Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material

Zinc oxide/nanoporous carbon hybrid materials derived from metalorganic frameworks with different dielectric and absorption performances

Xiaohui Liang,^{†, a, b} Xin Xu,^{†, b} Zengming Man,^a Bin Quan,^a Bowen, Sun,^b Jiabin Chen,^a Weihua Gu,^a Guangbin Ji^{a,*}

- a College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
- b Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
- * Corresponding to: gbji@nuaa.edu.cn, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China

[†] These authors contributed equally to this work.

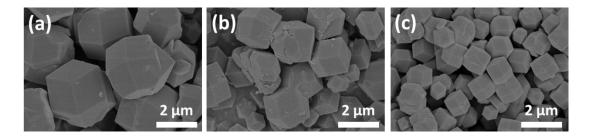


Fig. S1 a-c) SEM images of S-700/800/900.

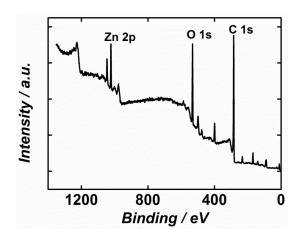
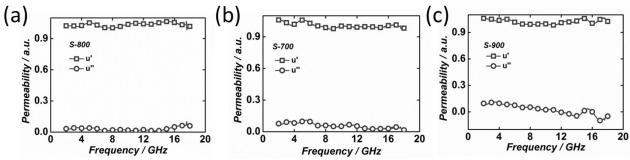



Fig. S2. XPS survey spectrum of S-800.

Fig. S3 a-c) Permeability of S-700/800/900.



Fig. S4 Impedance matching characteristics of S-800 composites with different thicknesses.

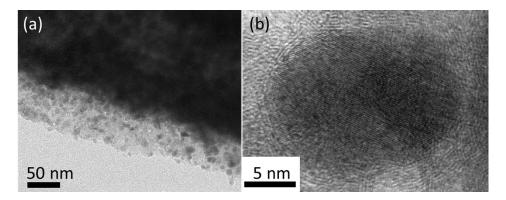


Fig. S5 TEM and HRTEM images of sample S-800.