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Supplementary Experimental Section

Photoelectrochemical measurements: The Time-resolved photocurrent curve was measured in a 
system of three-electrode on the CHI601D electrochemical workstation (Shanghai Chenhua 
Instrument Corp., China) with the Xenon lamp illuminate at room temperature. Composite-
nanomaterials were dropping on the conductive glass FTO as the working electrode. A standard 
Ag/AgCl and Pt were served as reference electrode and counter electrode. The measurement 
was performed in electrolyte of Na2SO4 aqueous solution (0.1mol L-1) at a speed of 0.1 A s-1 from 
0 to 400 s both in N2 and air conditions. Na2SO4 aqueous solution was imported into N2 for 30 
min moving away the air before testing and kept pouring into N2 in the measurement process. 
The Cyclic voltammetry curves and electrochemical impedance measurement were carried out 
on a CHI601D electrochemical workstation (Shanghai Chenhua Instrument Corp., China) at room 
temperature by a three-electrode system. Glassy carbon electrode was the working electrode, a 
standard Ag/AgCl and Pt were reference electrode and counter electrode. The electrolyte was 
0.05 mol L-1 KCl aqueous solution.
Material characterizations: Bruker AXS TENSOR-27 FTIR spectrometer by KBr pellets was used to 
test the IR spectra from 4000 cm-1 to 400 cm-1. The datas of Powder X-ray diffraction (XRD) were 
acquired on a Bruker AXSD8 Advance diffractometer in a 2θ scope of 5-80° at a rate of 10° 
depending on Cu Ka radiation (λ = 1.5418 Å). Scanning electron microscope (SEM), Energy 
dispersive X-ray (EDX) and Energy dispersive spectroscopy (EDS) spectrometry Element mapping 
were completed by means of a FEI Quanta 200F microscope involving a 20 kV speeding up 
voltage. The Transmission electron microscope (TEM) images were performed with accelerating 
voltage of 200 kV on a JEOL-2100F transmission electron microscope. Nitrogen sorption 
isotherms were operated by ASAP 2020M micropore and mesopore analyzer. The XPS was 
completed on an ESCALAB 250Xi photoelectronic spectrometer of F-doped SnO2 glass with an 
internal reference of C1s photoelectron at 284.6 eV peak and an Al Ka radiation X-ray source. The 
Uv-vis was tested at the spectral range from 200 nm to 900 nm on an Ultraviolet 
spectrophotometer of China SP-756P. The photoluminescent (PL) spectra  was carried out on a 
Hitachi F-4500 fluorescence spectrophotometer.
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Supplementary Physical and Chemical Characterizations

Figure S1. IR of (a) g-C3N4 and V-g-C3N4; (b) P2W17Fe, P2W17Ni, P2W17Co and P2W17Mn; (c) 
P2W17Fe@V-g-C3N4, P2W17Ni@V-g-C3N4, P2W17Co@V-g-C3N4 and P2W17Mn@V-g-C3N4.

Figure S2. XRD of (a) simulated pwowder diffraction pattern of g-C3N4 and experimental 
measurement of g-C3N4 and V-g-C3N4; (b) P2W17Fe, P2W17Ni, P2W17Co and P2W17Mn. 
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Figure S3. EDX Element mapping of P2W17Fe@V-g-C3N4.

Figure S4. EDS of P2W17Fe@V-g-C3N4.
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Figure S5. EDX Element mapping of P2W17Ni@V-g-C3N4.

Figure S6. EDS of P2W17Ni@V-g-C3N4.



S8

Figure S7. EDX Element mapping of P2W17Co@V-g-C3N4. 

Figure S8. EDS of P2W17Co@V-g-C3N4.
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Figure S9. EDX Element mapping of P2W17Mn@V-g-C3N4. 

Figure S10. EDS of P2W17Mn@V-g-C3N4.
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Figure S11. EDS of g-C3N4.

Table S1. The composition of elements for g-C3N4 obtained from EDS.
Element Weight/% Atom/% NET strength

C 35.19 38.77 574.04
N 64.81 61.23 240.56

Figure S12. EDS of V-g-C3N4.

Table S2. The composition of elements for V-g-C3N4 obtained from EDS.
Element Weight/% Atom/% NET strength

C 38.40 42.10 623.93
N 61.60 57.90 206.99
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Figure S13. SEM images of (a) g-C3N4; (b) V-g-C3N4; (c) P2W17Fe@V-g-C3N4; (d) P2W17Ni@V-g-C3N4; 
(e) P2W17Co@V-g-C3N4; (f) P2W17Mn@V-g-C3N4.
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Figure S14. XPS of the P2W17Fe@V-g-C3N4; (b) the high resolution of the C 1s; (c) the high 
resolution of the N 1s; (d) the high resolution of the P 2p; (e) the high resolution of the W 4f; (f) 
the high resolution of the Fe 2p.

Figure S15. XPS of the P2W17Ni@V-g-C3N4; (b) the high resolution of the C 1s; (c) the high 
resolution of the N 1s; (d) the high resolution of the P 2p; (e) the high resolution of the W 4f; (f) 
the high resolution of the Ni 2p.
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Figure S16. XPS of the P2W17Co@V-g-C3N4; (b) the high resolution of the C 1s; (c) the high 
resolution of the N 1s; (d) the high resolution of the P 2p; (e) the high resolution of the W 4f; (f) 
the high resolution of the Co 2p.

Figure S17. XPS of the P2W17Mn@V-g-C3N4; (b) the high resolution of the C 1s; (c) the high 
resolution of the N 1s; (d) the high resolution of the P 2p; (e) the high resolution of the W 4f; (f) 
the high resolution of the Mn 2p.
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Figure S18. The standard curve line of NH4
+ ions concentration detected by Nessler’s reagent.

Figure S19. (a) NH3 production at different temperature of V-g-C3N4 with P2W17Fe composite 
nanomaterial; (b) NH3 production at different amount of P2W17Fe with 20 mg V-g-C3N4 composite 
nanomaterial. 
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Table S3. Comparison of photocatalytic N2 fixation results with previously reported data.
catalyst NH3 production rate Light source condition ref.

g-C3N4 3.01 mg L-1 h-1 gcat
-1

250 W sodium 
lamp

400–800 nm

500 mL 0.789 g L-1 ethanol
0.2 g catalyst

ambient pressure and 30 ℃
S1

g-C3N4 12.5 mg L-1 h-1 gcat
-1

250 W high 
pressure sodium 
lamp 400-800 nm

500 mL 0.789 g L-1 ethanol, 0.2 g 
photocatalyst

ambient pressure and 30 ℃
S2

g-C3N4 10.4 mg L-1 h-1 g-1
250 W high 

pressure sodium 
lamp 400-800 nm

500 mL 0.789 g L-1 ethanol, 0.2 g 
photocatalyst

ambient pressure and 30 ℃
S3

V-g-C3N4 1.24 mmol h-1 g-1 300 W Xe lamp
λ>420 nm

50 mL water of 20% methanol, 50 
mg catalyst

ambient temperature and 
atmospheric pressure

S4

V-g-C3N4 5.5 mg L-1 h-1 gcat
-1

250 W high 
pressure sodium 
lamp 400-800 nm 

500 mL water of 0.2 mL methanol 
or ethanol, 0.1 g catalyst

S5

g-C3N4/KOH 3.632 mmol h-1 g-1 300 W Xe lamp
150 mL CH3OH, 20 mg catalyst

room temperature (25 ℃)
S6

g-C3N4/HCl 6.32 mg L-1 h-1 gcat
-1

250 W sodium 
lamp

400-800 nm

500 mL of 0.789 g L-1 ethanol
0.2 g catalyst

ambient pressure and 30 ℃
S7

Cu/g-C3N4 8.8 mg L-1 h-1 gcat
-1

250 W sodium 
lamp

400-800 nm

500 mL water of 0.789 g L-1 
ethanol, 0.2 g catalyst

ambient pressure, temperature 
~200 ℃

S8

S/g-C3N4 5.99 mM h-1 gcat
-1 500 W Xe lamp

50 mL of 4 vol% methanol aqueous 
solution

S9

CdS/g-C3N4
3.18×103 μmol L-1 g-

1 500W Xe lamp
50 mL water of 0.789 g L-1 ethanol, 

50 mg catalyst 25 ℃
S10

g-C3N4/rGO
9.276 mg L-1 h-1 gcat

-

1

250 W sodium 
lamp

400-800 nm

500 mL solution of 1 mmol L1EDTA-
2Na 0.2 g catalyst 

ambient pressure and 30 ℃
S11

PrCO3OH/g-C3N4 8.9 mM g-1 h-1 
500 W Xenon 

lamp 
50 mL aqueous solution of 10 vol% 

methanol, 30 mg catalyst
S12

g-C3N4/Ag2CO3 11 mg L-1 h-1 gcat
-1

250 W high 
pressure sodium 
lamp 400-800 nm

500 mL water of 0.2 mL methanol 
or ethanol, 0.1 g catalyst

S13

Fe2O3/g-C3N4 47.9 mg L-1 h-1  
300 W high 

pressure Xenon 
lamp

100 mL of 20% ethanol solution 40 
mg photocatalyst 

room temperature and 
atmospheric pressure  

S14

Fe2O3/g-C3N4 4380 μmol L-1 h-1 300 W Xe lamp
100 mL distilled water, 0.1 g 

catalyst
room temperature of 25 ℃

S15

W18O49/g-C3N4 2.6 mg L-1 h-1 gcat
-1 

300 W Xe lamp 
and 200 W 

infrared light

500 mL 0.789 g L-1 ethanol, 0.2 g 
photocatalyst

S16

Ag/g-
C3N4/W18O49

0.57 mg L-1 h-1 gcat
-1

300 W Xe lamp 
and 200 W 

infrared light

500 mL 0.789 g L-1 ethanol, 0.2 g 
photocatalyst

S17

Ga2O3-DBD/g-
C3N4

112.5 μmol L-1 h-1 500 W Xe lamp
50 mL water of 0.04 mmol 
methanol, 0.02 g catalyst

S18
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g-
C3N4/Zn0.11Sn0.12C

d0.88S1.12

7.543 mg L-1 h-1 gcat
-

1

250 W sodium 
lamp

400-800 nm

500 mL water of 0.789 g L-1 
ethanol, 0.2 g catalyst 

ambient pressure and 30 ℃
S19

g-C3N4/ZnMoCdS 1.47 mg L-1 h-1 gcat
-1

250 W sodium 
lamp

400-800 nm

500 mL water of 0.789 g L-1 
ethanol, 0.2 g catalyst

ambient pressure and 30 ℃
S20

g-
C3N4/Mg1.1Al0.3Fe

0.2O1.7

7.5 mg L-1 h-1 gcat
-1

250 W sodium 
lamp

400-800 nm

500 mL water of 0.789 g L-1 
ethanol, 0.2 g catalyst

ambient pressure and 30 ℃
S21

P2W17Fe@V-g-
C3N4

91.8 μmol L-1 h-1 300 W Xenon 
lamp

80 mL water and 20 ml  ethanol, 
300 mg catalyst

atmospheric pressure and room 
temperature

our 
work

P2W17Ni@V-g-
C3N4

208 μmol L-1 h-1 300 W Xenon 
lamp

80 mL water and 20 ml  ethanol, 
300 mg catalyst

atmospheric pressure and room 
temperature

our 
work

P2W17Co@V-g-
C3N4

214.6 μmol L-1 h-1 300 W Xenon 
lamp

80 mL water and 20 ml  ethanol, 
300 mg catalyst

atmospheric pressure and room 
temperature

our 
work

P2W17Mn@V-g-
C3N4

99.2 μmol L-1 h-1 300 W Xenon 
lamp

80 mL water and 20 ml  ethanol, 
300 mg catalyst

atmospheric pressure and room 
temperature

our 
work
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Table S4. Comparison of TON, TOF and STA efficiency for photocatalytic N2 fixation with 
previously reported data.

catalyst NH3 production rate TON TOF STA ref.
TiO2 0.73 μmol h-1 1.05 0.02% S22

W18O49 195.5 μmol h-1·gcat
-1 0.028% S23

Bi5O7I 111.5 μmol L-1·h-1 49.23 h-1 S24

β-Ga2O3 0.0493 μmol L-1·s-1 0.493 μmol g-1·s-

1 S25

Au/(BiO)2CO3 38.23 μg h-1·mgcat
-1 0.006% S26

Fe@3DGraphene 408±68 μg h-1·gcat
-1 78 S27

FeMoS inorganic 
clusters

0.17 μmol L-1·h-1 8 μmol μM-

1 S28

[Mo2Fe6S8(SPh)3 0.7 μmol L-1·h-1 17 S29

P2W17Fe@V-g-C3N4 91.8 μmol L-1 h-1 142 mmol 
M-1

142 mmol M-1 h-

1 0.020%
our 

work

P2W17Ni@V-g-C3N4 208 μmol L-1 h-1 338 mmol 
M-1

338 mmol M-1 h-

1 0.045%
our 

work

P2W17Co@V-g-C3N4 214.6 μmol L-1 h-1 346 mmol 
M-1

346 mmol M-1 h-

1 0.046%
our 

work

P2W17Mn@V-g-C3N4 99.2 μmol L-1 h-1 156 mmol 
M-1 156 mmol M-1 0.021%

our 
work
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Figure S20. (a) the standard curve line of O2 concentration; (b) O2 production at different times 
of P2W17Fe@V-g-C3N4, P2W17Ni@V-g-C3N4, P2W17Co@V-g-C3N4 and P2W17Mn@V-g-C3N4. 

Figure S21. FTIR spectra of (a) P2W17Fe@V-g-C3N4 before and after each reaction; (b) 
P2W17Ni@V-g-C3N4 before and after each reaction; (c) P2W17Co@V-g-C3N4 before and after each 
reaction; (d) P2W17Mn@V-g-C3N4 before and after each reaction.
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Figure S22. XRD of (a) P2W17Fe@V-g-C3N4 before and after each reaction; (b) P2W17Ni@V-g-C3N4 
before and after each reaction; (c) P2W17Co@V-g-C3N4 before and after each reaction; (d) 
P2W17Mn@V-g-C3N4 before and after each reaction.

Figure S23. The time-resolved photocurrent curve of g-C3N4 and V-g-C3N4 in air atmosphere.
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Figure S24. Comparison of the time-resolved photocurrent curve of (a) g-C3N4; (b) V-g-C3N4; (c) 
P2W17Fe; (d) P2W17Ni; (e) P2W17Co; (f) P2W17Mn in air and N2 atmosphere.
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Figure S25. PL spectra of g-C3N4 and V-g-C3N4.
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Figure S26. CV curves for (a) g-C3N4; (b) V-g-C3N4; (c) P2W17Fe@V-g-C3N4; (d) P2W17Ni@V-g-C3N4; 
(e) P2W17Co@V-g-C3N4; (f) P2W17Mn@V-g-C3N4.

Figure S27. The plot of F against energy E for (a) g-C3N4; (b) V-g-C3N4; (c) P2W17Fe@V-g-C3N4; (d) 
P2W17Ni@V-g-C3N4; (e) P2W17Co@V-g-C3N4; (f) P2W17Mn@V-g-C3N4. The red line is the tangent of 
the curve and the intersection value is the band gap.
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Table S5. The composition of elements for P2W17Fe@V-g-C3N4 obtained from EDS.
Element Weight/% Atom/% NET strength

C 12.06 32.87 55.92
N 4.07 9.51 11.91
P 1.03 1.09 27.65
O 19.93 40.75 158.35
K 5.98 5.00 222.01
W 55.35 9.85 291.01
Fe 1.58 0.93 34.73

Table S6. The composition of elements for P2W17Ni@V-g-C3N4 obtained from EDS.
Element Weight/% Atom/% NET strength

C 11.86 27.84 49.83
N 7.55 15.19 20.72
P 1.30 1.18 33.07
O 24.93 43.93 173.32
K 5.07 3.65 171.24
W 47.31 7.25 212.90
Ni 1.98 0.95 30.44

Table S7. The composition of elements for P2W17Co@V-g-C3N4 obtained from EDS.
Element Weight/% Atom/% NET strength

C 22.80 41.31 251.32
N 15.65 24.32 83.64
P 1.10 0.78 73.12
O 19.81 26.95 245.17
K 3.70 2.06 299.03
W 36.05 4.27 352.32
Co 0.88 0.33 32.15

Table S8. The composition of elements for P2W17Mn@V-g-C3N4 obtained from EDS.
Element Weight/% Atom/% NET strength

C 13.89 38.64 46.85
N 9.74 23.22 21.61
P 1.14 1.22 21.69
O 10.69 22.31 56.00
K 3.24 2.77 86.99
W 59.66 10.84 234.14

Mn 1.64 1.00 29.34
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