Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic Supplementary Information

Ba₃Ca₄(BO₃)₃(SiO₄)Cl: a new non-centrosymmetric complex

alkaline-earth metal borosilicate chloride with

deep-ultraviolet cut-off edge

Zixiu Lu,^{a,b,#} Fangfang Zhang,^{a,b,#} Abudukadi Tudi,^{a,b} Sujuan Yu,^a Zhihua

Yang^{a,b} and Shilie Pan^{a,b,*}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments;

Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory

of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi

830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China.

[#]These authors contributed equally to this work.

*Corresponding author: slpan@ms.xjb.ac.cn.

Atoms	x	у	Z.	$U_{(eq)}$	BVS
Ba(1)	1476(1)	2953(1)	3479(1)	12(1)	2.1
Ca(1)	4765(1)	5235(1)	-54(3)	12(1)	1.9
Ca(2)	3333	6667	6247(6)	16(1)	1.7
Si (1)	3333	6667	2094(10)	28(1)	4.0
B(1)	8063(5)	6125(10)	2927(15)	11(2)	3.1
Cl(1)	0	0	1203(8)	19(1)	1.0
O(1)	3333	6667	-280(20)	26(3)	1.8
O(2)	6825(5)	5842(5)	1971(8)	21(1)	2.0
O(3)	4146(3)	8291(6)	3018(8)	17(2)	2.0
O(4)	8355(5)	6711(10)	4699(13)	41(2)	1.9

Table S1. Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters (Å² $\times 10^3$) for Ba₃Ca₄(BO₃)₃(SiO₄)Cl. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Ba(1)-O(4)#1	2.602(9)	Ca(1)-O(4)#10	2.944(6)
Ba(1)-O(2)#2	2.890(5)	Ca(2)-O(1)#11	2.376(15)
Ba(1)-O(2)#3	2.890(5)	Ca(2)-O(2)#12	2.666(5)
Ba(1)-O(2)#4	2.961(5)	Ca(2)-O(2)#13	2.666(5)
Ba(1)-O(2)#5	2.961(5)	Ca(2)-O(2)#14	2.666(5)
Ba(1)-O(3)#6	3.0236(12)	Ca(2)-O(2)#2	2.666(5)
Ba(1)-O(3)#4	3.0236(12)	Ca(2)-O(2)#15	2.666(5)
Ba(1)-O(4)#4	3.040(6)	Ca(2)-O(2)#3	2.666(5)
Ba(1)-O(4)#7	3.040(6)	Ca(2)-O(3)#6	2.677(6)
Ba(1)-Cl(1)#1	3.324(3)	Ca(2)-O(3)	2.677(6)
Ba(1)-Cl(1)	3.162(3)	Ca(2)-O(3)#4	2.677(6)
Ca(1)-O(3)#4	2.396(6)	Si(1)-O(1)	1.619(15)
Ca(1)-O(2)	2.412(5)	Si(1)-O(3)	1.641(6)
Ca(1)-O(2)#5	2.412(5)	Si(1)-O(3)#6	1.641(6)
Ca(1)-O(3)#8	2.422(6)	Si(1)-O(3)#4	1.641(6)
Ca(1)-O(2)#1	2.535(5)	B(1)-O(4)	1.328(14)
Ca(1)-O(2)#9	2.535(5)	B(1)-O(2)	1.374(7)
Ca(1)-O(1)	2.6734(19)	B(1)-O(2)#16	1.374(7)
Ca(1)-O(4)#1	2.944(6)		
O(4)#1-Ba(1)-O(2)#2	140.61(19)	O(2)#5-Ca(1)-O(4)#10	142.5(2)
O(4)#1-Ba(1)-O(2)#3	140.61(19)	O(3)#8-Ca(1)-O(4)#10	106.31(16)
O(2)#2-Ba(1)-O(2)#3	48.19(18)	O(2)#1-Ca(1)-O(4)#10	114.1(2)
O(4)#1-Ba(1)-O(2)#4	69.27(10)	O(2)#9-Ca(1)-O(4)#10	50.1(2)
O(2)#2-Ba(1)-O(2)#4	83.02(11)	O(1)-Ca(1)-O(4)#10	68.01(15)
O(2)#3-Ba(1)-O(2)#4	129.93(14)	O(4)#1-Ca(1)-O(4)#10	135.8(3)
O(4)#1-Ba(1)-O(2)#5	69.27(10)	O(1)#11-Ca(2)-O(2)#12	79.31(14)
O(2)#2-Ba(1)-O(2)#5	129.93(14)	O(1)#11-Ca(2)-O(2)#13	79.31(14)
O(2)#3-Ba(1)-O(2)#5	83.02(11)	O(2)#12-Ca(2)-O(2)#13	52.53(18)
O(2)#4-Ba(1)-O(2)#5	138.4(2)	O(1)#11-Ca(2)-O(2)#14	79.31(14)
O(4)#1-Ba(1)-O(3)#6	77.8(2)	O(2)#12-Ca(2)-O(2)#14	65.18(19)
O(2)#2-Ba(1)-O(3)#6	63.94(14)	O(2)#13-Ca(2)-O(2)#14	116.64(8)
O(2)#3-Ba(1)-O(3)#6	85.12(14)	O(1)#11-Ca(2)-O(2)#2	79.31(14)
O(2)#4-Ba(1)-O(3)#6	59.70(13)	O(2)#12-Ca(2)-O(2)#2	116.64(8)
O(2)#5-Ba(1)-O(3)#6	107.87(14)	O(2)#13-Ca(2)-O(2)#2	65.18(19)
O(4)#1-Ba(1)-O(3)#4	77.8(2)	O(2)#14-Ca(2)-O(2)#2	157.7(3)
O(2)#2-Ba(1)-O(3)#4	85.12(14)	O(1)#11-Ca(2)-O(2)#15	79.31(14)
O(2)#3-Ba(1)-O(3)#4	63.94(14)	O(2)#12-Ca(2)-O(2)#15	116.64(8)
O(2)#4-Ba(1)-O(3)#4	107.87(14)	O(2)#13-Ca(2)-O(2)#15	157.7(3)
O(2)#5-Ba(1)-O(3)#4	59.70(13)	O(2)#14-Ca(2)-O(2)#15	52.53(18)
O(3)#6-Ba(1)-O(3)#4	51.4(2)	O(2)#2-Ca(2)-O(2)#15	116.64(8)

Table S2. Selected bond lengths (Å) and angles (\degree) for Ba₃Ca₄(BO₃)₃(SiO₄)Cl.

O(4)#1-Ba(1)-O(4)#4	108.71(17)	O(1)#11-Ca(2)-O(2)#3	79.31(14)
O(2)#2-Ba(1)-O(4)#4	64.71(17)	O(2)#12-Ca(2)-O(2)#3	157.7(3)
O(2)#3-Ba(1)-O(4)#4	106.64(18)	O(2)#13-Ca(2)-O(2)#3	116.64(8)
O(2)#4-Ba(1)-O(4)#4	46.10(19)	O(2)#14-Ca(2)-O(2)#3	116.64(8)
O(2)#5-Ba(1)-O(4)#4	160.14(17)	O(2)#2-Ca(2)-O(2)#3	52.53(18)
O(3)#6-Ba(1)-O(4)#4	90.48(18)	O(2)#15-Ca(2)-O(2)#3	65.18(19)
O(3)#4-Ba(1)-O(4)#4	140.07(18)	O(1)#11-Ca(2)-O(3)#6	145.53(13)
O(4)#1-Ba(1)-O(4)#7	108.71(17)	O(2)#12-Ca(2)-O(3)#6	96.98(12)
O(2)#2-Ba(1)-O(4)#7	106.64(18)	O(2)#13-Ca(2)-O(3)#6	71.80(15)
O(2)#3-Ba(1)-O(4)#7	64.71(17)	O(2)#14-Ca(2)-O(3)#6	130.50(19)
O(2)#4-Ba(1)-O(4)#7	160.14(17)	O(2)#2-Ca(2)-O(3)#6	71.80(15)
O(2)#5-Ba(1)-O(4)#7	46.10(19)	O(2)#15-Ca(2)-O(3)#6	130.50(18)
O(3)#6-Ba(1)-O(4)#7	140.07(18)	O(2)#3-Ca(2)-O(3)#6	96.98(12)
O(3)#4-Ba(1)-O(4)#7	90.48(18)	O(1)#11-Ca(2)-O(3)	145.53(13)
O(4)#4-Ba(1)-O(4)#7	121.8(3)	O(2)#12-Ca(2)-O(3)	71.80(15)
O(4)#1-Ba(1)-Cl(1)	67.5(2)	O(2)#13-Ca(2)-O(3)	96.98(12)
O(2)#2-Ba(1)-Cl(1)	138.15(12)	O(2)#14-Ca(2)-O(3)	71.80(15)
O(2)#3-Ba(1)-Cl(1)	138.15(12)	O(2)#2-Ca(2)-O(3)	130.50(19)
O(2)#4-Ba(1)-Cl(1)	83.67(10)	O(2)#15-Ca(2)-O(3)	96.98(12)
O(2)#5-Ba(1)-Cl(1)	83.67(9)	O(2)#3-Ca(2)-O(3)	130.50(18)
O(3)#6-Ba(1)-Cl(1)	136.72(13)	O(3)#6-Ca(2)-O(3)	58.7(2)
O(3)#4-Ba(1)-Cl(1)	136.72(13)	O(1)#11-Ca(2)-O(3)#4	145.53(13)
O(4)#4-Ba(1)-Cl(1)	77.62(15)	O(2)#12-Ca(2)-O(3)#4	130.50(19)
O(4)#7-Ba(1)-Cl(1)	77.62(14)	O(2)#13-Ca(2)-O(3)#4	130.50(19)
O(3)#4-Ca(1)-O(2)	76.59(17)	O(2)#14-Ca(2)-O(3)#4	96.98(12)
O(3)#4-Ca(1)-O(2)#5	76.59(17)	O(2)#2-Ca(2)-O(3)#4	96.98(12)
O(2)-Ca(1)-O(2)#5	73.1(2)	O(2)#15-Ca(2)-O(3)#4	71.80(15)
O(3)#4-Ca(1)-O(3)#8	151.75(19)	O(2)#3-Ca(2)-O(3)#4	71.80(15)
O(2)-Ca(1)-O(3)#8	80.80(16)	O(3)#6-Ca(2)-O(3)#4	58.7(2)
O(2)#5-Ca(1)-O(3)#8	80.80(16)	O(3)-Ca(2)-O(3)#4	58.7(2)
O(3)#4-Ca(1)-O(2)#1	127.74(15)	O(1)-Si(1)-O(3)	112.6(3)
O(2)-Ca(1)-O(2)#1	154.64(15)	O(1)-Si(1)-O(3)#6	112.6(3)
O(2)#5-Ca(1)-O(2)#1	103.24(17)	O(3)-Si(1)-O(3)#6	106.1(3)
O(3)#8-Ca(1)-O(2)#1	73.85(15)	O(1)-Si(1)-O(3)#4	112.6(3)
O(3)#4-Ca(1)-O(2)#9	127.74(14)	O(3)-Si(1)-O(3)#4	106.1(3)
O(2)-Ca(1)-O(2)#9	103.24(17)	O(3)#6-Si(1)-O(3)#4	106.1(3)
O(2)#5-Ca(1)-O(2)#9	154.64(15)	O(2)#9-Ca(1)-O(1)	76.5(3)
O(3)#8-Ca(1)-O(2)#9	73.85(15)	O(3)#4-Ca(1)-O(4)#1	82.60(17)
O(2)#1-Ca(1)-O(2)#9	69.0(2)	O(2)-Ca(1)-O(4)#1	142.5(2)
O(3)#4-Ca(1)-O(1)	64.4(3)	O(2)#5-Ca(1)-O(4)#1	71.96(19)
O(2)-Ca(1)-O(1)	126.4(2)	O(3)#8-Ca(1)-O(4)#1	106.31(16)
O(2)#5-Ca(1)-O(1)	126.4(2)	O(2)#1-Ca(1)-O(4)#1	50.1(2)
O(3)#8-Ca(1)-O(1)	143.8(3)	O(2)#9-Ca(1)-O(4)#1	114.1(2)
O(2)#1-Ca(1)-O(1)	76.5(3)	O(1)-Ca(1)-O(4)#1	68.01(15)

O(3)#4-Ca(1)-O(4)#10	82.60(17)	O(2)-Ca(1)-O(4)#10	71.96(19)
O(4)-B(1)-O(2)	120.8(4)	O(2)-B(1)-O(2)#16	118.3(9)
O(4)-B(1)-O(2)#16	120.8(4)		

Symmetry transformations used to generate equivalent atoms:

#1	-x+1, -y+1, z-1/2	#2	x – y, – y + 1, z +1/2	#3	-x + 1, -y + 1, z + 1/2
#4	-x + y, -x + 1, z	#5	-y + 1, -x + 1, z	#6	-y + 1, x - y + 1, z
#7	-y + 1, x - y, z	#8	x - y + 1, x, z - 1/2	#9 <u>-</u>	y, x, z − 1/2
#10	y, − x + y + 1, z − 1/2	#11	x, y, z + 1 #12	- x -	+1, -x + y + 1, z + 1/2
#13	x – y, x, z + 1/2	#14	y, -x + y + 1, z + 1/2	2 #15	5 y, x, z + 1/2
#16	-x + y + 1, y, z	#17	x - y + 1, x, z + 1/2	#18	-x + y + 1, -x + 1, z
#19	-x + y, -x, z	#20	- y, x - y, z	#21	- x, - y, z - 1/2
#22	x – y, x, z – 1/2	#23	y, − x + y, z − 1/2	#24	x, y, z – 1

Figure S1. Strip shaped crystals of Ba₃Ca₄(BO₃)₃(SiO₄)Cl.

Figure S2. (a) $[Si_3B_6O_{24}]$ layer in $BaY_6B_6Si_3O_{24}F_2$; (b) Isolated $[BO_3]$ and $[Si_6O_{18}]$ in $NaAl_6B_3Fe_3Si_6O_3F$; (c) Isolated $[BO_3]$ and $[SiO_4]$ in $Ba_7(BO_3)(SiO_4)X$ (X = Cl, Br).

wt% σ
Ba 55.5 0.7
Ca 16.0 0.4
O 13.1 0.5
Si 12.2 0.3
Cl 3.3 0.2
B 0.0 29.3

Figure S3. EDS of Ba₃Ca₄(BO₃)₃(SiO₄)Cl single crystal.

Figure S4 Arrangement of BO₃ and SiO₄ groups in $Ba_3Ca_4(BO_3)_3(SiO_4)Cl.$ (a) the BO₃ groups; (b) the SiO₄ groups.

Figure S5 Calculated band structure of Ba₃Ca₄(BO₃)₃(SiO₄)Cl by HSE06