Supporting Information

Mixing valence control of Eu²⁺/Eu³⁺ and energy transfer construction of Eu²⁺/Mn²⁺ in solid solution (1-*x*)Ca₃(PO₄)₂-*x*Ca₉Y(PO₄)₇ for multichannel photoluminescence tuning

Peipei Dang,^{a,b} Dongjie Liu,^{a,b} Guogang Li,^{*,c} Sisi Liang,^{a,b} Hongzhou Lian,^a Mengmeng Shang,^d and Jun Lin^{*,a,b,e}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun 130022, P. R. China. E-mail: jlin@ciac.ac.cn

^b University of Science and Technology of China, Hefei, 230026, China

^c Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China. E-mail: ggli@cug.edu.cn

^d School of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China

^e School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China

Space group: R3c (161)				
x	Cell parameters, Å	Cell volume, Å ³	$R_{wp}, R_p, \%, \chi^2$	
<i>x</i> = 0	a = b = 10.4434 c = 37.3465 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3527.46	5.30, 4.08, 1.573	
<i>x</i> = 0.1	a = b = 10.4464 c = 37.3581 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3530.62	4.21, 3.18, 2.432	
<i>x</i> = 0.2	a = b = 10.4449 c = 37.3633 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3530.07	4.29, 3.17, 2.732	
<i>x</i> = 0.3	a = b = 10.4458 c = 37.3636 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3530.77	4.63, 3.50, 2.753	
<i>x</i> = 0.4	a = b = 10.4434 c = 37.3640 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3529.16	3.75, 2.79, 1.902	
<i>x</i> = 0.5	a = b = 10.4435 c = 37.3597 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3528.79	3.30, 2.54, 1.696	
<i>x</i> =0.6	a = b = 10.4449 c = 37.3682 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3530.57	3.73, 2.83, 1.812	
<i>x</i> = 0.7	a = b = 10.4465 c = 37.3768 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3532.45	4.94, 3.81, 1.412	
x = 0.8	a = b = 10.4432 c = 37.3828 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3530.82	5.48,4.24, 1.154	

Table S1. Main refinement parameters of the (1-x)CPO-*x*CYPO:Eu²⁺ (x = 0-1.0) samples.

<i>x</i> = 0.9	a = b = 10.4405 c = 37.3916 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3529.80	7.34, 5.37, 2.779
<i>x</i> = 1.0	a = b = 10.4410 c = 37.3779 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	3528.81	4.81, 3.55, 2.891

Fig. S1. The XRD patterns of as-prepared (1-x)CPO-*x*CYPO:Eu²⁺ (x = 0-1.0) samples.

Samples (<i>x</i>)	IQYs (%)	Abs (%)
0	74.7	53.8
0.1	81.2	53.5
0.2	84.3	48.9
0.3	86.4	50.5
0.4	87.1	33.4
0.5	91.8	23.4
0.6	82.2	33.8
0.7	93.9	38.1
0.8	93.8	31.3
0.9	80.9	38.2
1.0	89.8	22.4

Table S2. The internal quantum yields (IQYs) and absorption of (1-x)CPO-*x*CYPO:0.03Eu²⁺ (x = 0-1.0) samples

7.	x = 0.2,	x = 0.5,	x = 0.7,	x = 0.9,
-	y = 0.01	y = 0.03	y = 0.05	y = 0.07
0	606.70 ns	671.53 ns	638.87 ns	892.79 ns
0.05	514.24 ns			
0.10	366.60 ns	486.60 ns	592.33 ns	779.98 ns
0.20	227.62 ns	357.10 ns	444.22 ns	652.40 ns
0.30	121.94 ns	295.53 ns	292.53 ns	396.25 ns
0.35	44.49 ns	152.62 ns	170.63 ns	178.64 ns

Table S3. The average lifetimes of (1-x)CPO-*x*CYPO:*y*Eu²⁺,*z*Mn²⁺ samples, respectively.

T (K)	I_1	$ au_1$	I2	<i>T</i> 2	f_1	f_2
140	3040.255	1091.55	4938.228	114.0029	0.8549	0.1450
200	3068.15	1070.71	5578.56	105.87	0.8476	0.1524
300	2647.03	984.83	6897.07	100.96	0.7892	0.2108
350	2439.9	859.43	9760.12	83.89	0.7192	0.2808

Table S4. The long-decay (τ_1) and short-decay (τ_2) components and fraction in the total emission intensity assigned to each component of 0.5CPO-0.5CYPO:Eu²⁺/Eu³⁺ sample.