Supporting Information

The synergistically optimized thermoelectric properties of Ag_{1+x}In₅Se₈

alloys

Xingchen Shen,^{a,b} Bin Zhang,^c Qiuyi Chen,^a Huan Tan,^a Xiao Zhang,^c Guoyu Wang,^{b,d*} Xu Lu,^{a*} Xiaoyuan Zhou^{a,c}

^aChongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China
^bChongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, P. R. China
^cAnalytical and Testing Center of Chongqing University, Chongqing 401331, P. R. China
^d University of Chinese Academy of Sciences, Beijing, 100044, P. R. China
*Corresponding author. <u>luxu@cqu.edu.cn</u>, <u>guoyuw@cigit.ac.cn</u>

Fig. S1 The crystal structure of $AgIn_5Se_8$.

Fig. S2 (a) The magnified segment of XRD patterns of $Ag_{1+x}In_5Se_8$ with nominal content (x = 0.0, 0.015, 0.025, 0.03, 0.05, 0.07) around 26.5°. (b) Raman spectra of samples with nominal composition of $Ag_{1+x}In_5Se_8$ (x = 0.0, 0.015, 0.025, 0.03, 0.05, 0.07).

Fig. S3 (a-f) SEM images of $Ag_{1+x}In_5Se_8$ with nominal content (x = 0.0, 0.015, 0.025, 0.03, 0.05, 0.07).

Fig. S4 SEM-EDS elemental mapping images of Ag_{1.03}In₅Se₈.

Fig. S5 (a) HAAADF and elemental mapping images of $AgIn_5Se_8$. (b) HAADF and elemental mapping images of $Ag_{1.03}In_5Se_8$. No signal of element segregation were observed in both two cases.