscopy (XPS) measurements were taken on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The BET analysis was performed with the N₂ adsorption/desorption isotherms at 77 K on a Micromeritics ASAP 2020 instrument.

Electrochemical measurements

Electrochemical measurements were conducted on a computer-controlled electrochemical workstation (CHI660E, CH Instruments, Inc., Shanghai) with a threeelectrode configuration. The mercuric oxide electrode (MOE), graphite plate, and asprepared catalytic materials acted as the reference electrode, counter electrode and working electrode, respectively. The area of working electrode is 0.25 cm^2 in all experiments. The electrocatalytic performance was evaluated by steady-state linear sweep voltammograms in 1.0 M KOH solution at a sweep rate of 2 mV s⁻¹. Measured voltage results were converted according to the equation: *E* (RHE: reversible hydrogen electrode) = E (MOE) + 0.9254 V in 1.0 M KOH. The Tafel plots were obtained by overpotential (η) vs. log current (log |j|). The Tafel slope (b) was calculated by fitting the linear portion of the Tafel plots according to the Tafel equation [$\eta = b \log (j) + a$]. *iR* corrected is on the basis of the equation: $E = E_m - iR_s$ (where E is the corrected potential, E_m is the measured potential, i is the current density and R_s is the resistance of the solution). The electrochemical double-layer capacitance (C_{dl}) was calculated by the equation of $C_{dl} = I/v$ from the CV curves in a potential range of 0.3–0.4 V without redox process, wherein I is the charging current (mA cm⁻²), and v is the scan rate (mV s⁻¹). Electrochemical impedance spectroscopy (EIS) measurements were carried out by applying an AC voltage of 0.60 V with 5 mV amplitude in the frequency range from 100 kHz to 0.005 Hz. In addition, the obtained samples served as both the anode and the cathode to form a single-compartment cell to conduct overall water electrolysis with linear sweep voltammetry recorded in the voltage range from 2.0 V to 1.0 V. Multi-step and long-term chronopotentiometric measurements were employed to study the stability of catalysts.

Fig. S1. (a) Optical image of Co-MOF NF/CC (left), Co_3O_4 NF/CC (middle), and CoS NF/CC (right). (b-d) Optical images of CoS NF/CC bended at different angles. (e) SEM image of CoS NF/CC after being bended at different angles.

Fig. S2. SEM images of the (a) bare CC, (b) Co-MOF NF/CC, (c) Co_3O_4 NF/CC and (d) CoS NF/CC. (e) The height of CoS nanoflakes on CC. (f) The thickness of CoS nanoflakes.

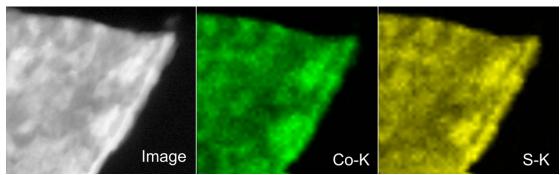


Fig. S3. Elemental mapping images for the CoS nanoflake.

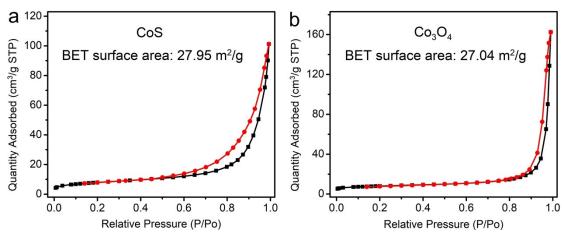
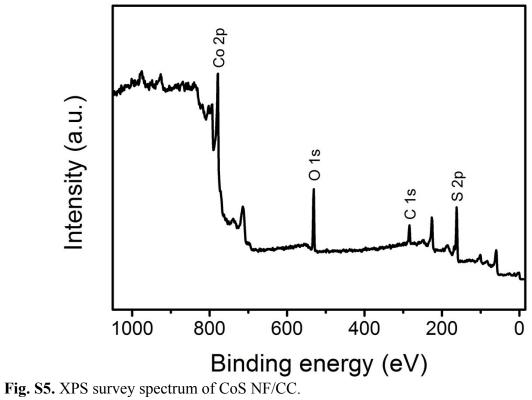



Fig. S4. N_2 adsorption/desorption isotherms obtained from the BET measurements of (a) CoS and (b) Co₃O₄ nanoflakes powders.

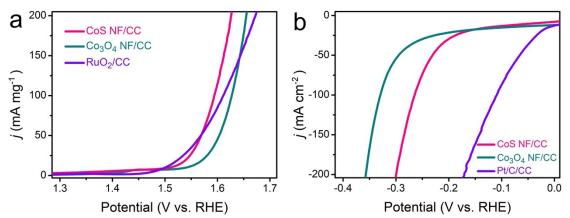
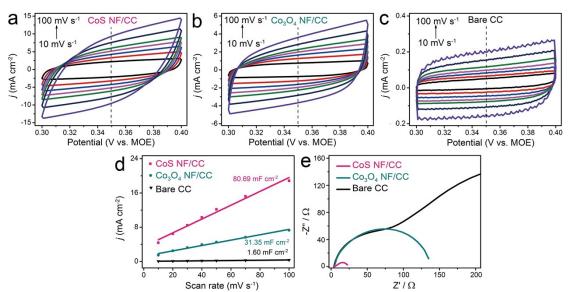
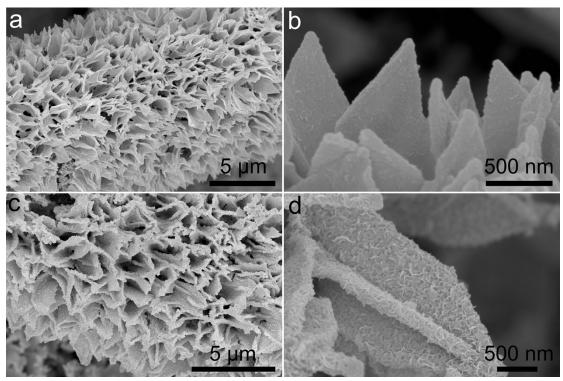




Fig. S6. (a) The mass-normalized OER performances of the CoS NF/CC, Co_3O_4 NF/CC and RuO_2/CC . (b) The mass-normalized HER performances of the CoS NF/CC, Co_3O_4 NF/CC and Pt/C/CC.

Fig. S7. Typical cyclic voltammograms of (a) CoS NF/CC, (b) Co₃O₄ NF/CC and (c) bare CC with various scan rates (10–100 mV s⁻¹) in the region of 0.3–0.4 V (*vs.* MOE). (d) The capacitive current density (Δj) at 0.35 V (*vs.* MOE) as a function of scan rate in the range of 0.3–0.4 V for different electrodes in 1.0 M KOH. (e) The Nyquist plots of CoS NF/CC, Co₃O₄ NF/CC and bare CC measured in 1.0 M KOH.

Fig. S8. SEM images of the CoS NF/CC after long-term (a,b) HER and (c,d) OER catalysis at 100 mA cm⁻².

Catalytic material	Current density (mA cm ⁻²)	Overpotential (mV)	Ref.
CoS NF/CC	10	310	This work
Ni@CoO@CoNC	10	309	1
S,N-CNTs/CoS2@Co	10	340	2
NiCo ₂ S ₄	10	337	3
Ni _x Co _{3-x} O ₄	10	337	4
Co ₉ S ₈ /N,S-CNS	10	350	5
Co ₉ S ₈ @MoS ₂	10	342	6
Au@CoSe ₂	10	430	7
NiO/Ni	10	345	8
β-Ni(OH) ₂	10	340	9
Co-Cu ₇ S ₄ -0.035	10	320	10
Fe ₃ O ₄ @Co ₉ S ₈ /rGO-2	10	320	11
NiCoS-3 polyhedron	10	320	12
$Zn_{0.1}Co_{0.9}Se_2$	10	340	13
Co _{1-x} S@rGO	10	310	14
Co ₉ S ₈ @NOSC-900	10	330	15
Mn-Co oxyphosphide	10	320	16

Table S1. Comparison of the OER activity for the synthesized CoS NF/CC with several recently reported highly active electrocatalysts in alkaline solution.

Catalytic material	Current density (mA cm ⁻²)	Overpotential (mV)	Ref.	
CoS NF/CC	50	247	This work	
Ni@CoO@CoNC	50	~280	1	
CoNi ₂ Se ₄ @Au/glass	50	>300	17	
Ni ₃ S ₂ -NGQDs/NF	50	~305	18	
Ni ₃ Se ₂ nanoforest/NF	50	~247	19	
Ni ₃ S ₂ particles	10	335	20	
Ni/NC	20	~249	21	
Co/N-doped carbon	10	260	22	
Co-S/CP	10	357	23	
CP/CTs/Co-S	30	~258		
CoP nanowire array	50	~375	24	
Ni ₃ S ₂ /NF	20	~290	25	
CoO _x @CN	20	~280	26	
CoSe/NiFe LDH	10	260	27	
NiO/NF	30	~255	28	

Table S2. Comparison of the HER activity for the synthesized CoS NF/CC with several recently reported highly active electrocatalysts in alkaline solution.

Table S3. Comparison of the electrocatalysis activity for overall water splitting of the synthesized CoS NF/CC with several recently reported highly active electrocatalysts in alkaline solution.

Catalytic material	Current density (mA cm ⁻²)	Voltage (V)	Ref.
CoS NF/CC	10	1.72	This work
Ni _x Co _{3-x} O ₄ /NiCo/NiCoO _x	10	1.75	4
Co-P/NC/CC	10	1.77	14
CP/CTs/Co-S	10	1.74	23
amorphous Co ₂ B	10	1.81	29
Ni _{0.85} Se/GS	10	1.73	30
V/NF	10	1.74	31
Co ₃ O ₄	10	1.91	32
Mo ₂ C@CS	10	1.73	33
CoO/MoO _X	10	1.72	34
Ni(OH) ₂ /NiSe ₂	10	1.78	35
NiCo ₂ O ₄ Ni _{0.33} Co _{0.67} S ₂ /Ti foil	10	1.72	36
NiSe/Ni	20	1.75	37
Ni_3S_2 on nickel foam	10	1.73	38
NiCo-LDH	10	1.73	39
NiCo ₂ S ₄ nanowires array	20	1.85	40

Reference

[1] G. Cai, W. Zhang, L. Jiao, S.-H. Yu and H.-L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. *Chem*, 2017, **2**, 791-802.

[2] J.-Y. Wang, T. Ouyang, N. Li, T. Ma and Z.-Q. Liu, S,N co-doped carbon nanotube-encapsulated core-shelled $CoS_2@Co$ nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. *Sci. Bull.*, 2018, **63**, 1130-1140.

[3] J. Jiang, C. Yan, X. Zhao, H. Luo, Z. Xue and T. Mu, A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous $NiCo_2S_4$ for efficient oxygen evolution reaction. *Green Chem.*, 2017, **19**, 3023-3031.

[4] X. Yan, K. Li, L. Lyu, F. Song, J. He, D. Niu, L. Liu, X. Hu and X. Chen, From water oxidation to reduction: transformation from $Ni_xCo_{3-x}O_4$ nanowires to $NiCo/NiCoO_x$ heterostructures. *ACS Appl. Mater. Interfaces*, 2016, **8**, 3208-3214.

[5] C. Wu, Y. Zhang, D. Dong, H. Xie and J. Li, Co_9S_8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. *Nanoscale*, 2017, **9**, 12432-12440.

[6] J. Bai, T. Meng, D. Guo, S. Wang, B. Mao and M. Cao, Co₉S₈@MoS₂ core-shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. *ACS Appl. Mater. Interfaces*, 2018, **10**, 1678-1689.

[7] S. Zhao, R. Jin, H. Abroshan, C. Zeng, H. Zhang, S. D. House, E. Gottlieb, H. J. Kim, J. C. Yang and R. Jin, Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe₂ interface. *J. Am. Chem. Soc.*, 2017, **139**, 1077-1080.

[8] J. Liang, Y.-Z. Wang, C.-C. Wang and S.-Y. Lu, *In situ* formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions. *J. Mater. Chem. A*, 2016, **4**, 9797-9806.

[9] S. C. Jung, S. L. Sim, Y. W. Soon, C. M. Lim, P. Hing and J. R. Jennings, Synthesis of nanostructured β -Ni(OH)₂ by electrochemical dissolution-precipitation and its application as a water oxidation catalyst. *Nanotechnology*, 2016, **27**, 275401.

[10] Q. Li, X. Wang, K. Tang, M. Wang, C. Wang and C. Yan, Electronic modulation of electrocatalytically active center of Cu_7S_4 nanodisks by cobalt-doping for highly efficient oxygen evolution reaction. *ACS Nano*, 2017, **11**, 12230-12239.

[11] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang and Y. Yan, Efficient water oxidation using nanostructured α -nickel-hydroxide as an electrocatalyst. *J. Am. Chem. Soc.*, 2014, **136**, 7077-7084.

[12] Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang and K. Sun, MOF-directed templating synthesis of hollow nickel-cobalt sulfide with enhanced electrocatalytic activity for

oxygen evolution. Int. J. Hydrogen Energ., 2018, 43, 8815-8823.

[13] X. Wang, F. Li, W. Li, W. Gao, Y. Tang and R. Li, Hollow bimetallic cobaltbased selenide polyhedrons derived from metal-organic framework: an efficient bifunctional electrocatalyst for overall water splitting. *J. Mater. Chem. A*, 2017, **5**, 17982-17989.

[14] J. Q. Zhu, Z. Y. Ren, S. C. Du, Y. Xie, J. Wu, H. Y. Meng, Y. Z. Xue and H. G. Fu, Co-vacancy-rich Co_{1-x}S nanosheets anchored on rGO for high-efficiency oxygen evolution. *Nano Res.*, 2017, **10**, 1819-1831.

[15] S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, N-, O-, and S-tridoped carbon-encapsulated Co_9S_8 nanomaterials: efficient bifunctional electrocatalysts for overall water splitting. *Adv. Funct. Mater.*, 2017, **27**, 1606585.

[16] B. Y. Guan, L. Yu and X. W. Lou, General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. *Angew. Chem. Int. Ed.*, 2017, **56**, 2386-2389.

[17] B. G. Amin, A. T. Swesi, J. Masud and M. Nath, $CoNi_2Se_4$ as an efficient bifunctional electrocatalyst for overall water splitting. *Chem. Commun.*, 2017, **53**, 5412-5415.

[18] J.-J. Lv, J. Zhao, H. Fang, L.-P. Jiang, L.-L. Li, J. Ma and J.-J. Zhu, Incorporating nitrogen-doped graphene quantum dots and Ni_3S_2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting. *Small*, 2017, **13**, 1700264.

[19] R. Xu, R. Wu, Y. Shi, J. Zhang and B. Zhang, Ni₃Se₂ nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H₂ and O₂ generations. *Nano Energy*, 2016, **24**, 103-110.

[20] N. Jiang, Q. Tang, M. Sheng, B. You, D.-E. Jiang and Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS₂, and Ni₃S₂ nanoparticles. *Catal. Sci. Technol.*, 2016, **6**, 1077-1084.

[21] X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, Facile synthesis of nickeliron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting. *ACS Catal.*, 2016, **6**, 580-588.

[22] H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu and J. Ye, Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. *ACS Nano*, 2016, **10**, 684-694.

[23] J. Wang, H. Zhong, Z. Wang F. Meng and X. Zhang, Integrated threedimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. *ACS Nano*, 2016, **10**, 2342-2348. [24] J. Tian, Q. Liu, A. M. Asiri and X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. *J. Am. Chem. Soc.*, 2014, **136**, 7587-7590.

[25] L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, High-index faceted Ni_3S_2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. *J. Am. Chem. Soc.*, 2015, **137**, 14023-14026.

[26] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, *In situ* cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. *J. Am. Chem. Soc.*, 2015, **137**, 2688-2694.

[27] Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. *Energy Environ. Sci.*, 2016, *9*, 478-483.

[28] J. Liu, Y. Zheng, Y. Jiao, Z. Wang, Z. Lu, A. Vasileff and S.-Z. Qiao, NiO as a bifunctional promoter for RuO₂ toward superior overall water splitting. *Small*, 2018, **14**, 1704073.

[29] J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann, Amorphous cobalt boride (Co_2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. *Adv. Energy Mater.*, 2016, **6**, 1502313.

[30] X. Wu, D. He, H. Zhang, H. Li, Z. Li, B. Yang, Z. Lin, L. Lei and X. Zhang, Ni_{0.85}Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. *Int. J. Hydrogen Energy*, 2016, **41**, 10688-10694.

[31] Y. Yu, P. Li, X. Wang, W. Gao, Z. Shen, Y. Zhu, S. Yang, W. Song and K. Ding, Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis. *Nanoscale*, 2016, 8, 10731-10738.
[32] S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, Co₃O₄ nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. *Chem. Commun.*, 2015, 51, 8066-8069.

[33] H. Wang, Y. Cao, C. Sun, G. Zou, J. Huang, X. Kuai, J. Zhao and L. Gao, Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting. *ChemSusChem*, 2017, **10**, 3540-3546.

[34] X. Yan, L. Tian, S. Atkins, Y. Liu, J. Murowchick and X. Chen, Converting $CoMoO_4$ into CoO/MoO_x for overall water splitting by hydrogenation. *ACS Sustainable Chem. Eng.*, 2016, **4**, 3743-3749.

[35] H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. *Chem. Mater.*, 2015, **27**, 5702-5711.

[36] Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng, From water oxidation to reduction: homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. *Adv. Energy Mater.*, 2015, **5**, 1402031.

[37] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. *Angew. Chem. Int. Ed.*, 2015, **54**, 9351-9355.

[38] A. Sivanantham, P. Ganesan and S. Shanmugam, Hierarchical NiCo₂S₄ nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. *Adv Funct Mater*, 2016, **26**, 4661-4672.

[39] K. Xiao, L. Zhou, M. Shao and M. Wei, Fabrication of (Ni,Co)_{0.85}Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting. *J. Mater. Chem. A*, 2018, **6**, 7585-7591.

[40] D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, $NiCo_2S_4$ nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. *Nanoscale*, 2015, **7**, 15122-15126.