Electronic Supplementary Information

Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions in water splitting

Yan Gao^{a, §}, Qiang Wang^{b, §}, Ting He^d, Jun-Ye Zhang^d, Hao Sun^a, Bin Zhao^a, Bao

Yu Xia^d, Ya Yan^{a, *}, Yuan Chen^{c, *}

^a School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, R China

^b Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211880, P. R. China

^c School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia

^d School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China

[§] These authors contributed equally.

*Corresponding author. E-mail: yanya@usst.edu.cn (Y. Yan), yuan.chen@sydney.edu.au (Y. Chen)

Fig. S1. An SEM image (a) and the corresponding EDS maps (b-d) and an EDS spectrum (e) of D-MoP/rGO. The Si peak in (e) comes from the Si wafer support.

Fig. S2. (a,b) SEM images and (c) an XRD pattern of bulk MoP.

Fig. S3. (a) N_2 adsorption-desorption isotherms and (b) the pore size distribution of D-MoP/rGO in comparison with a bulk MoP sample.

Fig. S4. The TEM images of D-MoP/rGO. (a) Figure 2a and 2b are extracted from the selected area (white squares) in this image. b) The HRTEM image of D-MoP/rGO show slips in the crystal structure of MoP.

Fig. S5. Raman spectra of D-MoP/rGO and the GO supported precusors (donated as Mo-P/GO).

The Raman spectrum of D-MoP/rGO exhibits typical D and G bands of carbon materials at 1370 and 1594 cm⁻¹, respectively. The I_D/I_G ratio of D-MoP/rGO at 1.13 is much higher than that of Mo-P/GO at 1.01. This demonstrates the present of the defects on the rGO after thermal annealing along with optimized conductively of the hybrid.

Fig. S7. Characterization of MoP/rGO synthesized by using $(NH_4)_6Mo_7O_{24}$ as the Mo precursor. (a) TEM and (b) HRTEM images of MoP/rGO. The inset of (a) is the EDX elemental distribution. (c) XRD patterns. (d) *i*R-corrected LSV polarization curves of MoP/rGO, D-MoP/rGO, and Pt/C in 1.0 M KOH.

Fig. S7. CVs of bulk MoP and MoP/rGO in a non-faradaic capacitance current range at the scan rates of 20, 40, 60, 80 and 100 mV s⁻¹.

Fig. S8. (a) HER LSV polarization curves of D-MoP/rGO, MoP, and Pt/C in 0.5 M H₂SO₄ and (b) the corresponding Tafel plots.

Fig. S9. XPS spectra of D-MoP/rGO after the HER test. (a) Mo 3d and (b) P 2p spectra.

Fig. S10. TEM images of crystalline MoP/rGO synthesized using different amount of MoO₂(acac)₂, (a,b) 17 mg, (c,d) 34 mg, (e.f) 51 mg. (g) XRD patterns of these samples. (h) HER LSV polarization curves of these samples in 1.0 M KOH and (i) their corresponding Nyquist plots.

Fig. S11. HER LSV polarization curves of D-MoP/rGO synthesized at different annealing temperatures (electrolyte:1.0 M KOH)

Fig. S12. Adsorption models of 1H, 2H, 3H, 4H atoms on MoP (111)-Mo surfaces.

Fig. S13. Schematic illustration of the proposed reaction steps for hydrazine oxidation on D-MoP/rGO.

Figure S14. (a) HER LSV polarization curves of D-MoP/rGO in 1.0 M KOH containing different amount of hydrazine. (b) LSV polarization curves of various catalysts for the HER/HzOR couple in 1.0 M KOH containing 0.5 M N_2H_4 . (c) LSV polarization curves of D-MoP/rGO, Pt/C and IrO₂ for the HER/HzOR couple in 1.0 M KOH containing 0.5 M N_2H_4 . (d) LSV polarization curves of Pt/C (HER) and IrO₂ (OER) in 1.0 M KOH.

Fig. S15. LSV polarization curves of D-MoP/rGO for hydrazine oxidation in 1.0 M KOH containing hydrazine at different concentrations.

Table S1. HER activities of Mo- and P- based electrocatalysts under alkaline (1.0M KOH) media.

Catalysts	Electrolyte	η _{onset} (mV)	Tafel slope (mV dec ⁻¹)	j_{geo} (mA cm ⁻²)	Loading (mg cm ⁻²)	Reference
D-MoP/rGO	1.0 M KOH	38	71	10 @η= 122 mV 30 @η= 158 mV	1.5	This work
MoP/NC	1.0 M KOH	-	50	10 @η= 170 mV	~0.56	Appl. Catal., B. 2019, 245, 656
MoP/CNTs- 700	1.0 M KOH	34	73	10 @η= 86 mV	0.5	<i>Adv. Funct. Mater.</i> 2018 , 28, 1706523
MoP-RGO	1.0 M KOH	-	62	10 @η= 150 mV	0.42	<i>Electrochim. Acta</i> , 2017 , 232, 254
MoP	1.0 M KOH	50	-	30 @η= 180 mV	0.86	Energy Environ. Sci. 2014 , 7, 2624
MoCx nano- octahedrons	1.0 M KOH	80	59	10 @η= 151 mV	0.8	Nat. Commun. 2015 , 6,6512
Ni-MoS ₂	1.0 M KOH	45	60	10 @η= 98 mV	0.89	Energy Environ. Sci. 2016 , 9, 2789
MoO ₂	1.0 M KOH	0	41	10 @η= 10 mV	2.9	Adv. Mater., 2016, 28, 3785-3790
FeP NAs/CC	1.0 M KOH	86	146	10 @η= 218 mV	1.5	ACS Catal. 2014, 4, 4065
Ni_5P_4 (pellet)	1.0 M NaOH	-	98	10 @η= 49 mV	50 mg in 6	Energy Environ. Sci. 2015 , 8, 1027
Ni ₂ P(pellet)	1.0 M NaOH	-	118	10 @η= 69 mV	mm pellet	
Porous Co phosphide/Co phosphate thin film	1.0 M KOH	-	-	30 @η= 430 mV	0.1	Adv. Mater. 2015 , 27, 3175
Co-P film	1.0 M KOH	-	42	10 @η= 94 mV	Co=2.52 P=0.19	Angew. Chem. Int. Ed. 2015 , 54, 6251
Ni _{0.33} Co _{0.67} S ₂	1.0 M KOH	50	118	10 @η= 88 mV	0.3	Adv. Energy Mater. 2015, 5, 1402031

		$\Delta E_{\mathrm{H}*}/\mathrm{eV}$	$\Delta E_{\rm ZPE(H^*)}/eV$	$\Delta E_{\rm ZPE}$ / eV	$\Delta G_{ m H*}/~{ m eV}$
MoP (111)	1H	-0.300813	0.206958	0.069122	-0.43
	2H	-0.292545	0.413850	0.276014	-0.22
	3Н	-0.097355	0.616084	0.478248	0.18
	4H	-0.068716	0.816629	0.678793	0.41
	1H	-0.299527	0.210584	0.072748	-0.43
$M_{2}D(111)M_{2}$	2H	-0.324443	0.420035	0.282199	-0.24
	3Н	-0.120011	0.622901	0.485064	0.16
	4H	0.193886	0.792931	0.655095	0.65

Table S2. The values of ΔE_{H^*} , $\Delta E_{ZPE(H^*)}$, ΔE_{ZPE} and ΔG_{H^*} of H* at the surface of MoP (111) and MoP (111)-Mo.

 Table S3. Cell voltage of different electro-catalysts for overall water splitting.

Catalysts	Electrolyte	Cell voltage (V)	Current density (mA cm ⁻²)	Durability (h)	Reference
D-MoP/rGO	1.0 M KOH +0.5 M N ₂ H ₄	0.74	100	12	This work
Cu ₃ P/CF	1.0 M KOH +0.5 M N ₂ H ₄	0.4	10	3	Inorg. Chem. Front. 2017, 4, 420
Ni ₂ P/NF	1.0 M KOH +0.5 M N ₂ H ₄	0.45	100	10	Angew. Chem. Int.Ed. 2017 , 129, 860- 864
CoP/TiM	1.0 M KOH +0.1 M N ₂ H ₄	0.3	40	5.5	<i>ChemElectroChem</i> 2017 , 4, 481
Tubular CoSe ₂ nanosheet	1.0 M KOH +0.5 M N ₂ H ₄	0.164	10	14	Angew. Chem. Int. Ed. 2018 , 57, 7649
Ni ₂ P NF/CC	1 M KOH +0.5 M urea	1.35	50	-	J. Mater. Chem. A 2017, 5, 3208
Co-P/rGO	1.0 M NaOH	1.70	10	-	Chem. Sci., 2016 , 7, 1690
FeP NTs	1.0 M KOH	1.69	10	14	<i>Chem. Eur. J.</i> 2015 , & 21, 1
Cu@NiFe LDH	1.0 M KOH	1.54	10	48	Energy Environ. Sci. 2017, 10, 1820
NiFeOx/CFP	1.0 M KOH	1.51	10	200	Nat. Commun. 2015 , 6, 7261
Co ₁ Mn ₁ CH/NF	1.0 M KOH	1.68	10	-	J. Am. Chem. Soc. 2017, 139, 8320