Supporting Information

Sn nanocrystals embedded in porous TiO₂/C with improved

capacity for sodium-ion batteries

Dedicated to the 100th anniversary of Nankai University

Wei Xu^a, Lingjun Kong^a, Hui Huang^a, Ming Zhong^a, Yingying Liu^a, and Xian-He Bu^{a,b,c*}

^aSchool of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
E-mail: buxh@nankai.edu.cn
^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
^cCollaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China

Figure S1. Morphologies of the TiO₂/C composite: a, b) FESEM images, c) TEM image and d) HRTEM image showing lattice fringe of rutile TiO₂ (as indicated by the red arrows).

Figure S2. Raman spectra of Sn/TiO₂/C and TiO₂/C samples.

Figure S3. TG curves of Sn/TiO₂/C and TiO₂/C obtained from room temperature to 800 °C under air.

Figure S4. N 1s spectrum of Sn/TiO₂/C.

Figure S5. CV curves of Sn/TiO₂/C electrode with the potential range of 0.01-3.00 V at a scan rate of 0.1 mV s⁻¹.