Novel Osmium(II)-Cymene Complexes Containing Curcumin and Bisdemethoxycurcumin ligands

Riccardo Pettinari,^a* Fabio Marchetti,^b Corrado Di Nicola,^b Claudio Pettinari,^a Massimiliano Cuccioloni,^c Laura Bonfili,^c Anna Maria Eleuteri,^c Bruno Therrien,^d Lucida Kate Batchelor,^e Paul J. Dyson.^e*

^a School of Pharmacy, ^bSchool of Science and Technology, ^cSchool of Biosciences and Veterinary Medicine University of Camerino, via S. Agostino 1, 62032 Camerino MC, Italy, ^dInstitute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland; ^eInstitut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Supplementary Information

Table of contents

X-Ray data	
Table S1. Crystallographic data and structure refinement details for 1 .	3
Table S2. Selected geometrical parameters, bond distances (Å) and angles (°) for ${f 1}$	4
Far-IR data	
Figure S1. Far-IR of [(<i>p</i>-cym)OsCl ₂].	5
Figure S2. Far-IR of curcH .	6
Figure S3. Far-IR of bdcurcH .	6
Figure S4. Far-IR of 1 .	7
Figure S5. Far-IR of 2 .	7
Figure S6. Far-IR of 3 .	8
Figure S7. Far-IR of 4 .	8
Relevant NMR spectra	
Figure S8-S25. NMR spectra of 1	9
Figure S26-S28. NMR spectra of 2	20
Figure S29-S34. NMR spectra of 3	22
Figure S35-S49. NMR spectra of 4	25
Biological studies	
Figure S50-S53. DNA binding	33
Figure S54-S55. BSA binding	37
Figure S56. 3-hydroxy-3-methylglutaryl-coenzyme A reductase binding	39

	1
Chemical formula	C ₃₁ H ₃₃ ClO ₆ Os
Formula weight	727.22
Crystal system	Orthorhombic
Space group	<i>Pbca</i> (no. 61)
Crystal color and shape	Orange block
Crystal size	0.22 x 0.19 x 0.18
<i>a</i> (Å)	7.9750(3)
<i>b</i> (Å)	22.7119(11)
<i>c</i> (Å)	32.7398(14)
$V(Å^3)$	5930.1(4)
Ζ	8
<i>T</i> (K)	293(2)
$D_{\rm c} ({\rm g\cdot cm^{-3}})$	1.629
μ (mm ⁻¹)	4.432
Scan range (°)	$1.79 < \theta < 29.28$
Unique reflections	7961
Observed refls $[I \ge 2\sigma(I)]$	4001
$R_{ m int}$	0.1065
Final <i>R</i> indices $[I>2\sigma(I)]^*$	$0.0937, wR_2 \ 0.2150$
R indices (all data)	$0.1779, wR_2 \ 0.2565$
Goodness-of-fit	1.029
Max, Min $\Delta \rho/e$ (Å ⁻³)	4.927, - 2.094

Table S1 – Crystallographic data and structure refinement details for compound 1.

Table S2 – Selected bond distances (Å) and angles (^o) for compound 1.

Distances (Å)

Os-O1	2.092(9)
Os-O2	2.088(9)
Os-Cl	2.430(4)
C9-O1	1.293(16)
C11-O2	1.257(16)
C9-C10	1.359(19)
C10-C11	1.392(18)
Os-centroid	1.65

Angles (°)

01-Os-O2	87.0(4)
O1-Os-Cl	84.6(3)
O2-Os-Cl	85.7(3)

Figure S1. Far-IR of [(p-cym)OsCl₂].

Figure S2. Far-IR of curcH.

Figure S3. Far-IR of **bdcurcH**.

Figure S4. Far-IR of 1.

Figure S5. Far-IR of 2.

Figure S6. Far-IR of 3.

Figure S7. Far-IR of 4.

Figure S8. ¹H NMR spectrum in CDCl₃ at 298 K of **1**.

Figure S9. Magnification of ¹H NMR spectrum in CDCl₃ at 298 K of **1**.

Figure S10. Magnification of ¹H NMR spectrum in CDCl₃ at 298 K of **1**.

1D TopSPIN Multiplet Table

Figure S11. Magnification of ¹H NMR spectrum in CDCl₃ at 298 K of **1**.

Figure S12. ¹³C NMR spectrum in CDCl₃ at 298 K of **1**.

Figure S13. Magnification of ¹³C NMR spectrum in CDCl₃ at 298 K of **1**.

Figure S14. {¹H, ¹H}-COSY spectrum in CDCl₃ at 298 K of **1**.

Figure S15. Magnification of $\{^{1}H, ^{1}H\}$ -COSY spectrum in CDCl₃ at 298 K of **1**.

Figure S16. Magnification of $\{^{1}H, ^{1}H\}$ -COSY spectrum in CDCl₃ at 298 K of 1.

Figure S17. { 1 H, 13 C}-HSQC spectrum in CDCl₃ at 298 K of 1.

Figure S18. Magnification of {¹H, ¹³C}-HSQC spectrum in CDCl₃ at 298 K of **1**.

Figure S19. {¹H, ¹³C}-HMBC spectrum in CDCl₃ at 298 K of **1**.

Figure S20. Magnification of {¹H, ¹³C}-HMBC spectrum in CDCl₃ at 298 K of **1**.

Figure S21. ¹H NMR spectrum in [D₆]DMSO at 298 K of 1.

Figure S22. Magnification of ¹H NMR spectrum in [D₆]DMSO at 298 K of **1**.

Figure S23. Magnification of ¹H NMR spectrum in $[D_6]DMSO$ at 298 K of 1.

Figure S24. ¹³C NMR spectrum in [D₆]DMSO at 298 K of **1**.

Figure S25. Low field region of the ¹H NMR spectra of **1**, [(p-cym)Os(curc)(Cl)]: (A) a solution of **1** in CD₃Cl at 298 K, (B) a solution of **1**, in DMSO [d₆] at 298 K and (C) after treatment of (B) with 1 mol equiv AgNO₃ for 1 h to remove the Cl ligand and generate **1A**, $[(p-cym)Os(curc)(OH_2)]^+$ and (D) a solution of **1**, in 10% [D₆]DMSO-90% D₂O at 298 K.

Figure S26. ¹H NMR spectrum in CD_3CN at 298 K of 2.

Figure S27. Magnification of ¹H NMR spectrum in CD₃CN at 298 K of **2**.

Figure S28. Magnification of ¹³C NMR spectrum in CD₃CN at 298 K of **2**.

Figure S29. ¹H NMR spectrum in CD₃CN at 298 K of **3**.

Figure S30. Magnification of ¹H NMR spectrum in CD₃CN at 298 K of **3**.

Figure S31. ¹³C NMR spectrum in CD₃CN at 298 K of **3**.

Figure S32. ³¹P NMR spectrum in CD₃CN at 298 K of 3.

Figure S33. Magnification of {¹H, ¹³C}-HSQC spectrum in CD₃CN at 298 K of **3**.

Figure S34. Magnification of {¹H, ¹³C}-HMBC spectrum in CD₃CN at 298 K of **3**.

Figure S35. ¹H NMR spectrum in CD_3CN at 298 K of 4.

Figure S36. Magnification of ¹H NMR spectrum in CD₃CN at 298 K of **4**.

Figure S37. Magnification of ¹H NMR spectrum in CD₃CN at 298 K of **4**.

Figure S38. ¹³C NMR spectrum in CD₃CN at 298 K of 4.

Figure S39. {¹H, ¹H}-COSY spectrum in CDCl₃ at 298 K of **4**.

Figure S40. ³¹P NMR spectrum in CD_3CN at 298 K of 4.

Figure S41. {¹H, ¹³C}-HSQC spectrum in CD₃CN at 298 K of **4**.

Figure S42. {¹H, ¹³C}-HMBC spectrum in CD₃CN at 298 K of **4**.

Figure S43. Magnification of {¹H, ¹³C}-HMBC spectrum in CD₃CN at 298 K of **4**.

Figure S44. Magnification of {¹H, ¹³C}-HMBC spectrum in CD₃CN at 298 K of **4**.

Figure S45. ¹H NMR spectrum in [D₆]DMSO at 298 K of 4.

Figure S46. Low field region of the ¹H NMR spectra of **4**, [(p-cym)Os(bdcurc)PTA]: (A) a solution of **4** in CD₃CN at 298 K, (B) a solution of **4**, in [D₆] DMSO at 298 K and.

Figure S47. ¹³C NMR spectrum in [D₆] DMSO at 298 K of 4.

Figure S48. 31 P NMR spectrum in [D₆] DMSO at 298 K of 4.

Figure S49. Magnification of {¹H, ¹H}-COSY spectrum [D₆] DMSO at 298 K of **4**.

Fig. S50. Superimpositions of mono-exponential binding curves obtained upon independent additions of different concentrations of curcH, bdcurcH and compounds **1-4** to surface-blocked DNA.

Fig. S51. Changes in fluorescence emission spectra of DAPI-DNA complex solution upon excitation at 338 nm (upper curves) in the presence of increasing concentration of curcH, bdcurcH and compounds **1**-**4** the range 0-100 μ M.

Fig. S52. Changes in fluorescence emission spectra of EtBr-DNA complex solution upon excitation at 500 nm (upper curves) in the presence of increasing concentration of curcH, bdcurcH and compounds **1**-**4** the range 0-100 μ M. Only curcH and bdcurcH can displace EtBr molecule and intercalate DNA. No significant change is observed with compounds **1**-**4**.

Fig. S53. Changes in absorbance at 630 nm of methyl green-DNA complex solution upon competition with increasing concentration of curcH (black), bdcurcH (blue) and compounds **1** (green), **2** (yellow), **3** (violet) and **4** (red) in the range 0-100 μ M.

Fig. S54. Superimpositions of mono-exponential binding curves obtained upon independent additions of different concentrations of curcH, bdcurcH and compounds **1-4** to surface-blocked BSA.

Fig. S55. Changes in fluorescence emission spectra of BSA (upper curves) upon titration with curcH, bdcurcH, and 1-4 the range 0-100 μ M.

Fig. S56. Superimpositions of mono-exponential binding curves obtained upon independent additions of different concentrations of curcH, bdcurcH and compounds **1-4** to surface blocked HMGR.