Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting information

Controllable Thermal Expansion and Magnetic Structure in Er₂(Fe,Co)₁₄B

Intermetallic Compounds

Yongqiang Qiao, ^a Yuzhu Song, ^a Meng Xu, ^a Qilong Gao, ^b Yang Ren, ^c Xianran Xing ^a and Jun Chen*^a

^a Beijing Advanced Innovation Center for Materials Genome Engineering, and Department of

Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

^b School of Physical Science, Zhengzhou University, Zhengzhou, China

^cX-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

Supplementary Figure

Figure S1. (a) The crystal structure of $\text{Er}_2\text{Fe}_{14}\text{B}$. (b) The refinement of the SXRD pattern with the space group $P4_2/mnm$ at 120 K.

Figure S2. The variable temperature SXRD datasets for the $Er_2(Fe_{1-x}Co_x)_{14}B$ intermetallic compounds (x = 0, 0.05, and 0.1) and the enlarged image is on the right.

Figure S3. (a) Temperature dependence of magnetizations at magnetic field of 0.1 T for $\text{Er}_2(\text{Fe}_{1-x}\text{Co}_x)_{14}\text{B}$ intermetallic compounds (x = 0, 0.05, and 0.1). (b) The temperature of spin reorientation (T_{SR}) and Curie point (T_{C}) as function of Co content.

Figure S4. The temperature dependence of contour plots of the (002) NPD peak intensity for various x.

Figure S5. The refinement of the NPD pattern at 5 K for $Er_2Fe_{14}B$.

Figure S6. The band lengths between $Fe(j_2)$ and $Fe(j_1)$, $Fe(k_1)$, $Fe(k_2)$ with various Co contents.

Table S1. The structural parameters obtained by the SXRD and NPD refinement of $Er_2(Fe_{0.9}Co_{0.1})_{14}B$.

		SXRD					NPD			
Atom	123 K				Atom	5 K				
	x	У	Z	Occ		x	у	Ζ	Occ	$M(\mu_B)$
Er(4f)	0.2677(1)	0.2677(1)	0	1	Er(4f)	0.2682(4)	0.2682(4)	0	1	7.774(130)
Er(4g)	0.1438(1)	0.8561(1)	0	1	Er(4g)	0.1446(5)	0.8553(5)	0	1	7.774(130)
Fe(16k1)	0.2235(1)	0.5665(1)	0.1259(1)	0.9	Fe(16k1)	0.2214(6)	0.5646(5)	0.1270(4)	0.863(12)	2.469(94)
Fe(16k ₂)	0.0380(1)	0.3573(1)	0.1737(1)	0.9	Fe(16k ₂)	0.0394(5)	0.3589(5)	0.1750(3)	0.827(10)	2.499(88)
Fe(8j1)	0.0981(1)	0.0981(1)	0.1995(1)	0.9	Fe(8j1)	0.0964(4)	0.0964(4)	0.1997(4)	0.832(10)	2.689(94)
Fe(8j2)	0.3177(1)	0.3177(1)	0.2458(1)	0.9	Fe(8j2)	0.3188(4)	0.3188(4)	0.2464(4)	1	3.146(101)
Fe(4e)	0	0	0.6164(2)	0.9	Fe(4e)	0	0	0.6198(8)	0.880(16)	2.519(149)
Fe(4c)	0	0.5	0	0.9	Fe(4c)	0	0.5	0	0.996(8)	3.243(125)
Co(16k1)	0.2235(1)	0.5665(1)	0.1259(1)	0.1	Co(16k1)	0.2214(6)	0.5646(5)	0.1271(4)	0.137(12)	2.469(94)
Co(16k ₂)	0.0380(1)	0.3573(1)	0.1737(1)	0.1	Co(16k ₂)	0.0394(5)	0.3589(5)	0.1750(3)	0.173(10)	2.499(88)
Co(8j1)	0.0981(1)	0.0981(1)	0.1995(1)	0.1	Co(8j1)	0.0964(4)	0.0964(4)	0.1997(4)	0.168(10)	2.689(94)
Co(8j2)	0.3177(1)	0.3177(1)	0.2458(1)	0.1	Co(8j2)	0.3188(4)	0.3188(4)	0.2464(4)	0	3.146(101)
Co(4e)	0	0	0.6164(2)	0.1	Co(4e)	0	0	0.6198(8)	0.120(16)	2.519(149)
Co(4c)	0	0.5	0	0.1	Co(4c)	0	0.5	0	0.004(8)	3.243(125)
B(4g)	0.3619(13)	0.6381(13)	0		B(4g)	0.3674(11)	0.6325(11)	0		
a		8.7315(2)			а		8.7317(5)			
С		11.9240(2)			С		11.9231(7)			
Rp		5.36			Rp		5.61			
Rexp		1.12			Rexp		2.3			