Supplementary Information

In situ growth of copper(II) phthalocyanine sensitizing electrospun CeO₂/Bi₂MoO₆ nanofibers: a highly efficient photoelectrocatalyst towards degradation of tetracycline

Kang Li¹, Yingping Pang², Qifang Lu^{1,2*}

¹Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China ²State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China

Corresponding author E-mail: <u>luqf0110@126.com</u> (Q. F. Lu).

Tel: 86-531-89631227

Fax: 86-531-89631227

^{*}Author to whom correspondence should be addressed. E-mail: <u>hugf0110@126.com</u> (Q. F. Lu).

Fig. S1 SEM images of (a) original CeO₂/Bi₂MoO₆ nanofibers, and (b) TNCuPc-sensitized original CeO₂/Bi₂MoO₆ nanofibers. TEM images of (c) original CeO₂/Bi₂MoO₆ nanofibers, and (d) TNCuPc-sensitized original CeO₂/Bi₂MoO₆ nanofibers.

Fig. S2 Nitrogen adsorption–desorption isotherms and corresponding pore size distribution curves (inset) of CeO₂/Bi₂MoO₆ nanofibers and TNCuPc/CeO₂/Bi₂MoO₆ nanofibers.

As can be seen in Fig. S2, the nitrogen adsorption-desorption isotherms show type IV specific CeO₂/Bi₂MoO₆ feature. The surface nanofibers of and area TNCuPc/CeO₂/Bi₂MoO₆ nanofibers calculated by the multipoint Brunauer–Emmett–Teller (BET) method is 11.8 and 17.9 m²/g, respectively.

Fig. S3 Degradation curves of TC over different photocatalysts in darkness.

Fig. S4 Photocatalytic degradation of TC (50 mg/L) over different photocatalysts under simulated solar light irradiation.

Fig. S5 Photocatalytic degradation of RhB (20 mg/L) over different photocatalysts under simulated solar light irradiation.

Fig. S6 (a) UV-vis diffuse reflectance spectra, and (b) Mott-Schottky plots at pH = 7 over CeO₂, and Bi₂MoO₆ nanofibers.

Samples	Pollutants	Pollutants concentration (mg/L)	Irradiation time (min)	Degradation rate (%)	
TNCuPc	TC	50	120	28.4	
CeO ₂ /Bi ₂ MoO ₆	TC	50	120	39.0	
Physical mixture	TC	50	120	55.6	
TNCuPc/CeO2/Bi2MoO6	ТС	50	120	94.6	
TNCuPc	RhB	20	80	37.9	
CeO ₂ /Bi ₂ MoO ₆	RhB	20	80	67.3	
Physical mixture	RhB	20	80	69.4	
TNCuPc/CeO ₂ /Bi ₂ MoO ₆	RhB	20	80	97.3	

with CeO₂/Bi₂MoO₆ (molar ratio is 11:100) and TNCuPc/CeO₂/Bi₂MoO₆ nanofibers.

Table S1 Comparison of degradation rate of TC and RhB over different

photocatalysts of TNCuPc, CeO₂/Bi₂MoO₆ nanofibers, physical mixture of TNCuPc

Photocatalysts	Pollutants	Pollutants concentration (mg/L)	Degradation rate (%)	Irradiation time (min)	Reference
CuAl2O4/Bi2MoO6	RhB	10	98.6	90	1
$g-C_3N_4/Bi_2MoO_6$	RhB	10	98	70	2
Ta ₃ N ₅ /Bi ₂ MoO ₆	RhB	5	99.5	60	3
Bi ₂ S ₃ /Bi ₂ MoO ₆	RhB	10	100	60	4
Bi ₂ S ₃ /Bi ₂ MoO ₆	4-CP	5	98.7	90	4
WS ₂ /Bi ₂ MoO ₆	RhB	10	98	90	5
WS ₂ /Bi ₂ MoO ₆	CIP	10	76	90	5
B doped Bi ₂ MoO ₆	RhB	5	89	50	6
Te doped Bi ₂ MoO ₆	MB	10	97.5	150	7
In2O3/Bi2MoO6	4-NP	20	95.9	240	8
TNCuPc/CeO ₂ /Bi ₂ MoO ₆	ТС	50	94.6	120	Our work
TNCuPc/CeO ₂ /Bi ₂ MoO ₆	RhB	20	97.3	80	Our work

Table S2 Comparison of irradiation time and degration rate for the degration of

different pollutants over Bi2MoO6-based nanomaterials.

Supplementary references

- J. Zhang, C. Shao, X. Li, J. Xin, R. Tao and Y. Liu, ACS Sustain. Chem. Eng., 2018, 6, 10714-10723.
- H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, *Appl. Catal. B-Environ.*, 2014, 160, 89-97.
- 3 S. Li, X. Shen, J. Liu and L. Zhang, *Environ. Sci-Nano*, 2017, 4, 1155-1167.
- 4 J. Zhang, L. Zhang, N. Yu, K. Xu, S. Li, H. Wang and J. Liu, *RSC Adv.*, 2015, 5, 75081-75088.
- 5 X. Li, M. Su, G. Zhu, K. Zhang, X. Zhang and J. Fan, *Dalton T.*, 2018, **47**, 10046-10056.
- 6 M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You and C. Lv, J. Phys. Chem. Solids, 2018, 113, 86-93.
- 7 S. Chen, Y. Li, Z. Wu, B. Wu, H. Li and F. Li, J. Solid State Chem., 2017, 249, 124-130.
- 8 Q. Wang and Q. Lu, J. Nanopart. Res., 2019, 21, 3-11.