Journal Name

COMMUNICATION

Fe₂O₃ nanoparticles-reduced graphene oxide composite for ambient electrocatalytic N₂ reduction to NH₃

Received 00th January 20xx, Accepted 00th January 20xx

Jian Li,^a Xiaojuan Zhu,^{b,c} Ting Wang,^{b,c} Yonglan Luo^c and Xuping Sun^{b*}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Haber-Bosch process for industrial-scale NH₃ production suffers from harsh reaction conditions with CO₂ emission. Electrochemical N₂ reduction has gained considerable recent interest as an ecofriendly and sustainable alternative for NH₃ synthesis with the aid of efficient electrocatalysts for the N₂ reduction reaction (NRR). Here, Fe₂O₃ nanoparticles-reduced graphene oxide composite (Fe₂O₃-rGO) is reported as an earth-abundant NRR electrocatalyst enabling efficient ambient N₂-to-NH₃ conversion. In 0.5 M LiClO₄, this Fe₂O₃-rGO attains a large NH₃ yield of 22.13 µg h⁻¹ mg⁻¹_{cat.} at – 0.50 V and a high Faradaic efficiency of 5.89% at –0.40 V (vs. RHE). It also demonstrates high electrochemical stability.

As an important activated nitrogen feedstock for agricultural fertilizers, NH₃ is key to the growth of the human population and the ecology of the planet.¹ NH₃ has also emerged as an attractive hydrogen energy vector for hydrogen-based economies.² As the main current procedure for industrial-scale NH₃ production from atmospheric N₂ and H₂ obtained from fossil fuels, the Haber–Bosch process however operates under harsh reaction conditions, suffering from large energy consumption and heavy serious CO₂ emission.³

Electrocatalytic N₂ reduction has received hugh recent research attention as a carbon-neutral process for ambient N₂to-NH₃ fixation, but it reruires efficient electrocatalysts for the N₂ reduction reaction (NRR) to break the strong N=N triple bond of inert N₂ and activate the N₂.^{4–8} Precious metal-based materials show favorable decent NRR activity,^{9–12} but they are too expensive for large-scale uses. As such, great effort has been devloted to designing ande developing earth-abundant alternatives.^{13–39} Among such catalyts, transition metal oxides (TMOs) can be easily obtained on a large scale and thus hold greater promise as NRR catalysts. Fe is the only element in all three of the known nitrogenases (MoFe-, VFe-, and FeFe-N₂ase) for biological N₂ fixation,⁴⁰ and it also represents one of the cheapest and most abundant metals on the earth.⁴¹ Licht et al. reported using Fe₂O₃ for efficient N₂ reduction electrocatalysis in a molten hydroxide electrolyte cell at temperatures \geq 200 °C.⁴² Under ambient conditions, carbon nanotube-supported Fe₂O₃ nanoparticles as a NRR catalyst only achieves a low Faradaic efficiency (FE) of 0.15%.⁴³ Although much attention has paid on Fe oxides to electrocatalyze the NRR,^{16,22, 43–46} it is still highly desired to develop such catalyst system with high performances.

In this communication, we report our recent experimental effort toward this direction in developing Fe₂O₃ nanoparticlesreduced graphene oxide composite (Fe₂O₃-rGO) as a low-cost NRR electrocatalyst which enables efficient ambient N₂ reduction to NH₃ without N₂H₄ by-product. When operated in 0.5 M LiClO₄, this Fe₂O₃-rGO composite is able to achieve a large NH₃ yield of 22.13 μ g h⁻¹ mg⁻¹_{cat} at -0.50 V vs. reversible hydrogen electrode (RHE) and a high FE of 5.89% at -0.40 V. Notably, it also shows high electrochemical stability.

Fig. 1a shows the X-ray diffraction (XRD) patterns of Fe₂O₃ and Fe₂O₃-rGO (see ESI for preparative details). XRD pattern for Fe₂O₃ gives peaks characteristic of Fe₂O₃ phase (JCPDS No. 79-0007). Fe₂O₃-rGO also shows peaks characteristic of Fe₂O₃ without diffraction peaks for rGO, which could be attributed to its low content. Fig. 1b and 1c show the transmission electron microscopy (TEM) images of rGO and Fe₂O₃-rGO, respectively, suggesting the uniform distribution of nanoparticles (the diameters ranging from 25 to 50 nm) on the surface of rGO. High-resolution TEM (HRTEM) image taken from such nanoparticle reveals well-resolved lattice fringes with an interplanar distance of 0.269 nm corresponding to the (104) plane of Fe₂O₃ (Fig. 1d). The energy-dispersive X-ray (EDX) spectrum (Fig. S1) reveals the existence of Fe, O, and C elements with a weight ratios of 0.52:0.5:0.43 in Fe₂O₃-rGO. STEM and corresponding EDX mapping images (Fig. 1e) confirm the uniform distribution of Fe, O, and C elements within Fe₂O₃-rGO.

^a School of Economics and Management, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

 ^b Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. E-mail: xpsun@uestc.edu.cn
 ^c Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China

⁺ Electronic Supplementary Information (ESI) available: Experimental section and supplementary figures. See DOI:

Fig. 1. (a) XRD patterns for Fe_2O_3 and Fe_2O_3 -rGO. TEM images of (b) rGO and (c) TiO_2-rGO (inset: the particle size distribution of Fe_2O_3). (d) HRTEM image taken from Fe_2O_3 -rGO. (e) STEM and corresponding EDX elemental mapping images of Fe, O, and C elements for Fe_2O_3 -rGO.

Fig. 2a exhibits the X-ray photoelectron spectroscopy (XPS) survey spectrum of Fe_2O_3 -rGO, further indicating the presence of Fe, O, and C elements. XPS spectrum for Fe 2p shown in Fig. 2b exhibits two major peaks with binding energies (BEs) at 710.1 and 723.8 eV, corresponding to Fe $2p_{3/2}$ and Fe $2p_{1/2}$, respectively, which is characteristic of Fe^{3+} in Fe_2O_3 .^{47,48} Moreover, two shake-up satellites at 717.9 and 732.7 eV are the fingerprint of the electronic structure of Fe_2O_3 . In the O 1s region (Fig. 2c), the BEs at 529.2 and 531.4 eV are assigned to

 O^{2-} and C–O, respectively.⁴⁹ In the C 1s region (Fig. 2d), the peak at 284.8 eV reflects the sp²-hybridized carbon. The peaks at 284.8 and 288.2 eV are attributed to the C–O and carboxylate carbon in O=C–OH, respectively, which are the possible interaction sites between Fe₂O₃/rGO. That is also the main reason why Fe₂O₃ can be well contacted with rGO.^{50,51}

Electrochemical measurements of Fe₂O₃-rGO (loaded on carbon paper, Fe₂O₃-rGO/CP loading: 0.2 mg cm⁻²) were carried out in 0.5 M LiClO₄ in an H-shape electrochemical cell. All potentials for NRR were reported on a RHE scale. The concentration of NH₃ and possible N₂H₄ by-product hydrazine were spectrophotometrically determined by the indophenol blue method⁵² and Watt and Chrisp, respectively.⁵³ Fig. S2 and display the corresponding calibration S3 curves. Chronoamperometry experiments were firstly performed for 2h at the potentials ranging from -0.35 to -0.55 V, as shown in Fig. 3a. The produced NH₃ was then measured and related UV-Vis absorption spectra are shown in Fig. 3b.

NH₃ yields and FEs at various potentials are plotted in Fig. 3c. Obviously, Fe₂O₃-rGO/CP achieves the largest NH₃ yield of 22.13 μ g h⁻¹ mg⁻¹_{cat.} at -0.50 V and the highest FE of 5.89% at -0.40 V, comparing favourably to the behaviours of most Fe-based materials and most other TMOs in aqueous media (Table S1). Moreover, NH₃ yields increases while FEs decrease in the potential ranging of -0.35 V to -0.50 V, which could be attributed to the compromise between increasing current density and competitive selectivity toward hydrogen evolution reaction (HER) rather than NRR. When the applied potential is below –0.50 V, both NH₃ yields and FEs decrease significantly due to the competing hydrogen evolution reaction.14,28 Note that N₂H₄ was not detected in the electrolytes (Fig. S4), implying Fe₂O₃-rGO/CP has excellent selectivity for NRR. It should be pointed out that rGO/CP and bare CP show poor catalytic activity (Fig. 3d). In sharp contrast, the amount of NH₃ generated for Fe_2O_3 -rGO/CP (8.85 µg) is much higher than that of Fe₂O₃/CP (2.79µg). Such superior NRR performance for Fe₂O₃-rGO/CP can be rationally attributed to the following two reasons. (1) Fe₂O₃-rGO has larger surface area (Fig. S5) and thus exposes more active sites for NRR catalysis;⁵⁴ (2) electrochemical impedance spectroscopy data (Fig. S6) show that Fe_2O_3 -rGO possesses a lower charge transfer resistance and thus faster NRR kinetics. We also performed electrolysis in 0.1 M LiClO₄ at -0.50 V. As shown in Fig. S7, this catalyst performs more efficiently in 0.5 M LiClO₄.

Fig. 4. (a) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after 2 h electrolysis at -0.50 V under different electrochemical conditions. (b) NH₃ yields and FEs of Fe₂O₃-rGO/CP at -0.50 V with alternating at the interval of 2 h cycles between Ar-saturated and N₂-saturated electrolytes. (c) Recycling test at -0.50 V for Fe₂O₃-rGO/CP. (d) NH₃ yields and FEs at -0.50 V for 2 h over initial Fe₂O₃-rGO/CP subjected to 24-h operation.

To enture that the detected NH₃ originates from the NRR process by Fe₂O₃-rGO/CP, we performed two control experiments in N2-saturated solution under open circuit potential and Ar-saturated solution at -0.50 V. In these experiments, only trace NH₃ could be detected by the UV-vis measurements (Fig. 4a). NRR performance of Fe₂O₃-rGO/CP was also tested alternately at -0.50 V in Ar-saturated and N₂saturated 0.5 M LiClO₄. As this result shows, NH₃ is only producted under N₂ atmosphere (Fig. 4b). All data enture that the detected NH_3 originates from the NRR process by $Fe_2O_{3^-}$ rGO/CP. Stability is another critical parameter to evaluate catalyst performance. As shown in Fig. 4c, both NH₃ yields and FEs are well maintained after 5 times of consecutive recycling (Fig. S8). Moreover, 24h electrolysis for Fe₂O₃-rGO/CP at -0.50 V (Fig. S9) shows that the current densities remain almost constant for 24 h. We further determined the NRR performance after 2-h NRR test at -0.50 V in fresh N₂-saturated electrolyte using Fe₂O₃-rGO/CP that has already electrolyzed for 24 h. As shown in Fig. S10 and Fig. 4d, NH₃ yield and FE have negligible change, suggesting Fe₂O₃-rGO/CP has good electrochemical stability for the NRR. In addition, XRD analysis (Fig. S11) demonstrate that such an electrocatalyst is still the Fe₂O₃-rGO in nature after stability test. TEM image (Fig. S12) further shows that Fe₂O₃-rGO keeps its initial morphology after the NRR test.

In summary, Fe₂O₃-rGO composite is reported as an earthabundant NRR electrocatalyst enabling efficient ambient N₂-to-NH₃ conversion. In 0.5 M LiClO₄, Fe₂O₃-rGO/CP achieves a large NH₃ yield of 22.13 μ g h⁻¹ mg⁻¹_{cat.} at -0.50 V and a high FE of 5.89% at -0.40 V. Notably, it also exhibits excellent selectivity for NH₃ synthesis with good electrochemical stability. This study not only offers us an attractive catalyst material based on earthabundant elements for ambient electrochemical NH₃ synthesis, but would open up an exciting new avenue to the rational design of graphene-based nanocatalysts for artificial N_2 fixation.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Conflicts of interest

There are no conflicts to declare.

References

- 1 A. F. Bouwman and K. W. Van Der Hoek, *Atmos. Environ.*, 1997, **31**, 4095–4102.
- 2 J. N. Renner, L. F. Greenlee, K. E. Ayres and A. M. Herring, Electrochem. Soc. Interface, 2015, 24, 51–57.
- I. Dybkjaer, Ammonia Production Processes (Ed.: A. Nielsen), Springer, Heidelberg, 1995, pp. 199–327.
- 4 M. A. Shipman and M. D. Symes, *Catal. Today*, 2017, 286, 57– 68.
- 5 V. Rosca, M. Duca, M. T. de Groot and M. T. M. Koper, *Chem. Rev.*, 2009, **109**, 2209–2244.
- 6 C. Guo, J. Ran, A. Vasileff and S. Qiao, *Energy Environ. Sci.*, 2018, **11**, 45–56.
- 7 S. Gao, Y. Zhu, Y. Chen, M. Tian, Y. Yang, T. Jiang and Z. Wang, *Mater. Today*, 2019, DOI: 10.1016/j.mattod.2019.05.004.
- 8 R. Zhao, H. Xie, L. Chang, X. Zhang, X. Zhu, X. Tong, T. Wang, Y. Luo, P. Wei, Z. Wang and X. Sun, *EnergyChem*, 2019, DOI: 10.1016/j.enchem.2019.100011.
- 9 M. Shi, D. Bao, B. R. Wulan, Y. Li, Y. Zhang, J. Yan and Q. Jiang, Adv. Mater., 2017, 29, 1606550.
- 10 H. Huang, L. Xia, X. Shi, A. M. Asiri and X. Sun, Chem. Commun., 2018, 54, 11427–11430.
- 11 J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, *Nat. Commun.*, 2018, **9**, 1795.
- 12 V. Kordali, G. Kyriacou and C. Lambrou, *Chem. Commun.*, 2000, **17**, 1673–1674.
- 13 C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chem.*, *Int. Ed.*, 2018, **57**, 10246–10250.
- 14 X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A. M. Asiri, B. Li, B. Tang and X. Sun, ACS Cent. Sci., 2019, 5, 116–121.
- 15 Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li, P. Gao, X. Shi, B. Li, B. Tang and X. Sun, *Adv. Sci.*, 2018, **5**, 1801182.
- 16 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Angew. Chem., Int. Ed., 2017, 56, 2699–2703.
- 17 J. Zhao, L. Zhang, X.-Y. Xie, X. Li, Y. Ma, Q. Liu, W.-H. Fang, X. Shi, G. Cui and X. Sun, J. Mater. Chem. A, 2018, 6, 24031–24035.
- 18 H. Cheng, L. Ding, G. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, **30**, 1803694.
- 19 L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng and S. Qiao, ACS Catal., 2019, 9, 2902–2908.
- 20 L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y. Zhang and X. Sun, *Nanoscale*, 2019, **11**, 1555–1562.
- 21 R. Zhang, J. Han, B. Zheng, X. Shi, A. M. Asiri and X. Sun, *Inorg. Chem. Front.*, 2019, **6**, 391–395.
- 22 J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y. Sung, J. Choi and H. S. Park, ACS Sustainable Chem. Eng., 2017, 5, 10986–10995.
- 23 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.

- 24 S. Zhang, C. Zhao, Y. Liu, W. Li, J. Wang, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Chem. Commun.*, 2019, **55**, 2952–2955.
- Y. Zhang, H. Du, Y. Ma, L. Ji, H. Guo, Z. Tian, H. Chen, H. Huang,
 G. Cui, A. M. Asiri, F. Qu, L. Chen and X. Sun, *Nano Res.*, 2019,
 12, 919–924.
- 26 R. Zhang, L. Ji, W. Kong, H. Wang, R. Zhao, H. Chen, T. Li, B. Li, Y. Luo and X. Sun, *Chem. Commun.*, 2019, **55**, 5263–5266.
- 27 X. Zhu, H. Wang, Z. Liu, R. Zhao, H. Chen, T. Wang, F. Wang, Y. Luo, Y. Wu and X. Sun, *Chem. Commun.*, 2019, **55**, 3987–3990.
- 28 J. Yu, C. Li, B. Li, X. Zhu, R. Zhang, L. Ji, D. Tang, A. M. Asiri, X. Sun, Q. Li, S. Liu, Y. Luo, *Chem. Commun.*, 2019, **55**, 6401–6404.
- 29 W. Li, T. Wu, S. Zhang, Y. Liu, C. Zhao, G. Liu, G. Wang, H. Zhang and H. Zhao, *Chem. Commun.*, 2018, **54**, 11188–11191.
- 30 H. Chen, X. Zhu, H. Huang, H. Wang, T. Wang, R. Zhao, H. Zheng, A. M. Asiri, Y. Luo and X. Sun, *Chem. Commun.*, 2019, 55, 3152–3155.
- 31 T. Wang, L. Xia, J. Yang, H. Wang, W. Fang, H. Chen, D. Tang,
 A. M. Asiri, Y. Luo, G. Cui and X. Sun, *Chem. Commun.*, 2019,
 55, 7502–7505.
- 32 J. Zhao, B. Wang, Q. Zhou, H. Wang, X. Li, H. Chen, Q. Wei, D. Wu, Y. Luo, J. You, F. Gong and X. Sun, *Chem. Commun.*, 2019, **55**, 4997–5000.
- 33 W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, *Small Methods*, 2018, **2**, 1800204.
- 34 X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei,
 Y. Luo, Y. Zhang and X. Sun, ACS Catal., 2019, 9, 4609–4615.
- 35 Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang and H. Zhao, *Adv. Energy Mater.*, 2019, **9**, 1803935.
- 36 H. Huang, F. Gong, Y. Wang, H. Wang, X. Wu, W. Lu, R. Zhao, H. Chen, X. Shi, A. M. Asiri, T. Li, Q. Liu and X. Sun, *Nano Res.*, 2019, **12**, 1093–1098.
- 37 X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei and D. Wu, J. Mater. Chem. A, 2019, 7, 2524–2528.
- 38 X. Li, L. Li, X. Ren, D. Wu, Y. Zhang, H. Ma, X. Sun, B. Du, Q. Wei and B. Li, *Ind. Eng. Chem. Res.*, 2018, 57, 16622–16627.
- 39 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, *Chem. Commun.*, 2018, **54**, 8474–8477.
- 40 T. M. Buscagan, P. H. Oyala and J. C. Peters, *Angew. Chem., Int. Ed.*, 2017, **129**, 7025–7030.
- 41 P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri and X. Sun, Angew. Chem., Int. Ed., 2014, **126**, 13069–13073.
- 42 S. Licht, B. Cui, B. Wang, F. Li, J. Lau and S. Liu, *Science*, 2014, **345**, 637–640.
- 43 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *ACS Sustainable Chem. Eng.*, 2017, **5**, 7393–7400.
- 44 X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, **10**, 4530–4535.
- 45 X. Cui, C. Tang, X. Liu, C. Wang, W. Ma and Q. Zhang, Chem. Eur. J., 2018, 24, 18494–18501.
- 46 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, Nanoscale, 2018, 10, 14386–14389.
- 47 B. Xu, X. Guan, L. Y. Zhang, X. Liu, Z. Jiao, X. Liu, X. Hu and X. Zhao, J. Mater. Chem. A, 2018, 6, 4048–4054.
- 48 G. Sun, B. Dong, M. Cao, B. Wei and C. Hu, *Chem. Mater.*, 2011, 23, 1587–1593.
- 49 Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Wang, J. Zhou, P. Wu and M. Liu, ACS Sustainable Chem. Eng., 2017, 5, 5067–5074.
- 50 Z. Shen, H. Xing, Y. Zhu, X. Ji, Z. Liu and L. Wang, *J. Mater. Sci.: Mater. Electron.*, 2017, **28**, 13896–13904.
- 51 L. Guo, X. Kou, M. Ding, C. Wang, L. Dong, H. Zhang, C. Feng, Y. Sun, Y. Gao and P. Sun, *Sens. Actuators, B*, 2017, **244**, 233– 242.
- 52 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836–841.
- 53 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006– 2008.

This journal is C The Royal Society of Chemistry 20xx