Electronic supplementary information for

Enhanced photocatalytic performance of black phosphorene by

isoelectronic co-dopants

Xuhui Yang¹, Baisheng Sa^{1,*}, Chao Xu², Hongbing Zhan^{1,**}, Masakazu Anpo³, and Zhimei Sun^{4,***}

¹ Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China

²Xiamen Talentmats New Materials Science & Technology Co., Ltd., Xiamen 361015, P. R. China

³ State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China.

⁴School of Materials Science and Engineering, and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China

*To whom the correspondence should be addressed: bssa@fzu.edu.cn.

**To whom the correspondence should be addressed: hbzhan@fzu.edu.cn.

***To whom the correspondence should be addressed: zmsun@buaa.edu.cn.

		loped black	a phospho	i enes	
Co-dopant		Bond angel (°)			
X	Y	P_1 -X- P_2	P ₁ - <i>X</i> -Y	P ₃ - <i>Y</i> - <i>X</i>	P ₃ - <i>Y</i> -P ₄
phosphorene		95.95	104.14	104.14	95.95
С	Ο	126.35	103.25	113.97	120.51
С	S	105.14	120.02	115.37	91.59
С	Se	107.26	117.61	110.76	91.48
С	Te	108.45	117.17	105.12	89.48
Si	Ο	93.29	103.59	117.28	109.28
Si	S	93.47	98.17	106.48	99.05
Si	Se	94.24	97.21	101.68	97.10
Si	Te	95.41	97.54	95.02	93.69
Ge	Ο	92.72	98.78	115.08	112.29
Ge	S	91.94	94.41	107.00	99.84
Ge	Se	92.44	93.51	102.20	97.67
Ge	Te	93.48	93.80	95.37	94.11
Sn	Ο	86.90	93.95	114.85	111.37
Sn	S	87.71	87.77	106.70	100.44
Sn	Se	88.18	86.52	102.39	98.15
Sn	Te	89.46	86.63	95.64	94.75
Pb	Ο	83.92	90.53	113.43	112.21
Pb	S	85.02	84.73	106.34	100.70
Pb	Se	85.39	83.39	102.30	98.30
Pb	Te	86.63	83.23	95.74	94.94

 Table S1. The calculated bond angels around the co-dopants in different isoelectronic co-doped black phosphorenes

 Open black phosphorenes

Figure S1. The electronic localization function 2D line profiles of the (a) intraplanar and interplanar P-P bonds in pure phosphorene, and the (b) P₁-C bonds, (c) P₁-Si bonds, (d) P₁-Ge bonds, (e) P₁-Sn bonds, (f) P₁-Pb bonds in different isoelectronic co-doped phosphorenes.

Figure S2. The electronic localization function 2D line profiles of the (a) *X*-O bonds, (b) *X*-S bonds, (c) *X*-Se bonds, and (d) *X*-Te bonds in different isoelectronic co-doped phosphorenes.

Figure S3. The electronic localization function 2D line profiles of the (a) O-P₃ bonds, (b) S-P₃ bonds, (c) Se-P₃ bonds, and (d) Te-P₃ bonds in different isoelectronic co-doped phosphorenes.

Figure S4. The (a) PBE and (b) HSE06 band gap of different isoelectronic co-doped phosphorenes, the black dash line marks the band gap of pure phosphorenes.

Figure S5. Unfolding PBE band structures and partial density of states of C-Y ((a) Y=O, (b) Y=S, (c) Y=Se, (d) Y=Te) isoelectronic co-doped phosphorenes. The partial density of states contribution from P, C and Y atoms are represented by black, blue and red lines, respectively.

Figure S6. Unfolding PBE band structures and partial density of states of Si-Y ((a) Y=O, (b) Y=S, (c) Y=Se, (d) Y=Te) isoelectronic co-doped phosphorenes. The partial density of states contribution from P, Si and Y atoms are represented by black, blue and red lines, respectively.

Figure S7. Unfolding PBE band structures and partial density of states of Ge-Y ((a) Y=O, (b) Y=S, (c) Y=Se, (d) Y=Te) isoelectronic co-doped phosphorenes. The partial density of states contribution from P, Ge and Y atoms are represented by black, blue and red lines, respectively.

Figure S8. Unfolding PBE band structures and partial density of states of Sn-Y ((a) Y=O, (b) Y=S, (c) Y=Se, (d) Y=Te) isoelectronic co-doped phosphorenes. The partial density of states contribution from P, Sn and Y atoms are represented by black, blue and red lines, respectively.

Figure S9. Unfolding PBE band structures and partial density of states of Pb-Y ((a) Y=O, (b) Y=S, (c) Y=Se, (d) Y=Te) isoelectronic co-doped phosphorenes. The partial density of states contribution from P, Pb and Y atoms are represented by black, blue and red lines, respectively.

Figure S10. The real part of dielectric functions along the *x* direction of isoelectric co-doped phosphorenes.

Figure S11. The imaginary part of dielectric functions along the *x* direction of isoelectric codoped phosphorenes.

Figure S12. The real part of dielectric functions along the *y* direction of isoelectric co-doped phosphorenes.

Figure S13. The imaginary part of dielectric functions along the *y* direction of isoelectric codoped phosphorenes.

Figure S14. The absorption coefficients along the *x* direction of different isoelectronic codoped phosphorenes from HSE06 calculations.

Figure S15. The evolution of total energy of (a)Si-S, (b)Si-Se, (c)Ge-S and (d)Ge-Se isoelectronic co-doped BPs.