Supporting Information

3D electropolymerized thin film based on a thiophene-functionalized

Ru(II) complex: electrochemical and photoelectrochemical insights

Tong Yang^a, Chen-Xing Zhang^a, Jia-Yu Li, Ying-Huan Fu, Zhi-Han Yin, Li-Hua Gao^b, and Ke-Zhi Wang^{*a}

Fig. S1 $^1\mathrm{H}$ NMR spectra of L (a) and RuL_3(ClO_4)_2(b).

Figure S2. Mass spectra of L (a) and $RuL_3(ClO_4)_2$ (b).

Figure S3. XRD profiles of poly(RuL₃)₅ film on ITO (top) and bare ITO (bottom).

Figure S4. Electrochemical scan rate behaviors of (a) $poly(RuL_3)_2$, (b) $poly(RuL_3)$, (c) $poly(RuL_3)_4$, (d) $poly(RuL_3)_5$, and (e) $poly(RuL_3)_6$ film in CH_2Cl_2 solution containing 0.1M TBAPF₆; top inset: linear relationship of peak current versus scan rate (0.1-1 v/s); bottom inset: dependence of the overpotentials on the scan rates (0.1-1 v/s).

Figure S5. Cyclic voltammetry of blank ITO and poly(RuL₃)_n (n = 1-6) film in 0.1 M HCl aqueous solution containing 1mM [Fe(CN)₆]^{3-/4} at the scan rate of 500 mV/s.

Figure S6. Dependence of photocurrent density of $poly(RuL_3)_2$ film on the different concentrations of the electron donor of hydroquinone in degassing 0.1 M Na₂SO₄ aqueous solution at an applied potential of -0.4 V vs. SCE under 100 mW/cm² white light irradiation.

 Table S1. The parameters obtained by fitting the data according to the equivalent

poly(RuL ₃) _n	$R_{\rm S}/\Omega~{\rm cm}^2$	<i>С</i> /µF S ⁿ⁻¹	n	$R_{\rm ct}/\Omega~{\rm cm}^2$
n = 1	55.94	271.05	0.68864	41.41
n = 2	40.79	286.1	0.71038	51.52
n = 3	43.59	580.15	0.60534	52.42
n = 4	35.24	473.99	0.63145	106.8
n = 5	68	333.04	0.67344	86.37
n = 6	88.61	75.784	0.87101	2670

electrical circuit of Fig. 6 (b)

Table S2. Electron transfer rate constant k_s and surface converage Γ of poly(RuL₃)_n (n = 1-6) in

CH_2Cl_2	solution	containing	0.1	Μ	TBAPF ₆
		U 0			· · · · · · · · · · · · · · · · · · ·

poly(RuL ₃) _n	v_{a} (V/s)	v _c (V/s)	α	k _s (s⁻¹)	Г (mol/cm²)
n = 1	0.02630	0.1778	0.1289	0.9077	1.182×10 ⁻¹⁰
n = 2	0.05888	0.1862	0.2403	1.773	2.066×10 ⁻¹⁰
n = 3	0.05495	0.4571	0.5459	0.9886	1.577×10 ⁻¹⁰
n = 4	0.02630	0.1738	0.1315	0.9064	2.995×10 ⁻¹⁰
n = 5	0.03715	0.05888	0.3869	0.9023	2.524×10 ⁻¹⁰
n = 6	0.03846	0.04571	0.8938	0.1618	2.299×10 ⁻¹⁰