Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

for

Rice Husk-Derived Mn₃O₄/Manganese Silicate/C Nanostructured Composites for High-Performance Hybrid Supercapacitors

Hanmei Jiang¹, Yifu Zhang^{*,1,2}, Chen Wang¹, Qiushi Wang¹, Changgong Meng¹, John Wang^{*,2}

¹School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China

²Department of Materials Science and Engineering, National University of Singapore, 117574 Singapore,

Singapore

*E-mail addresses: yfzhang@dlut.edu.cn; msewangj@nus.edu.sg

Figure S1. FE-SEM images of (a-b) RHs after pre-carbonization; (c) a-C/SiO₂ and (d) b-C/SiO₂.

Figure S2. (a-c) FE-SEM images of c-C/SiO₂; (d-f) TEM images of c-C/SiO₂.

Figure S3. EDS spectrum and elemental mapping images of c-C/SiO₂.

Figure S4. (a-b) FE-SEM images of c-MnSi-0.8; (d-f) FE-SEM images of c-MnSi-3.

Figure S5. Corresponding EDS mapping of C basement in c-MnSi-2.

Figure S6. XPS spectra of c-C/SiO₂: (a) Survey XPS spectrum; (b-d) High-resolution spectra of C_{1s}, Si_{2p},

 O_{1s} , respectively.

Figure S7. CV curves of c-MnSi-2 at various voltage windows.

Figure S8. (a) CV curves of c-MnSi-2 and (b) log(i) vs log(v) plots based on peak 1.

Figure S9. CV curves of the as-prepared samples with various ratios of Mn/Si at different scan rates from

5 mV s^{-1} to 100 mV $s^{-1}.$

Figure S10. GCD curves of the as-prepared samples with various ratios of Mn/Si at different current densities from 0.5 A g^{-1} to 10 A g^{-1} .

Figure S11. (a) CV curves and (b) GCD curves of as-prepared samples in different active ratios.

Figure S12. CV curves of c-MnSi-2//Ni(OH)₂ HSC on various potential limits.

Figure S13. Digital images of c-MnSi-2//Ni(OH)₂ ASC bent at various angles and their corresponding

CV curves.

Table S1

Si- or Mn-based materials	Electrolyte	Potential /V	Capacitance	Cycling capability	Ref.
Mesoporous-Li ₂ MnSiO ₄	2 М КОН	0~0.55	$120 \text{ F g}^{-1}, 20 \text{ mV} \cdot \text{s}^{-1}$	85.7% after 500	1
Ni ₃ Si ₂ O ₅ (OH) ₄ /RGO	2 М КОН	0.2~0.6	178.9 F g^{-1} , 1 A g^{-1}	97.6% after 5000	2
NS-C-CoSiO	3 М КОН	-0.05~0.4	$1600 \text{ F g}^{-1}, 1 \text{ A g}^{-1}$	99.1% after 6000	3
Mn ₃ O ₄ round shaped nanocrystals	1 M Na ₂ SO ₄	0~0.5	57 F g^{-1} , 2 mV·s ⁻¹	81.1% after 1000	4
(Ni, Co) ₃ Si ₂ O ₅ (OH) ₄	1 M KOH	0~0.5	144 F g^{-1} , 1 A g^{-1}	99.3% after 10000	5
Manganese silicate drapes	1 M KOH	$-0.5 \sim 0.4$	$283 \ F \ g^{-1}, \ 0.5 \ A \ g^{-1}$	74.7% after 1000	6
Co ₃ Si ₂ O ₅ (OH) ₄	6 M KOH	0~0.5	570 F g^{-1} , 0.7 A g^{-1}	_	7
$Co_3(Si_2O_5)_2(OH)_2$	6M KOH	0.1–0.55	237 F g^{-1} , 5.7 mA cm ⁻²	95% after 150	8
Mn ₃ O ₄ thin film	1 M Na ₂ SO ₄	-0.1~0.9	314 F g^{-1} , 5 mV \cdot s ⁻¹	_	9
MnO ₂ /ZnO	1 M Na ₂ SO ₄	0~0.8	230 mF cm ⁻² , 10 mV \cdot s ⁻¹	_	10
Cu-doped Mn ₃ O ₄	1 M Na ₂ SO ₄	0~1	134 F g^{-1} , 0.5 A g^{-1}	_	11
AMSi/MWCNTs	1 M Na ₂ SO ₄	-0.2~0.8	203 F g^{-1} , 1 A g^{-1}	41% after 1000	12
MnO ₂ /carbon cloth	0.1 M Na ₂ SO ₄	0~0.8	230, 10 mV s ⁻¹	98.5% after 3000	13
c-MnSi-2	3 М КОН	-0.9~0.4	$108 \mathrm{F} \mathrm{g}^{-1}, 1 \mathrm{A} \mathrm{g}^{-1 \mathrm{a}}$	82% after 8400	This work

Table S1. Comparison of the specific capacitance of Mn_3O_4 doped MnSi/C composites and some of other previously reported Mn- and Si- based electrode materials.

 $M = mol L^{-1};$

^a The capacitance based on the total mass of the active materials on the two electrodes.

References

- 1. P. Chaturvedi, A. Kumar, A. Sil and Y. Sharma, *RSC Adv.*, 2015, **5**, 25156-25163.
- Y. Zhang, W. Zhou, H. Yu, T. Feng, Y. Pu, H. Liu, W. Xiao and L. Tian, *Nanoscale Res. Lett.*, 2017, 12, 325.
- 3. X. Li, S. Ding, X. Xiao, J. Shao, J. Wei, H. Pang and Y. Yu, *J. Mater. Chem. A*, 2017, **5**, 12774-12781.
- 4. D. P. M. D. Shaik, R. Pitcheri, Y. Qiu and O. M. Hussain, *Ceramics International*, 2019, **45**, 2226-2233.
- 5. Q. Rong, L.-L. Long, X. Zhang, Y.-X. Huang and H.-Q. Yu, *Appl. Energy*, 2015, **153**, 63-69.
- H.-Y. Wang, Y.-Y. Wang, X. Bai, H. Yang, J.-P. Han, N. Lun, Y.-X. Qi and Y.-J. Bai, RSC Adv., 2016, 6, 105771-105779.
- 7. J. Zhao, Y. Zhang, T. Wang, P. Li, C. Wei and H. Pang, *Adv. Mater. Interfaces*, 2014, **2**, 1400377.
- 8. G.-Q. Zhang, Y.-Q. Zhao, F. Tao and H.-L. Li, *J. Power Sources*, 2006, **161**, 723-729.
- D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar and C. D. Lokhande, *Appl. Surf. Sci.*, 2010, 256, 4411-4416.
- 10. W. Zilong, Z. Zhu, J. Qiu and S. Yang, *Journal of Materials Chemistry C*, 2014, **2**, 1331-1336.
- R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen and F. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 9508-9516.
- 12. Q. Wang, Y. Zhang, S. Jia, Y. Han, J. Xu, F. Li and C. Meng, *Colloid Surf. A-Physicochem. Eng. Asp.*, 2018, **548**, 158-171.
- 13. Y.-C. Chen, Y.-K. Hsu, Y.-G. Lin, Y.-K. Lin, Y.-Y. Horng, L.-C. Chen and K.-H. Chen, *Electrochimica Acta*, 2011, **56**, 7124-7130.