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SI-1: Ordered state (Magnetic structures determination): 

Magnetic structures of Ba2Mn(PO4)2 compatible with the crystallographic symmetry were determined by 
the representation analysis using the BASIREPS program of the Fullprof suite [1-9]. The symmetry analysis 
reveals four magnetic structures that can form upon the second-order phase transition at TN. The magnetic 
reducible representation Γmag for the Mn site can be decomposed as a direct sum of irreducible 
representations  (IRs) as
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Table 1:  Basis vectors of the magnetic Mn site with the propagation vector k = ( ) for Ba2Mn(PO4)2. 
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Only the real components of the basis vectors are presented. The atoms of the non-primitive basis are 
defined according to Mn1: [(0.2628, 0.4911, 0.3596): (x, y, z)]; Mn2: [(0.2372, 0.9911, 0.1404): (x + 

 y +  z +  )]; Mn3: [(−0.2628, −0.4911, −0.3596): (x, y, z)]; Mn4: [(0.7628, 0.0089, 0.8596) : (x 
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Basis VectorsIRs

Mn1 Mn2 Mn3 Mn4



1
1

1 ( 1 0 0 ) (1  0  0 ) ( 1  0  0 ) (1  0  0 )

2 ( 0 1 0 ) ( 0  1  0 ) ( 0  1  0 ) ( 0  1  0 )
3 ( 0 0 1 ) ( 0  01 ) ( 0  0  1 ) ( 0  01 )



1
2

1 ( 1 0 0 ) (1  0  0 ) (1  0  0 ) ( 1  0  0 )

2 ( 0 1 0 ) ( 0  1  0 ) ( 01  0 ) ( 01  0 )
3 ( 0 0 1 ) ( 0  01 ) ( 0  01 ) ( 0  0  1 )



1
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1 ( 1 0 0 ) ( 1  0  0 ) ( 1  0  0 ) ( 1  0  0 )

2 ( 0 1 0 ) ( 01  0 ) ( 0  1  0 ) ( 01  0 )
3 ( 0 0 1 ) ( 0  0  1 ) ( 0  0  1 ) ( 0  0  1 )



1
4

1 ( 1 0 0 ) ( 1  0  0 ) (1  0  0 ) (1  0  0 )
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 All the four Γ’s are one-dimensional and appear three times in the Γmag. The basis vectors (Fourier 
components of the magnetization) for the magnetic Mn site 4e (x, y, z) are given in Table 1 for the four IRs. 
The basis vectors are calculated using the projection operator technique implemented in BASIREPS [1]. 
The refinement of the magnetic structure was tested for all the four Γ’s. Only the Γ1 produced a good fit of 
the observed diffraction patterns at 1.5 K. The fitted pattern is shown in the manuscript Fig. 6 (b). For 
further clarification, the pure magnetic pattern at 1.5 K (after subtraction of the nuclear background at 10 
K) is shown in the manuscript Fig. 6 (c) along with the calculated magnetic pattern. The Rmag factor was 
found to be 6.92 %. The basis vectors for Γ1 [Table 1] indicate that all three components of the magnetic 
moment can be refined.

References:

[1] J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder 
diffraction, Physica B: Condensed Matter 192, 55 (1993).

[2] A peak can be still seen in the magnetic susceptibility slightly above TN, but this feature is common 
to Heisenberg antiferromagnets. Note also that the Tmax/TN ratio for the magnetic susceptibility is 
1.3 in Ba2Mn(PO4)2 vs. 1.6 in Ba2Ni(PO4)2, thus confirming the much stronger tendency of the Ni 
compound to the short-range order above TN.

[3] E. F. Bertaut, A. Delapalme, F. Forrat, and G. Roult, Magnetic Structure Work at the Nuclear Center 
of Grenoble, J. Appl. Phys. 33, 1123 (1962).

[4] E. F. Bertaut, Representation analysis of magnetic structures, Acta Cryst. 24, 217 (1968).

[5] E. F. Bertaut, MAGNETIC STRUCTURE ANALYSIS AND GROUP THEORY, J. Phys. 
Colloques 32, C1-462 (1971).

[6] E. F. Bertaut, On group theoretical techniques in magnetic structure analysis, J. Magn. Magn. Mat. 
24, 267 (1981).

[7] Y. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials 
(Consultants Bureau, New York, USA, 1991).

[8] C. Bradley and A. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon Press, 
Oxford, 1972).

[9] A. Cracknell, Magnetism in Crystalline Materials (Pergamon Press, Oxford, 1975).

2 ( 0 1 0 ) ( 01  0 ) ( 01  0 ) ( 0  1  0 )
3 ( 0 0 1 ) ( 0  0  1 ) ( 0  01 ) ( 0  01 )


