Electronic Supplementary Information

In situ formation of porous LiCuVO₄/LiVO₃/C nanotubes as high-capacity anode material for lithium ion batteries

Rong Cui^a, Jiande Lin^a, Xinxin Cao^a, Pengfei Hao^a, Xuefang Xie^a, Shuang Zhou^a, Yaping Wang^a, Shuquan Liang^{a,b} and Anqiang Pan^{a,b,*}

^a School of Materials Science & Engineering, Central South University, Changsha 410083, Hunan, China

^b Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, Hunan, China

* Corresponding author: pananqiang@csu.edu.cn (A.Q. Pan)

Table of Contents

Figure S1 The X-ray diffraction pattern of LCVO-500
Figure S2. Raman scattering spectra of the LCVO-450, LCVO-250 and LCVO-precursor
Figure S3. TG/DSC curve of the LCVO-500 annealed from room temperature to 650 °C at a temperature
ramping rate of 10 °C min ⁻¹ in air
Figure S4. The FESEM images of LCVO-500 at low and high magnifications
Figure S5. The rate performance of the LCVO-450 electrode with high mass loading (1.32 mg cm ⁻²)
Figure S6. SEM images of (a) LCVO-450 electrode, and (b) LCVO-450 powder after ultrasonic dispersion
after rate-capability tests at various current densities from 0.1 to 2 A g ⁻¹
Table S1. Refined unit cell lattice parameters of LiCuVO ₄ and LiVO ₃ in LiCuVO ₄ /LiVO ₃ /C and the standard
data of LiCuVO ₄ (15836-ICSD) and LiVO ₃ (2899-ICSD)
Table S2. Electrochemical performance comparison of LiCuVO ₄ , LiVO ₃ and relevant materials for lithium
ion batteries

Figure S1 The X-ray diffraction pattern of LCVO-500.

Figure S2. Raman scattering spectra of the LCVO-450, LCVO-250 and LCVO-precursor.

Figure S3. TG/DSC curve of the LCVO-500 annealed from room temperature to 650 $^{\circ}$ C at a temperature ramping rate of 10 $^{\circ}$ C min⁻¹ in air.

Figure S4. The FESEM images of LCVO-500 at low and high magnifications.

Figure S5. The rate performance of the LCVO-450 electrode with high mass loading (1.32 mg cm⁻²).

Figure S6. SEM images of (a) LCVO-450 electrode, and (b) LCVO-450 powder after ultrasonic dispersion after rate-capability tests at various current densities from 0.1 to 2 A g^{-1} .

Lattice parameters Phase content Evaluation parameters sample β(°) V (nm³) (wt%) Rwp (%) CHI² (%) a (nm) b (nm) c (nm) Rp (%) LiCuVO₄ in LCVO-450 0.58087 0.87139 90.0000 0.28637 9.62 7.56 4.44 0.5658 24.6 LiCuVO₄ 0.8750090.0000 0.28733 0.5652 0.58100 — — — — LiVO₃ in LCVO-450 1.0153 0.843770.58837110.4740 0.47223 75.4 9.62 7.56 8.33 LiVO₃ 1.0158 0.47142 — _ _ _ 0.84175 0.58853 110.4800

Table S1. Refined unit cell lattice parameters of LiCuVO₄ and LiVO₃ in LiCuVO₄/LiVO₃/C

and the standard data of LiCuVO ₄ (15836-ICSD) and LiVO ₃ (2899-ICSD)).
---	----

Table S2 Electrochemical performance comparison of LiCuVO₄, LiVO₃ and relevant materials

Samplas	Current density	Cycle number	Capacity (mA	Initial Capacity
Samples	(mA g ⁻¹)	(n)	h g ⁻¹)	(mA h g ⁻¹)
LiCuVO ₄ powder ¹	200	50	~400	680
Interconnected LiCuVO ₄ networks ²	100	50	~580	875
LiVO ₃ ³	100	50	~700	1300
Li ₃ VO ₄ /C/rGO ⁴	50	200	~387	712
Li ₃ VO ₄ /C ⁵	400	100	~394	570
LCVO-450	100	50	~576	910

for lithium ion batteries.

References

- 1. M. Li, X. Yang, C. Wang, N. Chen, F. Hu, X. Bie, Y. Wei, F. Du and G. Chen, *J. Mater. Chem. A*, 2015, **3**, 586-592.
- L. Wang, Y. Dong, K. Zhao, W. Luo, S. Li, L. Zhou and L. Mai, *Phys. Chem. Chem. Phys.*, 2017, 19, 13341-13347.
- J. Lee, J. Moon, O. Chae, J. Lee, J. Ryu, M. Cho, K. Cho and S. Oh, *Chem. Mater.*, 2016,
 28, 5314-5320.
- Y. Yang, J. Li, J. Huang, J. Huang, J. Zeng and J. Zhao, *Electrochim. Acta*, 2017, 247, 771-778.
- Z. Liang, Z. Lin, Y. Zhao, Y. Dong, Q. Kuang, X. Lin, X. Liu and D. Yan, J. Power Sources, 2015, 274, 345-354.