Bimetallic NiIr nanoparticles supported on lanthanum oxy-carbonate as highly efficient catalysts for hydrogen evolution from hydrazine borane and hydrazine

Xiaoling Hong, Qilu Yao*, Meiling Huang, Hongxia Du, Zhang-Hui Lu*

Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China.

E-mail: yaoqilu@jxnu.edu.cn; luzh@jxnu.edu.cn

Fig. S1 The particle size distributions of (a) $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ and (b) $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ -N NCs.

Fig. S2 (a) Typical TEM image, (b) high-resolution TEM image, (c) SAED pattern, (d) EDX pattern of $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ NCs.

Fig. S3 Typical TEM images of (a,b) $Ni_{0.75}Ir_{0.25}$ and (c,d) $Ni_{0.75}Ir_{0.25}$ -N samples.

Fig. S4 The particle size distributions of the catalysts (a) $Ni_{0.75}Ir_{0.25}$ and (b) $Ni_{0.75}Ir_{0.25}$ -N samples.

Fig. S5 N_2 adsorption-desorption isotherms of (a) $La_2O_2CO_3$, (b) $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ -N and (c) $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ catalysts.

Fig. S6 CO₂-TPD mass spectra of the pure $Ni_{0.75}Ir_{0.25}$ NPs and $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ catalysts.

Fig. S7 UV-Vis spectra and the corresponding photos of (a) $IrCl_3 \cdot xH_2O$ aqueous solution and (b) $IrCl_3 \cdot xH_2O$ with NaOH mixture aqueous solution.

Fig. S8 The color changes of the aqueous solution of $NiCl_2$ during the reduction processes in the (a) presence and (b) absence of NaOH added.

Fig. S9 Powder XRD diffraction patterns of the as-synthesized (a) $La_2O_2CO_3$, $Ni/La_2O_2CO_3$, $Ir/La_2O_2CO_3$, $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ -N, $Ni_{0.75}Ir_{0.25}$, and $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ samples. (b) Powder XRD diffraction patterns of $Ni_{0.75}Ir_{0.25}$ NPs.

Fig. S10 Time course plots for H₂ generation from aqueous solution of N₂H₄BH₃ (200 mM, 5 mL) (a) over Ni_{0.75}Ir_{0.25}/La₂O₂CO₃ with different amount of La₂O₂CO₃ at 323 K ($n_{(Ni+Ir)}/n_{(N_2H_4BH_3)} = 0.1$) and (b) over Ni_{0.75}Ir_{0.25}/La₂O₂CO₃, Ni_{0.75}Ir_{0.25}/La₂O₃ and Ni_{0.75}Ir_{0.25}/La(OH)₃.

Fig. S11 Time course plots for H₂ generation from aqueous solution of N₂H₄BH₃ (200 mM, 5 mL) over Ni_{0.75}Ir_{0.25}/La₂O₂CO₃ (a) after washing, (b) before washing and (c) added NaOH after washing $(n_{(Ni+Ir)}/n_{(N_2H_4BH_3)} = 0.1)$.

Fig. S12 Powder XRD diffraction patterns of in the $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ (a) before and (b) after the durability test.

Fig. S13 (a-c) Typical TEM images and (d) the particle size distribution of the $Ni_{0.75}Ir_{0.25}/La_2O_2CO_3$ after the durability test.

Catalyst	T/K	NaOH/M	<i>n(</i> H ₂₊ N ₂)/ <i>n(</i> HB)	TOF/h ⁻¹	Ref.
$Rh_{0.5}(Mo_x)_{0.5}$	323	2.0	6.0	2000 ^b	S1
$Ni_{0.9}Pt_{0.1}/MIL-101$	323	0.5	6.0	1515 ^b	S2
Ni _{0.75} Ir _{0.25} /La ₂ O ₂ CO ₃	323	1.2	6.0	1250.0	This work
Raney Ni	298	1.0	6.0	892 ^b	S3
Rh _{0.8} Ni _{0.2} @CeO _x /rGO	323	0.5	6.0	666.7 ^b	S4
Ni-MoO _x /BN	323	1.0	6.0	600.0 ^b	S5
Ni _{0.5} Fe _{0.5} -CeO _x /MIL-101	343	0.5	6.0	351.3 ^b	S6
NiIr/Cr ₂ O ₃	323	0.5	6.0	247.9ª	S7
Ni _{0.6} Pt _{0.4} /MSC-30	303	0.6	6.0	240 ^a	S 8
$Ni_{0.9}Pt_{0.1}/graphene$	323	0.5	6.0	240 ^b	S9
$Ni_{0.9}Pt_{0.1}$ -CeO ₂	323	0.5	5.74	234 ^b	S10
Cu _{0.4} Ni _{0.6} Mo	323	2.0	6.0	108 ^b	S11
Ni@(RhNi-alloy)/Al ₂ O ₃	323	without	5.74	72.0 ^a	S12
Ni ₅ @Pt	323	without	4.4	2.3ª	S13

Table S1 Comparison of the catalytic performance of different catalysts for H_2 generation from $N_2H_4BH_3$.

^aThe total TOF values were calculated according to the original data provided by the reports.

^bThe inital TOF values and NaOH concentration were provided by the reports.

Catalyst	T/K	NaOH/M	$n({ m H}_{2+}{ m N}_2)/n({ m N}_2{ m H}_4)$	TOF/h ⁻¹	Ref.
CoPt/La(OH) ₃	323	3.5	3.0	2400 ^b	S14
$Ni_{0.6}Pt_{0.4}/g-C_3N_4$	323	0.75	3.0	2194 ^b	S15
$Rh_{0.5}(MoO_x)_{0.5}$	323	2.0	3.0	725 ^b	S 1
$Ni_{0.9}Pt_{0.1}/MIL-101$	323	0.5	3.0	621 ^b	S2
Ni _{0.75} Ir _{0.25} /La ₂ O ₂ CO ₃	323	1.2	3.0	487.3	This work
Ni _{0.85} Ir _{0.15} @MIL-101	323	0.5	3.0	464 ^b	S16
Rh ₅₅ Ni ₄₅ /Ce(OH)CO ₃	323	0.5	3.0	395 ^b	S17
Rh _{0.8} Ni _{0.2} @CeO _x /rGO	323	0.5	3.0	210.5 ^b	S4
Ni ₈₇ Pt ₁₃ /MA	323	0.5	2.97	160 ^b	S18
Rh ₅₅ Ni ₄₅ /Ce(OH)CO ₃	303	0.5	3.0	150 ^b	S17
Ni _{0.9} (PtRh) _{0.05} /La ₂ O ₃	298	0.5	3.0	66.7 ^a	S19
Rh-Ni-B	303	1.0	3.0	54.5ª	S20
Ni-0.080CeO ₂	303	without	2.97	51.6 ^b	S21
RhNi/graphene	323	1.0	3.0	37.5 ^a	S22
Ni/CeO ₂	323	0.5	3.0	34.0 ^b	S23
$Ni_{0.9}Pt_{0.1}/Ce_2O_3$	298	0.5	3.0	28.1 ^b	S24
NiMoB/La(OH) ₃	323	2.0	3.0	13.3 ^b	S25
NiIr _{0.059} /Al ₂ O ₃	303	without	2.8	12.4 ^b	S26
Rh ₄ Ni NPs	298	without	3.0	6.0 ^a	S27
Ni-Al ₂ O ₃ -HT	303	without	3.0	4.8 ^a	S28
Ni _{0.95} Ir _{0.05} -CTAB	298	without	3.0	3.1 ^a	S29

Table S2 Comparison of the catalytic performance of different catalysts for H_2 generation by N_2H_4 · H_2O decomposition.

^{*a*}*The total TOF values were calculated according to the original data provided by the reports.*

^b*The inital TOF values were provided by the reports.*

Calculation method for TOF

The total turn-over frequency (TOF) reported in this work was an apparent TOF value based on the number of metal (Ir+Ni) atoms in catalysts, which was calculated from the equation as follows:

TOF =
$$\frac{n^{\rm H_2}}{n^{\rm metal} \cdot t}$$

Where n_{H_2} was the mole number of generated H₂, n_{metal} was the total mole number of Ni and Ir in catalyst and t was the completed reaction time in hour.

References

- S1 Q. L. Yao, M. He, X. L. Hong, X. Y. Chen, G. Feng and Z. H. Lu, Int. J. Hydrogen Energy, doi.org/10.1016/j.ijhydene.2019.02.105.
- S2 Z. J. Zhang, S. L. Zhang, Q. L. Yao, X. S. Chen and Z. H. Lu, *Inorg. Chem.*, 2017, 56, 11938-11945.
- S3 S. L. Zhang, Q. L. Yao, Q. Y. Li, G. Feng and Z. H. Lu, *Energy Technol.*, 2019, 3, 1800533.
- S4 Z. J. Zhang, Z. H. Lu, H. L. Tan, X. S. Chen and Q. L. Yao, J. Mater. Chem. A, 2015, 3, 23520-23529.
- S5 S. J. Li, X. Kang, B. R. Wulan, X. L. Qu, K. Zheng, X. D. Han and J. M. Yan, *Small Methods*, 2018, 1800250.
- S6 S. J. Li, H. L. Wang, B. R Wulan, X. B. Zhang, J. M. Yan and Q. Jiang, Adv. Energy Mater., 2018, 1800625.
- S7 J. M. Chen, Z. H. Lu, Q. L. Yao, G. Feng, Y. Luo, J. Mater. Chem. A, 2018, 6, 20746-20752.
- S8 Q. L. Zhu, D. C. Zhong, U. B. Demirci and Q. Xu, ACS Catal., 2014, 4, 4261-4268.
- S9 Z. J. Zhang, Z. H. Lu and X. S. Chen, ACS Sustainable Chem. Eng., 2015, 3, 1255-1261.
- S10 Z. J. Zhang, Y. Q. Wang, X. S. Chen and Z. H. Lu, *J. Power Sources*, 2015, 291, 14-19.
- S11 Q. L. Yao, Z. H. Lu, R. Zhang, S. L. Zhang, X. S. Chen and H. L. Jiang, J. Mater. Chem. A, 2018, 6, 4386-4393.
- S12 C. Li, Y. Dou, J. Liu, Y. Chen, S. He, M. Wei, D. G. Evans and X. Duan, *Chem. Commun.*, 2015, 49, 9992-9994.
- S13 D. Clemençon, J. F. Petit, U. B. Demirci, Q. Xu and P. Miele, J. Power Sources, 2014, 260, 77-81.
- S14 K. Wang, Q. L. Yao, S. J. Qing and Z. H. Lu, J. Mater. Chem. A, 2019, 7, 9903-9911.
- S15 C. Wan, L. Sun, L. X. Xu, D. G. Cheng, F. Q. Chen, X. L. Zhan and Y. R. Yang, J. Mater. Chem. A, 2019, 7, 8798-8804.
- S16 P. P. Zhao, N. Cao, J. Su, W. Luo and G. Z. Cheng, ACS Sustainable Chem. Eng., 2015, 3, 1086-1093.

- S17 J. M. Chen, Q. L. Yao, J. Zhu, X. S. Chen and Z. H. Lu, Int. J. Hydrogen Energy, 2016, 41, 3946-3954.
- S18 Y. Y. Jiang, Q. Kang, J. J. Zhang, H. B. Dai and P. Wang, *J. Power Sources*, 2015, 273, 554-560.
- Song-II O, J. M. Yan, H. L. Wang, Z. L. Wang and Q. Jiang, *J. Power Sources*, 2014, 262, 386-390.
- S20 J. Wang, W. Li, Y. Wen, L. Gu, Y. Zhang, Adv. Energy Mater., 2015, 1401879.
- S21 L. He, B. L. Liang, L. Li, X. F. Yang, Y. Q. Huang, A. Q. Wang, X. D. Wang and T. Zhang, ACS Catal., 2015, 5, 1623-1628.
- S22 J. Wang, X. B. Zhang, Z. L. Wang, L. M. Wang and Y. Zhang, *Energy Environ. Sci.*, 2012, 5, 6885-6888.
- S23 W. Kang and A. Varma, *Appl. Catal. B Environ.*, 2018, **220**, 409-416.
- S24 H. L. Wang, J. M. Yan, Z. L. Wang, S. I. O and Q. Jiang, J. Mater. Chem. A, 2013, 1, 14957-14962.
- S25 J. Zhang, Q. Kang, Z. Yang, H. Dai, D. Zhuang and P. Wang, *J. Mater. Chem. A*, 2013, 1, 11623-11628.
- S26 L. He, Y. Q. Huang, X. Y. Liu, L. Li, A. Q. Wang, X. D. Wang, C. Y. Mou and T. Zhang, *Appl. Catal. B Environ.*, 2014, 147, 779-788.
- S27 S. K. Singh and Q. Xu, J. Am. Chem. Soc., 2009, 131, 18032-18033.
- S28 L. He, Y. Q. Huang, A. Wang, X. Wang, X. Chen, J. J. Delgado and T. Zhang, *Angew. Chem. Int. Ed.*, 2012, **51**, 6191-6194.
- S29 S. K. Singh and Q. Xu, Chem. Commun., 2010, 46, 6545-6547.