Supplementary Data

A novel 3D Z-scheme heterojunction photocatalyst: Ag₆Si₂O₇ anchored on flower-like Bi₂WO₆ and its excellent photocatalytic performance for the degradation of toxic pharmaceutical antibiotics

Shijie Li¹*, Jialin Chen¹, Shiwei Hu¹, Wei Jiang¹, Yanping Liu¹, Jianshe Liu²

¹ Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.

² State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

* Email: <u>lishijie@zjou.edu.cn;</u>

Figures

Figure S1 Mott-Schottky plots of Bi₂WO₆ and Ag₆Si₂O₇ photocatalysts.

Figure S2 Photocatalytic properties of as-obtained catalysts (50 mg) for eliminating CIP (20 mg/L, 80 mL)

Figure S3 SEM images of ASO/BWO-3 after recycling experiments

Figure S4 The photocatalytic mechanism of the Ag₆Si₂O₇/Bi₂WO₆ p-n heterojunction photocatalyst under VL.