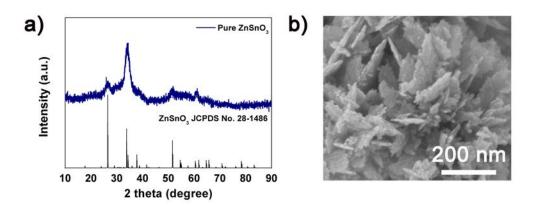
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

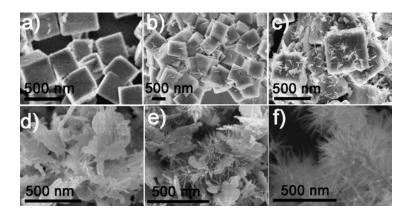
Supplementary content

Construction of flower-like $ZnSnO_3/Zn_2SnO_4$ hybrids for enhanced phenylamine sensing performance


Liyong Du, Hongpeng Zhang, Mingming Zhu, Mingzhe Zhang *

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012,

P.R. China.


^{*} Corresponding author. Email address: zhangmz@jlu.edu.cn

Synthesis of ZnSnO₃ nanosheets: ZnSnO₃ nanosheets were synthesized based on literature with a few modification [1]. Typically, 0.002 mol Na₂SnO₃·4H₂O and 0.002 mol Zn(CH₃COO)₂·2H₂O were dissolved in 20 ml of mixed solutions (5 ml ethanol and 15 ml DI water), respectively. Then Na₂SnO₃ solution was slowly dropped into the Zn(CH₃COO)₂ solution under vigorous stirring for 15 min. Next, the above solution was transferred into Teflon-lined autoclave and kepted at 180°C at 12 h. After cooled to room temperature, the precipitate was collected by centrifugation and washed by DI water and ethanol several times, then dried for a ninght. Finally, the sample was annealed at 500°C for 4 h.

Fig. S1 (a, b) XRD pattern and SEM image of pure ZnSnO₃ nanosheets, respectively.

.

Fig. S2 SEM images of the as-obtained ZnSn(OH)₆ cubes at hydrothermal reactions of (a) 0 h, (b) 6 h, (c) 10 h, (d) 18 h, (e) 20 h and (f) 24 h.

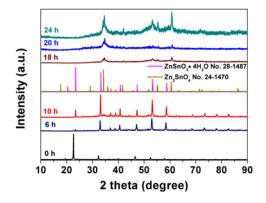


Fig. S3 XRD pattern of precursors at different reaction time

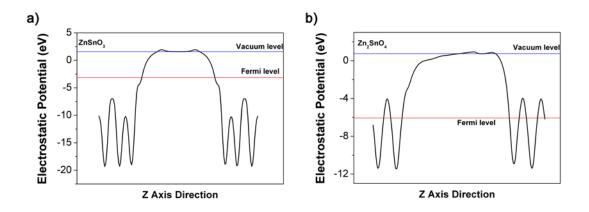


Fig. S4. Electrostatic potentials for the (a) ZnSnO₃ and (b) Zn₂SnO₄.

References

[1] Y. J. Chen, B. H. Qu, L. Mei, D. N. Lei, L. B. Chen, Q. H. Li, T. H. Wang, Synthesis of ZnSnO₃ mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries†, J. Mater. Chem. 22 (2012) 25373-25379.