Molecular doping of CuSCN for hole transporting layer in inverted-type planar perovksite solar cells

In Su Jin, ${ }^{\S}$ Ju Ho Lee, ${ }^{\S}$ Young Wook Noh, ${ }^{\S}$ Sang Hyun Park ${ }^{\S}$ and Jae Woong Jung ${ }^{\S *}$
${ }^{\text {§ }}$ Department of Advanced Materials Engineering for Information \& Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

* Corresponding author.

Email addresses: wodndwjd@khu.ac.kr

Figure S1. Top-view SEM images of perovskite film (a) pristine CuSCN HTL and (b) $0.03 \mathrm{wt} \%$ F4TCNQ-doped CuSCN.
(b)

Figure S2. X-ray diffraction patterns of CuSCN with and without F4TCNQ (a) and corresponding schematic illustration of CuSCN in β-phase (brown sphere $=\mathrm{Cu}$; yellow sphere $=\mathrm{S}$; gray sphere $=\mathrm{C}$; and blue sphere $=\mathrm{N}$) (b).

Figure S3. XPS core-level signal for F1s (a), and elemental mapping of F4TCNQ ($0.03 \mathrm{wt} \%$)doped CuSCN thin films by SEM (EDS) (b).

Figure S4. SEM images for $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{PbI}_{3}$ layers on CuSCN (a) and on CuSCN with F4TCNQ (b), and their absorption spectra (c) and X-ray diffractograms (d).

Figure S5. Steady-state photocurrent generations under $100 \mathrm{~mW} / \mathrm{cm}^{2}$ illumination at each maximum power point voltage for the devices employing the un-doped and the doped CuSCN.

Figure S6. Normalized PCE of devices with un-doped and doped CuSCN when stored in a glovebox.

