Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supplementary Information

A Novel Strategy for the Synthesis of Hard Carbon Spheres Encapsulated with Graphene Networks as a Low-Cost and Large-Scalable Anode Material for Fast Sodium Storage with an Ultralong Cycle Life

Ghulam Yasin ^{a,*}, Muhammad Arif ^a, Tahira Mehtab ^b, Muhammad Shakeel ^a, Muhammad

Asim Mushtaq^a, Anuj Kumar^{a, c}, Tuan Anh Nguyen^d, YASSINE Slimani^e, M. Tariq Nazir^f,

Huaihe Song ^g

^a State Key Laboratory of Chemical Resource Engineering and College of Energy, Beijing University of Chemical Technology, Beijing 100029, China

^b Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan

^c Department of Chemistry, Institute of Humanities and applied Science, GLA University, Mathura-281406, India

^d Institute for Tropical Technology, Vietnam Academy of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

^e Department of Physics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.

^f School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052, Australia

^g State Key Laboratory of Chemical Resource Engineering, Laboratory for Advanced Carbon Materials Research, College of Materials Scienec and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

Corresponding author: yasin@mail.buct.edu.cn

Fig. S1. SEM image of hard carbon spheres.

Fig. S2. SEM image of hard carbon spheres wrapped with flexible conductive networks of graphene nanosheets.

Fig. S3. SEM image (a) and (b-d) SEM-EDS elemental mapping of G-HCS.

Fig. S4. EDS spectra for elemental composition of G-HCS.

Fig. S5. XPS analysis of G-HCS sample (a) XPS survey, High-resolution XPS spectra of (b) C 1s and (c) O 1s.

Fig. S6. Galvanostatic discharge/charge curves of HCS at current rate of 100 mA g⁻¹.

Carbon Anode	Initial reversible capacity (mA h g ⁻¹)	Current rate for ultra-long cycling (A g ⁻¹)	Cycle number	Capacity after cycles (mA h g ⁻¹)	References
G-HCS	421	10	4000	122	This work
	100 mA g ⁻¹				
Hollow Carbon	223	0.1	100	160	[1]
Nanospheres	50 mA g ⁻¹				
Hard Carbon	322	0.128	40	73	[2]
Microspheres	28 mA g ⁻¹				
Hard carbon	220	1	1000	117	[3]
from orange peel	500 mA g ⁻¹				
Rice husk-derived	372	0.025	100	346	[4]
hard carbons	25 mA g ⁻¹				
Sulfurized	295	10	10000	126.5	[5]
polyacrylonitrile	500 mA g ⁻¹				
derived carbon					
Micro-nano	323	0.020	100	286	[6]
structure carbon	20 mA g-1				
Carbon from	385	0.5	600	210	[7]
Banana Peels	50 mA g ⁻¹				
S-doped N-rich	419	1	1000	211	[8]
carbon	50 mA g ⁻¹				
Nitrogen-doped	315.2	1.69	2000	ca. 70	[9]
carbon sheets	56 mA g ⁻¹				
Amorphous	280	0.5	2500	142	[10]
carbon/graphene	100 mA g ⁻¹				
composite					
N/S codoped	280	0.5	3400	ca. 150	[11]
carbon	30 mA g ⁻¹				
microspheres					

Table S1. Performance comparison of G-HCS with other reported state-of-the-artcarbon anode materials for SIBs.

Table S2. Performance comparison of G-HCS with other reported state-of-the-artanode materials for SIBs except carbon materials.

	Initial	Current rate	Cycle	Capacity	
Carbon Anode	reversible	for ultra-long	number	after cycles	References
	capacity	cycling (A g ⁻¹)		(mA h g ⁻¹)	
	(mA h g ⁻¹)				
G-HCS	421	10	4000	122	This work
	100 mA g ⁻¹				
Graphene-TiO ₂	265	0.5	4300	ca. 120	[12]
hybrid	50 mA g ⁻¹				
Amorphous	495	1	800	220	[13]
SnO ₂	50 mA g ⁻¹				
Na ₂ Ti ₃ O ₇ @NDope	297	8.8	1000	68	
d Carbon Hollow	177 mA g ⁻¹				[14]
Spheres					
Graphene/Ni ₂ P	516	0.3	500	161	[15]
Hybrid	100 mA g ⁻¹				
WS ₂ /CNT-rGO	305	0.2	100	252.9	[16]
Aerogel	200 mA g ⁻¹				
Sb-C nanofibers	663	0.2	400	446	[17]
	40 mA g ⁻¹				
SnSe/carbon	447.7	0.5	200	324.6	[18]
nanocomposite	500 mA g ⁻¹				
Sb@C yolk-shell	637	0.2	200	598	[19]
microspheres	50 mA g ⁻¹				
Layered nickel					
sulfide-reduced	512.7	0.1	50	391.6	[20]
graphene oxide	100 mA g ⁻¹				
composites					

Notes and references

- K. Tang, L. Fu, R. J. White, L. Yu, M.-M. Titirici, M. Antonietti and J. Maier, Advanced Energy Materials, 2012, 2, 873-877.
- Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, *Advanced Energy Materials*, 2016, 6, 1501874.
- 3. J. Xiang, W. Lv, C. Mu, J. Zhao and B. Wang, *Journal of Alloys and Compounds*, 2017, **701**, 870-874.
- Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou and J. Bao, *Carbon*, 2018, 127, 658-666.
- J. Qian, F. Wu, Y. Ye, M. Zhang, Y. Huang, Y. Xing, W. Qu, L. Li and R. Chen, *Advanced Energy Materials*, 2018, 8, 1703159.
- 6. P. Zheng, T. Liu and S. Guo, *Scientific Reports*, 2016, 6, 35620.
- E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton and D. Mitlin, *ACS Nano*, 2014, 8, 7115-7129.
- J. Yang, X. Zhou, D. Wu, X. Zhao and Z. Zhou, *Advanced Materials*, 2017, 29, 1604108.
- T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun and C. Yan, *Advanced Materials*, 2016, 28, 539-545.
- S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao and S. Zhang, *Nano Energy*, 2015, 12, 224-230.
- D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang and L. Zhang, Advanced Energy Materials, 2016, 6, 1501929.

- 12. C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan and Y. Huang, *Nature Communications*, 2015, **6**, 6929.
- 13. Y. Xu, M. Zhou, C. Zhang, C. Wang, L. Liang, Y. Fang, M. Wu, L. Cheng and Y. Lei, *Nano Energy*, 2017, **38**, 304-312.
- F. Xie, L. Zhang, D. Su, M. Jaroniec and S.-Z. Qiao, *Advanced Materials*, 2017, **29**, 1700989.
- C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Advanced Materials*, 2017, **29**, 1604015.
- Y. Wang, D. Kong, W. Shi, B. Liu, G. J. Sim, Q. Ge and H. Y. Yang, Advanced Energy Materials, 2016, 6, 1601057.
- L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, Energy & Environmental Science, 2014, 7, 323-328.
- 18. Z. Zhang, X. Zhao and J. Li, *Electrochimica Acta*, 2015, **176**, 1296-1301.
- J. Song, D. Xiao, H. Jia, G. Zhu, M. Engelhard, B. Xiao, S. Feng, D. Li, D.
 Reed, V. L. Sprenkle, Y. Lin and X. Li, *Nanoscale*, 2019, 11, 348-355.
- W. Qin, T. Chen, T. Lu, D. H. C. Chua and L. Pan, *Journal of Power Sources*, 2016, **302**, 202-209.