Supporting information

Decorating Ag₃PO₄ Nanodots on Mesoporous Silica-functionalized NaYF₄:Yb,Tm@NaLuF₄ for Efficient Sunlight-driven Photocatalysis: Synergy of Broad Spectrum Absorption and Pollutant Adsorption-Enrichment

Zongjun Liu^a, Juanyuan Hao^b*, You Wang^c*, Quan Sun^a, Di Zhang^a, Yang Gan^d*

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

^bState Key laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China. E-mail: <u>jyhao@hit.edu.cn</u> (J. Hao)

^c Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, P. R. China. E-mail: <u>y-wang@hit.edu.cn</u> (Y. Wang)

^dSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. E-mail: <u>ygan@hit.edu.cn</u> (Y. Gan)

Fig. S1. TEM images of (A) NaYF₄:Yb,Tm and (B) NaYF₄:Yb,Tm@NaLuF₄. Insets are the corresponding particle size distribution.

Fig. S2. (A) TEM image and (B) enlarged TEM image of UCNP@mSiO₂-Ag₃PO₄.

Fig. S3. N_2 adsorption/desorption isotherms and pore size distribution (inset) of as-synthesized UCNP@mSiO₂ before (A) and after (B) Ag₃PO₄ deposition.

Fig. S4. The XPS spectra of the UCNP@mSiO₂-Ag₃PO₄ nanocomposite.

Table S1. The content of different elements in UCNP@mSiO₂-Ag₃PO₄ using XPS analysis.

Element	Si	0	Р	Ag	Y	Na	F	Tm	Yb	Lu
Proportion %	14.61	45.55	5.18	8.96	2.70	0.53	1.59	0.04	0.26	0.24

Fig. S5. The photocatalytic degradation rates of RhB in the presence of UCNP@mSiO₂-Ag₃PO₄ with (a) and without (b) 980 nm NIR, (c) is blank test with NIR irradiation.

Table S2. Comparison of NIR light-driven photocatalytic activity of UCNP@mSiO₂-Ag₃PO₄ composite with other UCNP-based photocatalysts. MB: methylene blue; RhB: rhodamine B; MO: methyl orange.

Photocatalyst	Dye, Volume	Light, Intensity	Degrading Efficiency	References
NaYF ₄ :Yb,Tm/TiO ₂	MB, 15 mg/L	980 nm, 10 W/cm ²	14 h: 65%	(1)
NaYF ₄ :Yb,Tm/TiO ₂	RhB, 10 mg/L	980 nm, 1 W	24 h: 75.7%	(2)
NaYF4:Yb,Tm/CdS	RhB, 10 mg/L	980 nm, 2 W	3 h: 24%	(3)
NaYF ₄ :Yb,Tm/ CNX	RhB, 10 mg/L	980 nm, 1 W	6 h: 57.6%	(4)
CaF ₂ :Er,Tm,Yb/ BiVO ₄	MO, 10 mg/L	980 nm, 2 W	6 h: ~10%	(5)
NaYF ₄ :Yb,Tm/CdS/TiO ₂	MB, 15 mg/L	980 nm, 2 W/cm ²	20 h:~70%	(6)
MoS_2 -NaYF ₄ : Yb ³⁺ /Er ³⁺	RhB, 25 mg/L	980 nm, -	12 h: ~61%	(7)
NaYF ₄ :Yb,Tm@mSiO ₂ -Ag ₃ PO ₄	RhB, 3 mg/L	980 nm, 3 W	1 h:~45%	In this work

Fig. S6 Photos showing the colour change of UCNP@mSiO₂-Ag₃PO₄ before (a) and after (b) RhB absorption and after photocatalysis (c). To observe the colour change more clearly, a high RhB concentration of 100 mg/L was used in this study.

Fig. S7. Apparent rate constants of Ag_3PO_4 and UCNP@mSiO₂- Ag_3PO_4 on the degradation of RhB solution under natural sunlight irradiation under dynamic condition (A) and static condition (B). The reaction kinetics was fitted using a Langmuir-Hinshelwood kinetic model with a first-order rate equation. *C* is the concentration of pollutants at given irradiation time and C_0 is the concentration after the absorption equilibrium.

References

- 1. Y. Tang, W. Di, X. Zhai, R. Yang and W. Qin, ACS Catalysis, 2013, 3, 405-412.
- 2. D.-X. Xu, Z.-W. Lian, M.-L. Fu, B. Yuan, J.-W. Shi and H.-J. Cui, *Applied Catalysis B: Environmental*, 2013, **142-143**, 377-386.
- 3. C. Li, F. Wang, J. Zhu and J. C. Yu, *Applied Catalysis B: Environmental*, 2010, **100**, 433-439.
- 4. X. Li, H. Ren, Z. Zou, J. Sun, J. Wang and Z. Liu, *Chemical communications*, 2016, **52**, 453-456.
- 5. S. Huang, N. Zhu, Z. Lou, L. Gu, C. Miao, H. Yuan and A. Shan, *Nanoscale*, 2014, 6, 1362-1368.
- 6. X. Guo, W. Di, C. Chen, C. Liu, X. Wang and W. Qin, *Dalton transactions*, 2014, **43**, 1048-1054.
- 7. M. Chatti, V. N. Adusumalli, S. Ganguli and V. Mahalingam, *Dalton transactions*, 2016, **45**, 12384-12392.