Supporting Information

In situ transformation of a tridentate to a tetradentate unsymmetric Schiff base ligand *via* deaminative coupling in Ni(II) complexes: crystal structures, magnetic properties and catecholase activity study

Monotosh Mondal^{a,b}, Soumavo Ghosh^a, Souvik Maity^a, Sanjib Giri^c, Ashutosh Ghosh^a*

^a Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.

^b Department of Chemistry, Haldia Government college, Debhog, Purba Medinipur-721657, India

^e Department of Chemistry, Sri Ramkrishna Sarada Vidya Mahapitha, Kamarpukur, West Bengal 712612, India

* E-mail: ghosh 59@yahoo.com; Fax: +91-33-2351-9755; Tel: +91-94-3334-4484

Table of contents:

Serial	Contents	Fig./Table	Page No.
No.		No.	
1	ESI-MS spectra of 1-3 in methanol.	Fig. S1-S3	3-4
2	ESI-MS spectrum of reaction mixture from which metal	Fig. S4	4
	complex 2 is isolated after one week in methanol.		
3	ESI-MS spectrum of reaction mixture in methanol taken	Fig. S5	5
	immediately after mixing in situ generated 1 and		
	NH ₄ SCN in 1:2 molar ratios.		
4	ESI-MS spectrum of the 1:1 molar mixture of 1 and	Fig. S6	5
	purified nickel perchlorate complex of the unreduced		
	ligand taken after one week in methanol.		
5	ESI-MS spectrum of the 1:1:4 molar mixture of 1,	Fig. S7	6
	purified nickel perchlorate complex of the unreduced		
	ligand and NH ₄ SCN taken after one week in methanol.		

6	ESI-MS spectrum of the 1:2 molar mixture of 1 and	Fig. S8	6-7
	NH ₄ SCN taken after one week in methanol.		
7	Increase in absorbance around 401 nm, after addition of	Fig. S9	7
	equal volumes 1×10^{-2} (M) of 3,5-DTBC to a 1×10^{-4} M		
	methanol solution of 1. The spectra were recorded in		
	every 5 min interval.		
8	Plot of the initial rates vs substrate concentration for the	Fig. S10	7
	oxidation of 3,5-DTBC catalyzed by 1. The inset shows		
	Lineweaver–Burk plot.		
9	Proposed mechanism for catalytic oxidation of 3,5-	Fig. S11	8
	DTBC to 3,5-DTBQ by 1.		
10	ESI-MS spectra of 1 and 3 with 3,5-DTBC in methanol.	Fig. S12-S13	9
11	Field dependent molar magnetization for 1 and 3.	Fig. S14	10
12	Plot of experimental J values in cm ⁻¹ with Ni-	Fig. S15	10
	O(phenoxido)-Ni angles.		
13	Selected distances (Å) and angles (°) for 1–3.	Table S1-S3	10-13
14	Different concentrations of substrate (3,5-DTBC) in	Table S4	14
	methanol for kinetic measurement.		
15	Kinetic parameters for the oxidation of 3,5-DTBC	Table S5	14
	catalyzed by 1 and 3 in methanol.		
16	Experimental J value vs. ∠Ni–O–Ni angle for earlier	Table S6	14-15
	reported diphenoxido bridged dinuclear Ni ^{II} complexes.		
17	Selected Ni(II) complexes showing catecholase activity	Table S7	15-16
	with K _{cat} values.		

Fig. S1 ESI-MS spectrum of 1 in methanol.

Fig. S2 ESI-MS spectrum of 2 in methanol.

Fig. S3 ESI-MS spectrum of 3 in methanol.

Fig. S4 ESI-MS spectrum of reaction mixture from which metal complex 2 is isolated after one week in methanol.

Fig. S5 ESI-MS spectrum of reaction mixture in methanol taken immediately after mixing *in situ* generated **1** and NH₄SCN in 1:2 ratios.

Fig. S6 ESI-MS spectrum of the 1:1 molar mixture of **1** and purified nickel perchlorate complex of the unreduced ligand taken after one week in methanol.

Fig. S7 ESI-MS spectrum of the 1:1:4 molar mixture of **1**, purified nickel perchlorate complex of the unreduced ligand and NH₄SCN taken after one week in methanol.

Fig. S8 ESI-MS spectrum of the 1:2 molar mixture of **1** and NH₄SCN taken after one week in methanol.

Fig. S9 Increase in absorbance around 401 nm, after addition of equal volumes 1×10^{-2} (M) of 3,5-DTBC to a 1×10^{-4} M methanol solution of **1**. The spectra were recorded in every 5 min interval.

Fig. S10 Plot of the initial rates *vs* substrate concentration for the oxidation of 3,5-DTBC catalyzed by **1**. The inset shows Lineweaver–Burk plot.

Fig. S11 Proposed mechanism for catalytic oxidation of 3,5-DTBC to 3,5-DTBQ by 1.

Fig. S12 ESI-MS spectrum of 1 with 3,5-DTBC in methanol.

Fig. S13 ESI-MS spectrum of 3 with 3,5-DTBC in methanol.

Fig. S14 Field dependent molar magnetization for 1 and 3.

Fig. S15 Plot of experimental J values in cm⁻¹ with Ni-O(phenoxido)-Ni angles.

Bonds length	1	2	3
Ni(1)-O(10)	2.060(2)	2.044(4)	2.100(2)
Ni(1)-O(1)			2.134(4)

Table S1 Selected bond lengths (Å) for 1–3.

Ni(1)-O(2)			2.132(3)
Ni(1)-N(1)	2.208(3)	2.029(6)	
Ni(1)-O(10) ^a	2.055(2)		
Ni(1)-N(2)	2.097(4)	2.155(6)	
Ni(1)-N(18)	2.096(3)	2.128(6)	2.092(3)
Ni(1)-N(22)	2.097(3)	2.117(6)	2.133(3)
Ni(1)-O(31)		2.067(5)	2.051(2)
Ni(2)-O(10)			2.181(2)
Ni(2)-O(31)			2.053(2)
Ni(2)-N(1)			2.063(3)
Ni(2)-O(10) ^a			2.181(2)
Ni(2)-O(31) ^a			2.053(2)
Ni(2)-N(1) ^a			2.063(3)

a=1-x, 1-y, 1-z for complex 1, a=-x, y, 1/2-z for complex 3

 Table S2. Selected bond angles (°) for 1.

	1
O(10)–Ni(1)–N(1)	88.40(9)
O(10)–Ni(1)–N(2)	101.89(11)
O(10)-Ni(1)-O(10) ^a	77.56(8)
O(10)-Ni(1)-N(18)	167.26(9)
O(10)-Ni(1)-N(22)	90.74(9)
N(1)-Ni(1)-N(2)	86.62(12)
O(10) ^a -Ni(1)-N(1)	94.39(9)
N(1)-Ni(1)-N(18)	85.63(11)
N(1)-Ni(1)-N(22)	176.14(11)
O(10) ^a -Ni(1)-N(2)	178.84(11)
N(2)-Ni(1)-N(18)	89.01(12)

N(2)-Ni(1)-N(22)	89.88(12)
O(10) ^a -Ni(1)-N(18)	91.66(9)
O(10) ^a -Ni(1)-N(22)	89.10(9)
N(18)–Ni(1)–N(22)	95.94(10)
Ni(1)-O(10)-Ni(1) ^a	102.44(8)

^{*a*}=1-*x*, 1-*y*, 1-*z*

Table S3 Selected bond angles (°) for 2-3.

	2	3
O(1)-Ni(1)-O(2)		171.10(12)
O(1)-Ni(1)-O(10)		88.13(11)
O(1)-Ni(1)-O(31)		86.97(12)
O(1)-Ni(1)-N(18)		93.30(14)
O(1)-Ni(1)-N(22)		97.31(13)
O(2)-Ni(1)-O(10)		84.52(10)
O(2)-Ni(1)-O(31)		86.97(9)
O(2)–Ni(1)–N(18)		92.07(11)
O(2)–Ni(1)–N(22)		89.54(11)
N(1)-Ni(1)-N(2)	173.2(2)	
N(1)-Ni(1)-N(18)	92.8(2)	
N(1)-Ni(1)-N(22)	92.3(2)	
N(2)-Ni(1)-N(18)	91.0(2)	
N(2)-Ni(1)-N(22)	93.3(2)	

89.8(2)	
84.49(19)	
92.1(2)	
83.8(2)	
86.39(17)	81.18(9)
91.0(2)	92.90(11)
176.7(2)	172.45(10)
174.4(2)	174.06(11)
90.96(19)	93.90(11)
91.5(2)	91.95(13)
	79.22(9)
	91.18(11)
	87.27(8)
	86.85(9)
	177.60(11)
	94.67(11)
	86.85(9)
	160.76(9)
	98.87(11)
	177.60(11)
	98.87(11)
	90.42(13)
	79.22(9)
	91.19(11)
	94.67(11)
	89.8(2) 84.49(19) 92.1(2) 83.8(2) 86.39(17) 91.0(2) 176.7(2) 174.4(2) 90.96(19) 91.5(2)

a = -x, y, 1/2-z

Metal complex and its	3,5-DTBC (M)
concentration (M)	
1(5×10-5)	0.005, 0.0035, 0.0025, 0.0015, 0.001, 0.0005
3 (5×10 ⁻⁵)	0.0075, 0.0065, 0.005, 0.0035, 0.0025, 0.0015, 0.001, 0.0005

Table S4 Different concentrations of substrate (3,5-DTBC) in methanol for kinetic measurement.

	V _{max} (M sec ⁻¹)	Std. error	$K_{M}(M)$	Std. error	$k_{cat} (h^{-1})$
1	1.09×10 ⁻⁷	8.83×10 ⁻⁸	0.39×10 ⁻³	8.32×10 ⁻⁶	7.9
3	2.01×10-7	1.22×10-8	2.30×10-3	6.82×10-5	14.5

 Table S5
 Kinetic parameters for the oxidation of 3,5-DTBC catalyzed by 1 and 3 in methanol.

Table S6 Experimental *J* value vs. \angle Ni–O–Ni angle for earlier reported diphenoxido bridged dinuclear Ni^{II} complexes.

Compounds	J/ cm^{-1}	Ni-O-Ni angle	References
		(°)	
$[Ni_2L^1_2(NO_2)_2] \cdot CH_2Cl_2 \cdot C_2H_5OH,$	-10.52	98.28	45a
$2H_2O$			
$[Ni_2L^2_2(NO_3)_2]$	-20.34	99.31	42a
$[Ni_2L_2^2(NO_2)_2]$	-25.25	100.01	42a
$[Ni_2(L^3)_2(NCS)_2]$	-46.64	104.54	26a
$[Ni_2(L^4)_2(NCS)_2]$	-70.9	102.92	26a
$[Ni_2(L^5)_2(NCS)_2]$	-68.04	103.84	26a
$[Ni_2(L^6)_2(NO_3)_2]$	-24.27	99.75	38
$[Ni_2(L^7)_2(OAc)_2]$	-50.28	100.58	45b
${Ni(Hsalhyph)Cl(H_2O)}_2$	-14.80	99	45c
$[Ni_2L^8(H_2O)_4(ClO_4)_2. 4NH_2CONH_2$	-34	99.5	45d

$[Ni_{2}L^{8}(NCS)_{2}(H_{2}O)_{2}]. 2Me_{2}NCHO$	-42.6	99.2	45d
[Ni ₂ L ⁸ (MeOH) ₂ (ClO ₄) ₂].2NHEt	-59	101.3	45d
[NiL ⁹ 2(o-HSal)]·2H2O	-13.78	97.65	45e
$[Ni_2L^9_2(o-Hap)_2]$	-16.87	98.85	45e
$[Ni_2L^9_2(o-Hnap)_2]$	-10.14	97.56	45e
[Ni ₂ L ¹⁰ ₂ (CH ₃ CN) ₄](ClO ₄) ₂ ·2CH ₃ CN	-34.10	102.41	42c
$[Ni_2L^{10}_2(NCS)_2(CH_3CN)_2]$	-23.72	102.42	42c
$[Ni_2(L^{11})_2(OAc)_2(H_2O)_2] \cdot CH_3CN$	-12.48	99.74	45f
$[Ni_2(L^{12})_2(SCN)_2(CH_3OH)_2] \cdot CH_3OH$	-14.87	100.51	45f
$[Ni_2L_2(CH_3CN)_4](ClO_4)_2 \cdot CH_3CN$	-32.22	102.44	This work

HL¹= 2-[(3-amino-propylimino)-methyl]-phenol

HL²= 2-({[3-(dimethylamino)propyl]imino}methyl)phenol

- HL³= 2-[1-(3-methylamino-propylamino)-ethyl]-phenol
- HL⁴= 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol
- HL5=2-[1-(3-dimethylamino-propylamino)-ethyl]-phenol
- HL⁶= 2-[(3-Methylamino-propylimino)-methyl]-phenol
- HL⁷= 2-[(3-methylamino-propylimino)-methyl]-phenol)

HL⁹= 2-((E)-(3-aminopentylimino)methyl)phenol

HL¹⁰= 2-[(3-methylamino-propylamino)-methyl]-4-nitrophenol

HL¹¹= 4-bromo-2-[(2-hydroxy-1,1-dimethyl-ethylimino)-methyl]-phenol

HL¹²= 4-bromo-2-[(2-hydroxy-1,1-dimethyl-ethylamino)-methyl]-phenol

Table S7 Selected Ni(II) complexes showing catecholase activity with K_{cat} values.

Ni complexes	Solvent	K _{cat} (h ⁻¹)	Ref.
$[Ni_2(L_1)(SCN)_2(AcO)-(H_2O)]$	CH ₃ OH	863.9	41
[Ni ₂ (L ₂)(SCN) ₃ (CH ₃ OH) ₂]	CH ₃ OH	161.1	41

[Ni ₂ (L ₁)(SCN) ₃ (H ₂ O)(CH ₃ OH)]	CH ₃ OH	154.0	41
[Ni ₂ (L ₂)(SCN)(AcO) ₂]	CH ₃ OH	303.7	41
$[Ni_2(L_1)(N_3)3(H_2O)_2]$	CH ₃ OH	172.8	41
$[Ni_2(L_2)(N_3)_3(H_2O)_2]$	CH ₃ OH	264.1	41
$[Ni_2(L_3)(AcO)_2-(N(CN)_2)]_n$	CH ₃ OH	128.6	41
$[Ni_2(L_4)(AcO)_2(N(CN)_2)]$	CH ₃ OH	275.0	41
$[Ni_2(L_5)_2(NCS)_2]$	CH ₃ CN	64.1	26a
$[Ni_2(L_6)_2(NCS)_2]$	CH ₃ CN	51.1	26a
$[Ni_2(L_7)_2(NCS)_2]$	CH ₃ CN	81.7	26a
$[NiL_8(H_2O)_3]I_2 \cdot H_2O$	CH ₃ OH	92.6	40a
$[NiL_8(H_2O)_3]Br_2 \cdot H_2O$	CH ₃ OH	84.8	40a
$[Ni_2(L_9)_2(H_2O)_4](NO_3)_2$	CH ₃ OH	474	40a
$[Ni_5(L_{10})_2(OAc)_6(OH)_2] \cdot 5.5 H_2O$	CH ₃ OH	477	40a
[NiL ₈ (H ₂ O) ₃](NO ₃) ₂	CH ₃ OH	52.6	40a
[NiL ₁₁ (H ₂ O) ₃](NO ₃) ₂	CH ₃ OH	129	40a
$[Ni_4(L_{12})_2(H_2O)_8(\mu_2H_2O)_2](NO_3)_6(H_2O)_6$	DMF	12	39e
[Ni ₂ L ₁₃ (PhCOO)(H ₂ O) ₂]ClO ₄	CH ₃ OH	167.4	26b
[Ni ₂ L ¹ ₂ (CH ₃ CN) ₄](ClO ₄) ₂ ·2CH ₃ CN	СН ₃ ОН 7 9	Present	
		1.7	work
$[Ni_3(L^2)_2(NCS)_2(H_2O)_4]$ ·H ₂ O	CH ₃ OH	14.5	Present
			work

- 1. $HL_1=2,6$ -bis(R_2 -iminomethyl)-4- R_1 -phenol; R1 = tert-butyl, R2 = N,N-dimethylethylene
- 2. $HL_2=2,6$ -bis(R_2 -iminomethyl)-4- R_1 -phenol; R1 = tert-butyl, R_2 = 2-(N-ethyl) pyridine
- 3. $HL_3=2,6$ -bis(R_2 -iminomethyl)-4- R_1 -phenol; R1 = methyl, R2 = N,N-dimethylethylene
- HL₄=2,6-bis(R₂-iminomethyl)-4-R₁-phenol; R1 = methyl, R2 = 2-(N-ethyl) pyridine deen = 2-(diethylamino) ethylamine, dmpn = 3-(dimethylamino)-1-propylamine, and modaH = diacetyl monoxime
- 5. HL₅=2-[1-(3-methylamino-propylamino)-ethyl]-phenol
- 6. HL₆=2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol
- 7. HL₇=2-[1-(3-dimethylamino-propylamino)-ethyl]-phenol
- 8. $HL_8 = 2 [(2 piperazin 1 ylethylimino)methyl]phenol$
- 9. HL₉= 2-formyl-4-methyl-6-(1-(2-aminomethyl)piperidine)-iminomethylphenol
- 10. HL₁₀= 4-methyl-2,6-bis(1-(2-aminomethyl)piperidine)-iminomethylphenol
- 11. HL₁₁=2-[(2-piperazin-1-ylethylimino)methyl]-4-chlorophenol
- 12. HL₁₂₌ 2,6 diformyl-4-isopropyl phenol
- 13. HL₁₃₌ 2-[(3-methylamino-propylamino)-methyl]-4-nitrophenol