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Supplementary Experimental Section

Photoelectrochemical measurements: The Time-resolved photocurrent curve was measured in a
system of three-electrode on the CHI601D electrochemical workstation (Shanghai Chenhua
Instrument Corp., China) with the Xenon lamp illuminate at room temperature. Composite-
nanomaterials were dropping on the conductive glass FTO as the working electrode. A standard
Ag/AgCl and Pt were served as reference electrode and counter electrode. The measurement
was performed in electrolyte of Na,SO, aqueous solution (0.1mol L) at a speed of 0.1 A s from
0 to 400 s both in N, and air conditions. Na,SO, aqueous solution was imported into N, for 30
min moving away the air before testing and kept pouring into N, in the measurement process.
The Cyclic voltammetry curves and electrochemical impedance measurement were carried out
on a CHI601D electrochemical workstation (Shanghai Chenhua Instrument Corp., China) at room
temperature by a three-electrode system. Glassy carbon electrode was the working electrode, a
standard Ag/AgCl and Pt were reference electrode and counter electrode. The electrolyte was
0.05 mol L't KCl aqueous solution.

Material characterizations: Bruker AXS TENSOR-27 FTIR spectrometer by KBr pellets was used to
test the IR spectra from 4000 cm™ to 400 cmL. The datas of Powder X-ray diffraction (XRD) were
acquired on a Bruker AXSD8 Advance diffractometer in a 26 scope of 5-80° at a rate of 10°
depending on Cu Ka radiation (A = 1.5418 A). Scanning electron microscope (SEM), Energy
dispersive X-ray (EDX) and Energy dispersive spectroscopy (EDS) spectrometry Element mapping
were completed by means of a FEI Quanta 200F microscope involving a 20 kV speeding up
voltage. The Transmission electron microscope (TEM) images were performed with accelerating
voltage of 200 kV on a JEOL-2100F transmission electron microscope. Nitrogen sorption
isotherms were operated by ASAP 2020M micropore and mesopore analyzer. The XPS was
completed on an ESCALAB 250Xi photoelectronic spectrometer of F-doped SnO, glass with an
internal reference of Cls photoelectron at 284.6 eV peak and an Al Ka radiation X-ray source. The
Uv-vis was tested at the spectral range from 200 nm to 900 nm on an Ultraviolet
spectrophotometer of China SP-756P. The photoluminescent (PL) spectra was carried out on a
Hitachi F-4500 fluorescence spectrophotometer.
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Supplementary Physical and Chemical Characterizations
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Figure S1. IR of (a) g-C3N, and V-g-CsNg; (b) P,Wq5Fe, P,WsNi, P;W.;Co and P,W.;Mn; (c)

P2W17Fe@V—g—C3N4, P2W17Ni@V-g-C3N4, P2W17C0@V-g-C3N4 and P2W17Mn@V-g-C3N4.
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Figure S3. EDX Element mapping of P,W,;Fe@V-g-C5N,.
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Figure S4. EDS of P,W;Fe@V-g-C3N,.

S6



Figure S5. EDX Element mapping of P,W;Ni@V-g-C5N,.
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Figure S6. EDS of P2W17Ni@V—g—C3N4.
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Figure S7. EDX Element mapping of P,W,;Co@V-g-C3N,.
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Figure S8. EDS of P,W,;Co@V-g-C3Nj.
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Figure S9. EDX Element mapping of P,W{;Mn@V-g-C5N,.
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Figure S10. EDS of P,W;Mn@V-g-C5N,.
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Figure S11. EDS of g-C3N,.

Table S1. The composition of elements for g-C3N, obtained from EDS.
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Table S2. The composition of elements for V-g-C3N,4 obtained from EDS.
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Figure S$13. SEM images of (a) g—C3N4; (b) V—g—C3N4; (C) P2W17Fe@V—g-C3N4; (d) P2W17Ni@V-g—C3N4;
(e) P,W17,Co@V-g-C3Ny; (f) P,W1sMn@V-g-C3N,.
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Table S3. Comparison of photocatalytic N, fixation results with previously reported data.

catalyst NH; production rate Light source condition ref.
250 W sodium 500 mL 0.789 g L ethanol
g-CsN, 3.01 mgLthtgy? lamp 0.2 g catalyst S1
400-800 nm ambient pressure and 30 'C
250 W high 500 mL 0.789 g L ethanol, 0.2 g
g-C3Ny 12.5mgLthlg,? pressure sodium photocatalyst S2
lamp 400-800 nm ambient pressure and 30 'C
250 W high 500 mL 0.789 g L' ethanol, 0.2 g
g-CsN, 104 mglLthtlg? pressure sodium photocatalyst S3
lamp 400-800 nm ambient pressure and 30 'C
50 mL water of 20% methanol, 50
V-g-C3Ny4 1.24 mmol h g1 300 W Xe lamp . mg catalyst sa
A>420 nm ambient temperature and
atmospheric pressure
250 W high
g. 500 mL water of 0.2 mL methanol
V-g-C3N,4 55mgLthtlgg? pressure sodium or ethanol. 0.1 & catalvst S5
lamp 400-800 nm el b
150 mL CH30H, 20 talyst
g-C3N4/KOH 3.632 mmol h1g? 300 W Xe lamp m 3 Mg ca Da Vs S6
room temperature (25 C)
250 W sodium 500 mL of 0.789 g L' ethanol
g-C5N4/HCI 6.32mgLthlg,t lamp 0.2 g catalyst S7
400-800 nm ambient pressure and 30 'C
. 500 mL water of 0.789 g !
250 W sodium
§ P ethanol, 0.2 g catalyst
Cu/g-C5N,4 8.8mgLthlg. lamp . S8
ambient pressure, temperature
400-800 nm .
~200 C
50 mL of 4 vol% methanol aqueous
S/g-CsN, 5.99 mM hlgg?t 500 W Xe lamp ) s9
solution
3.18x103 umol L1 g 50 mL water of 0.789 g L' ethanol,
CdS/g-C3N, 500W Xe lamp . S10
1 50 mg catalyst 25 C
9276 me L1 hlg. - 250 W sodium 500 mL solution of 1 mmol L1EDTA-
g-C3N,/rGO ' gl Beat lamp 2Na 0.2 g catalyst s11
400-800 nm ambient pressure and 30 'C
500 W Xenon 50 mL aqueous solution of 10 vol%
PrCO;0H/g-C3N, 8.9mMglht s12
lamp methanol, 30 mg catalyst
250 W high
500 mL water of 0.2 mL methanol
g-C3N4/Ag,CO; 11mglLthlg,? pressure sodium or ethanol. 0.1 g catalvst S13
lamp 400-800 nm POl gcataly
300 W high 100 mL o;ZO‘T:;:::;:II s:;lution 40
Fe,03/g-C3N, 479 mgLtht pressure Xenon ep v S14
lamp room temperature and
atmospheric pressure
100 mL distilled water, 0.1 g
Fe,03/g-CsN, 4380 umol L1 h1 300 W Xe lamp catalyst S15
room temperature of 25 C
300WXelamp | go5 11 0789 g L ethanol, 0.2
WigOu/g-CsNa | 2.6 mg L hlgyc? and 200 W /1S9 8 LA T
. . photocatalyst
infrared light
300 W Xe lamp
Ag/g- a4 500 mL 0.789 g L' ethanol, 0.2 g
CNWosO 0.57 mg L1 h'l gey and 200 W Chotocatalyst s17
3Tl TTIEas infrared light
Ga,03-DBD/g- 50 mL water of 0.04 mmol
112.5 pmol L1 h1 500 W Xe lamp S18

CsN,

methanol, 0.02 g catalyst

S15




g- 250 W sodium 500 mL water of 0.789 g L!
7.543 mg Lt hlg.:
C3Na/Zng 11SNng.12C ) lamp ethanol, 0.2 g catalyst S19
do.gsS1.12 400-800 nm ambient pressure and 30 'C
250 W sodium 500 mL water of 0.789 g L!
g-C3N4/ZnMoCdS | 1.47 mglLlhlg,? lamp ethanol, 0.2 g catalyst S20
400-800 nm ambient pressure and 30 'C
g- 250 W sodium 500 mL water of 0.789 g L!
CsNu/Mgi1AlgsFe | 7.5mgLlhlg,? lamp ethanol, 0.2 g catalyst 521
02017 400-800 nm ambient pressure and 30 'C
80 mL water and 20 ml ethanol,
P,W,Fe@V-g- 300 W Xenon 300 mg catalyst our
91.8 umol L't ht .
C3Ny4 lamp atmospheric pressure and room work
temperature
80 mL water and 20 ml  ethanol,
P,W;Ni@V-g- 300 W Xenon 300 mg catalyst our
2WiNi@V-g 208 pmol L1 h1 . & Y
C3Ny lamp atmospheric pressure and room work
temperature
80 mL water and 20 ml  ethanol,
P,Wy;Co@V-g- 300 W Xenon 300 mg catalyst our
2WiCo@V-g 214.6 umol L1 h1 . & 4
C3Ny lamp atmospheric pressure and room work
temperature
80 mL water and 20 ml  ethanol,
P,W;Mn@V-g- 300 W Xenon 300 mg catalyst our
99.2 umol L1 ht .
C3Ny lamp atmospheric pressure and room work

temperature

S16




Table S4. Comparison of TON, TOF and STA efficiency for photocatalytic N, fixation with
previously reported data.
catalyst NH; production rate TON TOF STA ref.
TiO, 0.73 pumol h-1 1.05 0.02% S22
W15040 195.5 pmol hl-ge,t 0.028% 523
Bis Ol 111.5 pmol L'*-h1 49.23 hl S24
B-Ga,0; 0.0493 pmol L't-s? 0.493 HTOI ghs S25
Au/(Bi0),CO3 38.23 ug h-mgea? 0.006% S26
Fe@3DGraphene 40868 pg h1-geat 78 S27
FeMoS inorganic 0.17 umol L-ht 8 umol uM- $28
clusters 1
[Mo,FecSs(SPh)s 0.7 umol L'1-ht 17 529
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Figure S20. (a) the standard curve line of O, concentration; (b) O, production at different times

of P2W17FE@V'Q'C3N4, P2W17Ni@V-g-C3N4, P2W17C0@V'Q-C3N4 and P2W17Mn@V-g-C3N4.
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Figure S27. The plot of F against energy E for (a) g-CsN4; (b) V-g-C5Ny; (c) P, W ;Fe@V-g-CsNy; (d)
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Table S5. The composition of elements for P,W,;Fe@V-g-CsN, obtained from EDS.

Element Weight/% Atom/% NET strength
C 12.06 32.87 55.92
N 4.07 9.51 11.91
P 1.03 1.09 27.65
O 19.93 40.75 158.35
K 5.98 5.00 222.01
W 55.35 9.85 291.01
Fe 1.58 0.93 34.73

Table S6. The composition of elements for P,W,;Ni@V-g-C5N, obtained from EDS.

Element Weight/% Atom/% NET strength
C 11.86 27.84 49.83
N 7.55 15.19 20.72
P 1.30 1.18 33.07
(@] 24.93 43.93 173.32
K 5.07 3.65 171.24
W 47.31 7.25 212.90
Ni 1.98 0.95 30.44

Table S7. The composition of elements for P,W;;Co@V-g-C3N,4 obtained from EDS.

Element Weight/% Atom/% NET strength
C 22.80 41.31 251.32
N 15.65 24.32 83.64
P 1.10 0.78 73.12
O 19.81 26.95 245.17
K 3.70 2.06 299.03
W 36.05 4.27 352.32
Co 0.88 0.33 32.15

Table S8. The composition of elements for P,W;Mn@V-g-C5N, obtained from EDS.

Element Weight/% Atom/% NET strength
C 13.89 38.64 46.85
N 9.74 23.22 21.61
P 1.14 1.22 21.69
0 10.69 22.31 56.00
K 3.24 2.77 86.99
W 59.66 10.84 234.14
Mn 1.64 1.00 29.34
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