SUPPORTING INFORMATION

Polymorphs, phase transitions and stability in $BaM_2(PO_4)_2$ M = Mn, Fe, Co systems

Bastien Leclercq^a, Houria Kabbour^a, Angel Arevalo-Lopez^a, Marielle Huvé^a, Sylvie Daviero-Minaud^a, Claire Minaud^a, Ignacio Blazquez Alcover, Olivier Mentré^{a,*} ^a UCCS, UMR-CNRS 8181, Université Lille–ENSCL, Avenue Mendeleiev, 59655 Villeneuve d'Ascq, France

*Corresponding author: olivier.mentre@ensc-lille.fr

Table of Contents

(S1) Structural and powder refinement data for α -BaFe ₂ P ₂ O ₈	
Table S1a. Powder and refinement data for α -BaFe ₂ P ₂ O ₈ structure	<i>S3</i>
Table S1b. Atomic Positions & equivalent anisotropic thermal displacement for α -BaFe ₂ P ₂ O	₈
(S2) Structural and powder refinement data for α -BaMn ₂ P ₂ O ₈ structure	
Table S2a. Powder and refinement data for α -BaMn ₂ P ₂ O ₈ structure	
Table S2b. Atomic Positions & equivalent anisotropic thermal displacement for α -BaMn ₂ P ₂ O	₈
(S3) SEM EDS analysis	
Figure S3. SEM EDS analysis and resulting averaged atomic proportions (%)	
(S4) UV-Visible and IR spectroscopies	a r
Figure S4a. Transmittance Infrared and Absorbance UV Visible spectroscopies	
(S5) I nermal analysis for α -BaFe ₂ P ₂ O ₈ and α -BaNin ₂ P ₂ O ₈	
Figure S5a. Inermal stability for α -BaFe ₂ P ₂ O ₈ with D1A/ 1GA measurement under flowing	
Argon, DTA/TGA measurement under Jowing Air atmosphere, TTTARD evolution upon neuting under flowing Nitrogen atmosphere	56
Figure S5h Thermal stability for $a_{\rm r} Ra Mn_{\rm s} P_{\rm s} \Omega_{\rm s}$ with DT4 under flowing Argon and Air	
atmosphere and HTXRD evolution ($\Lambda T=50$ °C) upon heating under flowing Air atmosphere	S6
(S6) Cell parameters evolution and phase transformation upon heating for α-BaF	$e_2P_2O_8$
and a- BaMn ₂ P ₂ O ₈ .	0
Figure S6a. Cell parameters evolution upon heating under N2 atmosphere for α -BaFe ₂ P ₂ O ₈	
Figure S6b. Cell parameters evolution upon heating under N2 atmosphere for α -BaMn ₂ P ₂ O ₈	
(S7) (S7)Metastability in α-BaFe ₂ P ₂ O ₈	
Figure S7. α -BaFe2P2O8 to γ -BaFe2P2O8 in one year at room temperature and pressure	<i>S</i> 8
(S8) Phase transition in BaM ₂ P ₂ O ₈ systems (M= Co, Fe, Mn)	
Table S8a. Phase transition in $BaM_2P_2O_8$ systems ($M = Co, Fe, Mn$) with corresponding	
crystallographic structure data.	<i>S</i> 8
(S9) Synchrotron Diffraction data Refinement	
Figure S9. Synchrotron data refinement with (a) α -BaFe ₂ P ₂ O ₈ model refined (b) enlargement for	or
α -BaFe ₂ P ₂ O ₈ (c) α -BaMn ₂ P ₂ O ₈ model refined and (d) relaxed DFT calculations model for	
α -BaFe ₂ P ₂ O ₈ . against synchrotron data	<i>S</i> 9
(S10) HTXRD vs relaxed model	
Figure S10. α -BaFe ₂ P ₂ O ₈ HTXRD between 30 °C and 501 °C	<i>S9</i>
(S11) Details about DFT calculations	
Table S11a. Comparison of system total Energy (in eV/FU) between α -Ba $M_2P_2O_8$ and	
$\gamma - BaM_2P_2O_8 \ (M = Fe, \ Co, \ Mn) \ structure \dots \dots$	S10
Table S11b. Refined and relaxed model comparison for α -BaFe ₂ P ₂ O ₈ and α -BaMn ₂ P ₂ O ₈	<i>S</i> 11
Table S11c. Fe-O bond distances and associated Integral COHP for spins (1) and (\downarrow)	<i>S12</i>
(S12) Details about Orbitals representation for α-BaFe2P2O8	
Figure S12. 3D MO 3d Fe orbitals simulation with corresponding name and energies for	
α -BaFe ₃ P ₂ O ₈ structure	<i>S12</i>
(S13) Additional Magnetic Measurements	
Figure S13. Magnetic measurements data for α -BaFe ₂ P ₂ O ₈ and α -BaMn ₂ P ₂ O ₈	
(S14) Specific Heat measurement	
Figure S14, a -BaFe ₂ P ₂ O ₂ specific heat measurement	513
(S15) Powder Neutron Diffraction refinement	
Figure S14, α -BaMn ₂ P ₂ O ₂ and α -BaFe ₂ P ₂ O ₂ PND Rietveld refinement at 80K	S14

(S1) Structural and powder refinement data for α -BaFe₂P₂O₈

Powder Data (T=293K)						
Formula	α -BaFe ₂ P ₂ O ₈					
Molar weight (g/mol)	438,968					
Symmetry	Trigonal					
Space group	P 3 ₁ 2 1 (152)					
Unit cell (Å) and angle (°)	a = 5,114124(14)					
	c = 25,11130(8)					
Volume $(Å^3)$	568,777(3)					
Z	3					
Data	collection					
Equipment	Synchrotron (111-DIAMOND)					
λ(Κα; Å)	0,824899					
Sample Holder	0,5mm Glass Capillary					
density calc. (g/cm ³)	3,8448					
Sample	Powder					
Color	grey					
θ (min-max) (°)	2,10800 - 92,11200					
μ (mm-1 for , λ (Ka=0,824899Å)	13,884					
R_{Bragg} (%)	6,629					

<u>*Table S1a.*</u> Powder and refinement data for α -BaFe₂P₂O₈ structure.

<u>*Table S1b.*</u> Atomic Positions & equivalent anisotropic thermal displacement for α -BaFe₂P₂O₈ structure.

Atom	Wick.	X	у	Z	Ueq (Ų)
Ba1	3a	0,04080(15)	0,000000	0,33333	0,00291(8)
Fe1	6c	0.6849(6)	0.2596(5)	0.21819(7)	0.0274(6)
P1	6c	0.6547(7)	0.3408(6)	0.08844(9)	0.0519(9)
01	6c	0.7176(11)	0.4602(10)	0.14559(12)	0.0550(14)
02	6c	0.8988(9)	0.5303(10)	0.05088(18)	0.0550(14)
03	6c	0.5843(11)	0.0073(7)	0.08565(18)	0.0550(14)
O4	6c	0.3471(8)	0.3197(11)	0.07184(18)	0.0550(14)

(S2) Structural and powder refinement data for $\alpha\mbox{-}BaMn_2P_2O_8$ structure

Powder Data (T=293K)						
Formula	α -BaMn ₂ P ₂ O ₈					
Molar weight (g/mol)	437,15					
Symmetry	Monoclinic					
Space group	C 1 2 1 (5)					
Unit cell (Å) and angle (°)	a = 9.09710(4)					
	b=5.18068(2)					
	c = 24.98384(12)					
β (°)	90.4107(2)					
Volume (Å ³)	1177.437(9)					
Ζ	6					
Data c	ollection					
Equipment	Synchrotron (111-DIAMOND)					
λ (Kα ; Å)	0,824899					
Sample Holder	0,5mm Glass Capillary					
density calc. (g/cm ³)	3,6991					
Sample	Powder					
Color	Pale Pink					
θ (min-max) (°)	2,10800 - 92,11200					
μ (mm-1 for , λ (Kα=0,824899Å)	12,695					
R _{Bragg} (%)	10,9					

<u>*Table S2a.*</u> Powder and refinement data for α -BaMn₂P₂O₈ structure.

<u>*Table S2b.*</u> Atomic Positions & equivalent anisotropic thermal displacement for α -BaMn₂P₂O₈ structure.

Atom	Wick.	X	У	Z	Ueq (Å ²)
Ba1	4c	0.02273(18)	0.0502(8)	0.33372(9)	0.0218(5)
Ba2	2a	0.00000	0.0520(10)	0.00000	0.0407(10)
Mn1	4c	-0.2804(4)	0.0571(11)	0.21869(14)	0.0063(4)
Mn2	4c	-0.1187(4)	-0.4549(14)	0.11200(15)	0.0063(4)
Mn3	4c	0.1616(5)	-0.3240(9)	0.5545(2)	0.0063(4)
P1	4c	0.1586(4)	0.5793(8)	0.08829(15)	0.041(3)
01_1	4c	0.1079(7)	0.5545(13)	0.14692(13)	0.054(3)
O2_1	4c	0.1843(7)	0.8602(6)	0.0748(3)	0.054(3)
O3_1	4c	0.3013(5)	0.4229(11)	0.0820(3)	0.054(3)
O4_1	4c	0.0399(5)	0.4629(12)	0.0519(2)	0.054(3)
P2	4c	-0.1444(4)	-0.4690(8)	0.24836(15)	0.015(2)
01_2	4c	-0.2070(6)	-0.5375(12)	0.19245(15)	0.004(2)
O2_2	4c	-0.2251(6)	-0.6320(11)	0.2898(2)	0.004(2)
O3_2	4c	0.0210(3)	-0.5347(12)	0.2502(2)	0.004(2)
O4_2	4c	-0.1619(6)	-0.1895(6)	0.2598(2)	0.004(2)
P3	4c	0.3348(4)	0.0933(7)	0.58069(14)	0.003(2)
O1_3	4c	0.3464(7)	-0.0107(12)	0.52385(14)	0.046(3)
O2_3	4c	0.4707(5)	0.0186(13)	0.6132(2)	0.046(3)
O3_3	4c	0.3144(7)	0.3860(6)	0.5805(3)	0.046(3)
O4_3	4c	0.1976(5)	-0.0266(12)	0.6071(2)	0.046(3)

<u>Figure S3.</u> SEM EDS analysis and resulting averaged atomic proportions (%) performed on (a) α -BaFe₂P₂O₈ pellet and (b) α -BaMn₂P₂O₈ pellet.

(S4) UV-Visible and IR spectroscopies

Figure S4. (a) Transmittance Infrared Spectra ofr α -BaFe₂P₂O₈ (in blue) and α -BaMn₂P₂O₈ (in red). The IR spectra show only evidence of stretching and bending PO4 vibrations bands. Respectively (1062 cm⁻¹, 1039 cm⁻¹, 996 cm⁻¹, 955 cm⁻¹ // 627 cm⁻¹, 593 cm⁻¹, 534 cm⁻¹, 499 cm⁻¹) for α -BaMn₂P₂O₈ and (1074 cm⁻¹, 1029 cm⁻¹, 996 cm⁻¹, 950 cm⁻¹ / 622 cm⁻¹, 593 cm⁻¹, 540 cm⁻¹, 499 cm⁻¹) for α -BaFe₂P₂O₈. (b) Absorbance UV Visible spectroscopies for α -BaFe₂P₂O₈ (in blue) and α -BaMn₂P₂O₈ (in red). Broad transition around 550 nm responsible for the pink shade of the α -BaMn₂P₂O₈ compound.

(S5) Thermal analysis for α-BaFe₂P₂O₈ and α-BaMn₂P₂O₈

<u>Figure S5a.</u> Thermal stability for α -BaFe₂P₂O₈ with (a) DTA and corresponding TGA measurement under flowing Argon atmosphere (red and blue respectively), with highlighting of the two transformation $\alpha \rightarrow \alpha'$ (766 K), $\alpha' \rightarrow \beta$ (809 K) and reversibility. No weigh loss along the measurement. (b) DTA and TGA measurement under flowing Air atmosphere (red and blue respectively). The structure decomposes. We notice a weight gain corresponding to the decomposition of the structure, result of iron oxidation. (c) HTXRD evolution (ΔT =50 K) upon heating under flowing Nitrogen atmosphere with evidence of the two transformation. Reversibility of transformations were also checked upon cooling.

<u>Figure S5b.</u> Thermal stability for α -BaMn₂P₂O₈ with (a) DTA under flowing Argon atmosphere (red and DTA under flowing Air atmosphere (blue), with highlighting of the two transformation $\alpha \rightarrow \alpha'$ (679 K) and $\alpha' \rightarrow \beta$ (831 K) and reversibility upon cooling. (b) DTA and TGA measurement under flowing Argon atmosphere (red and blue respectively). No weight loss upon the measurement. (c) HTXRD evolution ($\Delta T=50$ K) upon heating under flowing Air atmosphere with evidence of the two transformation. Reversibility of transformations were also checked upon cooling.

(S6) Cell parameters evolution and phase transformation upon heating for α -BaFe₂P₂O₈ and α -BaMn₂P₂O₈.

<u>Figure S6a.</u> Cell parameters evolution upon heating under nitrogen atmosphere for α -BaFe₂P₂O₈ with (a) a parameter evolution (Å), (b) c parameter evolution (Å) and (c) reduced volume evolution (Å³). Values obtained from "le Bail" refinement of previous HTXRD datas (ΔT =50 K).

<u>Figure S6b.</u> Cell parameters evolution from monoclinic (in red) to trigonal structure (in blue) upon heating under nitrogen atmosphere for α -BaMn₂P₂O₈ with (a) a parameter evolution (Å), (b) b parameter evolution (Å), (c) c parameter evolution (Å), (d) β parameter evolution (°) and (e) reduced volume evolution (Å³). Values obtained from "le Bail" refinement of HTXRD datas (ΔT =50 K).

<u>Figure S7.</u> α -BaFe₂P₂O₈ to γ -BaFe₂P₂O₈ in one year at room temperature and pressure. "Fresh" α -BaFe₂P₂O₈ experimental diagram show in green, "1-year-old" α -BaFe₂P₂O₈ experimental diagram in black, theoretical γ -BaFe₂P₂O₈ in blue, and theoretical Ba₂FeP₂O₈ in red.

(S8) Phase transition in BaM₂P₂O₈ systems (M= Co, Fe, Mn)

<u>Table S8a.</u> Sum up table for phase transition in $BaM_2P_2O_8$ systems (M = Co, Fe, Mn) with corresponding details about crystallographic structure data.

		T ⁰K	S.G.	Z	a (Å)	b (Å)	c (Å)	β (°)	Volume (Å ³)	ρ (g/cm ³)
BaCo ₂ P ₂ O ₈	α	293	P21/a	2	9,2110(3)	5,0040(2)	8,0851(3)	92,7370(10)	372,23	3,97
	α'	-	-	-	-	-	-	-	-	-
	α"	873	P21/a	2	8.2395(6)	5.1739(4)	9.0055(5)	91.155(3)	383.83	3.85
	β	1173	P-3	1	5,22264(4)	5,22264(4)	8,26062(10)	90	195,13	3,79
	γ	298	R-3	3	4,8554(6)	4,8554(6)	23,2156(17)	90	473,98	4,68
	з		P21/c			Magnetic	, Resistivity, d	lielectric trans	sitions	
BaFe ₂ P ₂ O ₈	α	293	P3 ₁ 21	3	5,1140(1)	5,1140(1)	25,1108(1)	90	568,75	3,84
	α'	773	P3121	3	5,2151(3)	5,2151(3)	24,4512(4)	90	578.01	3,78
	β	1173	P-3	1	5,2580(2)	5,2580(2)	8,3156(5)	90	199,10	3,66
	γ	293	R-3	3	4,8730(2)	4,8730(2)	23,368(2)	90	480,56	4,55
	γ'	100	P-1	1	4,8656(8)	4,8584(8)	8,2481(11)	106,850(7) 107,012(7) 60,333(7)	159,52	4,57
BaMn ₂ P ₂ O ₈	HP	293	P21/a	2	9,2830(12)	4,9783(6)	8,1326(10)	94,106(7)	374,87	3,87
	α	293	C2	6	9,09740(1)	5,1808(1)	24,9849(1)	90,4112(2)	1177,55	3,70
	α'	773	C2	6	9,1558(3)	5,2747(2)	24,9592(3)	90,8443(2)	1205.25	3,61
	β	1273	P-3	1	5,2861(3)	5,2861(3)	8,4148(5)	90	203,63(2)	3,56

(S9)

Synchrotron Diffraction data Refinement

<u>Figure S9.</u> Synchrotron data refinement with (a) α -BaFe₂P₂O₈ model refined (b) enlargement for α -BaFe₂P₂O₈ (c) α -BaMn₂P₂O₈ model refined and (d) relaxed DFT calculations model for α -BaFe₂P₂O₈ on experimental synchrotron data. In the latter, the missing intensities (in particular 015 and 118) are highlighted on the right. The green mark corresponds to the alpha phase, the purple to the Ba₂MnP₂O₈ impurities refined in the case of α -BaMn₂P₂O₈ but excluded in the case of α -BaFe₂P₂O₈ (we were not able to refine it properly).

(S10) HTXRD vs relaxed model

<u>Figure S10.</u> α -BaFe₂P₂O₈ HTXRD between 30 °C and 501 °C. From 30 to 400°C we're in the alpha form (black lines), from 400 °C to 501 °C (magenta lines) we're in the alpha' form. In the latter, we see loss in intensity on characteristic peaks in agreement with the relaxed structure model from DFT.

(S11) Details about DFT calculations

<u>Table S11a.</u> Comparison of system total Energy (in eV/FU) between α -Ba $M_2P_2O_8$ and γ -Ba $M_2P_2O_8$ (M = Fe, Co, Mn) structure. We used our refined model from synchrotron data for α -Ba $Fe_2P_2O_8$ and α -Ba $Mn_2P_2O_8$, and ICSD structure for the others. On the upper part of the tables, only the non-coherent γ -Ba $Mn_2P_2O_8$ structure was fully relaxed, starting from the closest γ -Ba $Co_2P_2O_8$ structure. On the bottom part, values for the relaxed α -Ba $Fe_2P_2O_8$ and γ -Ba $Fe_2P_2O_8$, cell parameters and volume constant.

System	Structure	U and k points mesh	Total Energy (eV/FU)	Difference (eV/FU)
PaFa P O	α, P3 ₁ 21	$\begin{array}{c} U = 6 \text{ eV} \\ \alpha, \text{ P3}_{1}21 & 10 \times 10 \times 2 \text{ k mesh} \\ (104 \text{ k points}) & -96 \end{array}$		0.950
Bare ₂ ¹ ₂ 0 ₈	γ, R-3	U= 6 eV 12x12x2 k mesh (52 k points)	-90,968	0,830
BaCo P O	α, P21/a	U = 4 eV 6x10x8 k mesh (244 k points)	-90,885	1.070
	γ, R-3	U = 4 eV 12x12x2 k mesh (52 k points)	-89,814	-1,070
	α, C2	U = 4 eV 2x5x1 k mesh (44 k points)	-97,002	1.012
Durini ₂ r ₂ 0 ₈	γ, R-3	U = 4 eV 6x6x1 <i>k</i> mesh after full relaxation	-95,990	-1,012
	After relaxat	tions with unit cell paran	neters constrained	
BaFe P O	α, P3 ₁ 21	U=6 eV $10x10x2 k mesh$ $(104 k points)$	-92,610	1 602
Bar c ₂ ¹ ₂ O ₈	γ, R-3	U= 6 eV 6x6x1 k mesh (8 k points)	-90,986	-1,023

<u>Table S11b.</u> To the left, comparison of Fe-O and P-O distances between refined α -BaFe2P2O8 model from the synchrotron data, and relaxed α -BaFe2P2O8 model from DFT calculations. To the right, comparison of Fe-O and P-O distances between refined α -BaMn2P2O8 model from the synchrotron data, and relaxed α -BaMn2P2O8 model from DFT calculations.

$a - BaFe_2P_2O_8$	Refined	DFT	α -BaMn ₂ P ₂ O ₈	Refined Mn	DFT	α -BaMn ₂ P ₂ O ₈	Refined P	DFT P
Fe-O1 (Å)	2,057(4)	1,947	Mn1—O1_1 (Å)	2.055(5)	1,943	P1—O1_1 (Å)	1.544(5)	1,610
Fe-O1 (Å)	2,524(6)	1,984	Mn1—O1_2 (Å)	2.301(8)	1,976	P1—O2_1 (Å)	1.512(5)	1,553(3)
Fe-O3 (Å)	2,072(4)	2,022	Mn1—O2_2 (Å)	2.448(7)	2,125	P1—O3_1 (Å)	1.539(6)	1,540
Fe-O2 (Å)	2,589(6)	2,028	Mn1—O3_2 (Å)	2.032(5)	2,053	P1—O4_1 (Å)	1.530(6)	1,565
Fe-O4 (Å)	1,767(4)	2,032	Mn1—O4_2 (Å)	1.958(6)	2,054		5,04(4)	4,43
Fe-P (Å)	2,641(5)	2,601		2,06(2)	2,66	P2—O1_2 (Å)	1.546(6)	1,612
Fe-P (Å)	3,041(4)	3,171	Mn2—O1_1 (Å)	2.233(7)	1,997	P2—O2_2 (Å)	1.528(7)	1,567
Fe-P (Å)	3,298(4)	3,185	Mn2—O2_1 (Å)	2.229(8)	2,067	P2—O3_2 (Å)	1.543(5)	1,554
	1,99(2)	2,43	Mn2—O3_1 (Å)	2.217(9)	2,072	P2—O4_2 (Å)	1.485(5)	1,563
P1-O3 (Å)	1,559(5)	1,539	Mn2—O4_1 (Å)	2.133(6)	2,098		5,13(4)	4,43
P1-O2 (Å)	1,476(6)	1,553	Mn2—O1_2 (Å)	2.212(6)	1,937	P3—O1_3 (Å)	1.523(5)	1,613
P1-O4 (Å)	1,578(7)	1,568		1,64(2)	2,62	P3—O2_3 (Å)	1.524(6)	1,551
P1-O1 (Å)	1,530(4)	1,596	Mn3—O1_3 (Å)	2.463(8)	1,968	P3—O3_3 (Å)	1.528(5)	1,536
	4,84(3)	4,46	Mn3—O1_3 (Å)	2.184(6)	1,943	P3—O4_3 (Å)	1.546(6)	1,572
			Mn3—O2_3 (Å)	2.422(7)	2,087		5,06(4)	4,42
			Mn3—O3_3 (Å)	2.144(7)	2,060	[
			Mn3—O4_3 (Å)	2.050(7)	2,124			
				1,60(2)	2,62			

<u>*Table S11c.*</u> Fe-O bond distances and associated Integral COHP for spins (\uparrow) and (\downarrow), negative values of ICOHP are indicating net bonding character.

Bond	Distance (Å)	ICOHP spin (\uparrow) (eV)	ICOHP spin (\downarrow) (eV)
Fe1-O	1.767	-1.04414	-1.62688
Fe1-O	2.057	-1.00795	-1.21956
Fe1-O	2.072	-0.89122	-1.09690
Fe1-O	2.524	-0.84155	-0.93160
Fe1-O	2.589	-0.54278	-0.62248

(S12) Details about Orbitals representation for α-BaFe₂P₂O₈.

<u>Figure S12.</u> 3D MO d Fe orbitals simulation with corresponding name and energies for α -BaFe₂P₂O₈ structure.

(S13) Additional Magnetic Measurements

<u>Figure S13.</u> Magnetic measurements data for α -BaFe₂P₂O₈ with (a) MvsH at 2 K, 50 K, 150 K, 300 K, between -9 Tand 9 T(b) ZFC/FC χ_M and $1/\chi_M$ (blue and red respectively) from 400 K to 2K, and (c) corresponding $\chi_M T$. We recall the presence of Fe3O4 impurities in the sample, proved by the Verwey phase transition at 125 K. Magnetic measurements data for α -BaMn₂P₂O₈ with (d) MvsH at 2 K, 100 K, 300 K, between -9 Tand 9 T (b) ZFC/FC χ_M and $1/\chi_M$ (blue and red respectively) from 400 K to 2K, and (c) corresponding $\chi_M T$.

(S14) Specific Heat measurement

Figure S14. (a) α -BaFe₂P₂O₈ specific heat measurement between 300 K and 2K at 0 T, (b) α -BaFe₂P₂O₈ specific heat measurement between 40 K and 2K under different field from 0 to 9 T.

(S15) Powder Neutron Diffraction refinement

Figure S15. α -BaMn₂P₂O₈ and α -BaFe₂P₂O₈ powder neutron diffraction Rietveld refinement (a and b respectively) at 80K with our synchrotron refined model. The green mark corresponds to Bragg peaks, the red curves to the experimental measured points, the black curves to the intensity following our model, and the blue curves to the difference between them. At 80 K we are above the T_N of both compounds (so there is only structural contribution to the intensities measured).