## **Supporting Information**

## A curly architectured graphitic carbon nitride $(g-C_3N_4)$ towards efficient visible-light photocatalytic H<sub>2</sub> evolution

Yuanzhi Hong,<sup>a</sup> Longyan Wang,<sup>a</sup> Enli Liu,<sup>a,b</sup> Jiahui Chen,<sup>a</sup> Zhiguo Wang,<sup>a</sup> Shengqu

Zhang,<sup>a</sup> Xue Lin,<sup>a,\*</sup> Xixin Duan<sup>a,\*</sup> and Junyou Shi<sup>a,b\*</sup>

<sup>a</sup>School of Materials Science and Engineering, Beihua University, 3999 Binjiang East

Road, Jilin 132013, People's Republic of China

<sup>b</sup>School of Agriculture and Food Engineering, Shandong University of Technology, 266

Xincun West Road, Zibo 255000, People's Republic of China

\*Corresponding authors:

jlsdlinxue@126.com (X. Lin); duanxixin@hotmail.com (X. Duan); bhsjy64@163.com (J. Shi)

## **Figure and Table Captions**

Figure S1. H<sub>2</sub> evolved rate of GCN-CLA with loading the different amount of Pt.

Figure S2. Photocatalytic H<sub>2</sub> evolved performance of GCN-CLA by loading with 3 wt%

of Pt, Au and Ag.

Figure S3. Particle size distribution curves of GCN-B and GCN-CLA samples.

Figure S4. Pore size distribution plots of as-made GCN-B and GCN-CLA samples.

Figure S5. FT-IR spectra of as-prepared GCN-B, GCN-0, and GCN-1 samples.

Figure S6. Survey XPS spectra of as-fabricated GCN-B and GCN-CLA samples.

Figure S7. EIS spectra of as-synthesized GCN-0, GCN-1, and GCN-CLA samples.

Figure S8. VB-XPS spectra of GCN-B and GCN-CLA samples.

Figure S9. H<sub>2</sub> evolved rate over as-synthesized samples under full arc irradiation.

Figure S10. H<sub>2</sub> evolved rate of GCN-CLA using different amount of catalyst.

**Figure S11.** H<sub>2</sub> evolved rate of GCN-CLA using lactic acid, triethanolamine, methanol and ethanol as sacrificial agents.

**Figure S12.** H<sub>2</sub> evolved activity of GCN-CLA reaction at different temperature.

Figure S13. H<sub>2</sub> evolved activity of GCN-CLA via *in-situ* and pre-loading 3 wt% Pt.

Figure S14. H<sub>2</sub> evolved rate of various GCN samples vs the amount of N element.

**Table S1.** The C and N elements amount of GCN-B, GCN-0, GCN-1 and GCN-CLA fromXPS analysis.



**Figure S1.** H<sub>2</sub> evolved rate of GCN-CLA with loading the different amount of Pt.



Figure S2. Photocatalytic  $H_2$  evolved performance of GCN-CLA by loading with 3 wt% of Pt, Au and Ag.



Figure S3. Particle size distribution curves of GCN-B and GCN-CLA samples.



Figure S4. Pore size distribution plots of as-made GCN-B and GCN-CLA samples.



Figure S5. FT-IR spectra of as-prepared GCN-B, GCN-0, and GCN-1 samples.



Figure S6. Survey XPS spectra of as-fabricated GCN-B and GCN-CLA samples.



Figure S7. EIS spectra of as-synthesized GCN-0, GCN-1, and GCN-CLA samples.



Figure S8. VB-XPS spectra of GCN-B and GCN-CLA samples.



Figure S9. H<sub>2</sub> evolved rate over as-synthesized samples under full arc irradiation.



Figure S10. H<sub>2</sub> evolved rate of GCN-CLA using different amount of catalyst.



**Figure S11.** H<sub>2</sub> evolved rate of GCN-CLA using lactic acid, triethanolamine, methanol and ethanol as sacrificial agents.



Figure S12. H<sub>2</sub> evolved activity of GCN-CLA reaction at different temperature.



**Figure S13.** H<sub>2</sub> evolved activity of GCN-CLA via *in-situ* and pre-loading 3 wt% of Pt.



Figure S14. H<sub>2</sub> evolved rate of various GCN samples vs the amount of N element.

| Samples | С     | Ν     |
|---------|-------|-------|
| GCN-B   | 42.91 | 54.07 |
| GCN-0   | 43.30 | 53.16 |
| GCN-1   | 43.56 | 52.67 |
| GCN-CLA | 44.88 | 52.31 |

**Table S1.** The C and N elements amount of GCN-B, GCN-0, GCN-1 and GCN-CLA fromXPS analysis.