Electronic Supplementary Information (ESI)

Three stable dinuclear $[M_2(OH)_{0.5}(NO_3)_{0.5}(RCOO)_2(RN)_4]$ (M =

Cu, Ni) based metal-organic frameworks with high CO₂

adsorption and selective separation for O_2/N_2 and C_3H_8/CH_4

Liang Kan, Lan Li, Guanghua Li, Lirong Zhang* and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. Fax: +86-431-85168624; Tel: +86-431-85168614; E-mail: yunling@jlu.edu.cn, zlr@jlu.edu.cn.

S1. Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, CH₄, C₂H₆ and C₃H₈ for compounds Cu-L₁, Ni-L₁ and Ni-L₂, which should be converted to absolute loadings (q) firstly.

$$q = q^{ex} + \frac{pVpore}{ZRT}$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298 K.

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}$$

Here *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mol/kg), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol/kg), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

S2. Supporting Figures

Fig. S1 Topological features of compound Cu-L₁ displayed by tiles and face symbols for green (6^3) and pink $(4^2 \cdot 6^2 \cdot 12^2)$ tiles.

Fig. S2 Comparison of metal atom coordination modes for compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c).

Fig. S3 The illustration of structure displayed by connolly surface areas.

Fig. S4 PXRD patterns of compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c) for simulated, assynthesized and activated samples.

Fig. S5 Thermogravimetric analysis curves of compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c) for as-synthesized and solvent-exchanged samples.

Fig. S6 PXRD patterns of compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c) for solvent-exchanged samples.

Fig. S7 Varied temperature PXRD patterns of compounds Cu-L₁ (a), Ni-L₁ (b) and Ni-L₂ (c).

Fig. S8 CH_4 sorption isotherms for compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c) at 273 and 298 K.

Fig. S9 C_2H_6 sorption isotherms for compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c) at 273 and 298 K.

Fig. S10 C_3H_8 sorption isotherms for compounds $Cu-L_1$ (a), Ni-L₁ (b) and Ni-L₂ (c) at 273 and 298 K.

Fig. S11 CO₂, CH₄, C₂H₆ and C₃H₈ adsorption isotherms for compounds **Cu-L**₁ (a), **Ni-L**₁ (c) and **Ni-L**₂ (e) at 298 K along with the dual-site Langmuir Freundlich (DSLF) fits. The selectivity of CO₂/CH₄ and C₂H₆/CH₄ is predicted by IAST at 298 K for compounds **Cu-L**₁ (b), **Ni-L**₁ (d) and **Ni-L**₂ (f).

Fig. S12 Q_{st} of CO₂ for compounds Cu-L₁ (a), Ni-L₁ (b) and Ni-L₂ (c).

Fig. S13 Q_{st} of CH₄ for compounds Cu-L₁ (a), Ni-L₁ (b) and Ni-L₂ (c).

Fig. S14 Q_{st} of C_2H_6 for compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c).

Fig. S15 Q_{st} of C_3H_8 for compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c).

Fig. S16 N_2 sorption isotherms for compounds Cu-L₁ (a), Ni-L₁ (b) and Ni-L₂ (c) at 273 and 298 K.

Fig. S17 O_2 sorption isotherms for compounds $Cu-L_1$ (a), $Ni-L_1$ (b) and $Ni-L_2$ (c) at 273 and 298 K.

Fig. S18 Q_{st} of N₂ for compounds Cu-L₁ (a), Ni-L₁ (b) and Ni-L₂ (c).

Fig. S19 Q_{st} of O_2 for compounds Cu-L₁ (a), Ni-L₁ (b) and Ni-L₂ (c).

S3. Supporting Tables

Compound	Cu-L ₁	Ni-L ₁	Ni-L ₂
Formula	$C_{48}H_{53}Cu_4N_{19}O_{22}$	$C_{51}H_{68}N_{20}Ni_4O_{27}$	$C_{47}H_{56}N_{24}Ni_4O_{23}$
F_w	1502.25	1628.09	1559.99
Temp (K)	293(2) K	293(2) K	293(2) K
Crystal system	Trigonal	Trigonal	Trigonal
Space group	<i>P</i> 3 ₂ 21	<i>P</i> 3 ₂ 21	<i>P</i> 3 ₂ 21
a (Å)	16.547	16.851	16.943
b (Å)	16.547	16.851	16.943
c (Å)	10.580	10.518	10.504
α (°)	90	90	90
β (°)	90	90	90
γ (°)	120	120	120
$V(Å^3)$	2508.8(9)	2586.6(9)	2611.3(9)
Z, D_c (Mg/m ³)	1.50, 1.491	1.50, 1.568	1.50, 1.488
Absorption coefficient (mm ⁻¹)	1.339	1.170	1.153
F(000)	1149	1263	1203
Reflections collected/unique	16441/3056	17113/3240	17094/3168
R _{int}	0.0368	0.0711	0.0527
Data/restraints/ parameters	3056/24/148	3240/0/155	3168/110/203
Goodness-of-fit on F^2	1.107	1.010	1.054
R_1 , wR_2 [I > 2 σ (I)]	0.0698, 0.1831	0.0440, 0.1115	0.0462, 0.1201
R_1 , wR_2 (all data)	0.0706, 0.1839	0.0517, 0.1157	0.0509, 0.1224

Table S1. Crystal data and structure refinements for compounds Cu-L₁, Ni-L₁ and Ni-L₂.

Table S2. Selected bond lengths [Å] and angles [°] for compound Cu-L₁.

Compound Cu-L ₁						
Cu(1)-O(3)	1.956(5)	Cu(1)-N(3)	2.061(6)			
Cu(1)-O(1)#1	1.967(5)	Cu(1)-O(2)#3	2.280(5)			
Cu(1)-N(2)#2	2.019(6)	O(3)-Cu(1)-O(1)#1	91.94(19)			
O(3)-Cu(1)-N(2)#2	178.24(18)	O(1)#1-Cu(1)-N(2)#2	86.4(2)			
O(3)-Cu(1)-N(3)	88.7(2)	O(1)#1-Cu(1)-N(3)	167.6(2)			
N(2)#2-Cu(1)-N(3)	92.9(2)	O(3)-Cu(1)-O(2)#3	92.5(2)			
O(1)#1-Cu(1)-O(2)#3	101.6(2)	N(2)#2-Cu(1)-O(2)#3	88.4(2)			
N(3)-Cu(1)-O(2)#3	90.8(2)	C(9)-O(1)-Cu(1)#4	127.3(4)			
C(9)-O(2)-Cu(1)#5	124.5(5)	N(4)-O(3)-Cu(1)	121.7(2)			
N(4)-O(3)-Cu(1)#6	121.7(2)	Cu(1)-O(3)-Cu(1)#6	116.6(5)			
C(1)-N(2)-Cu(1)#7	123.2(5)	C(3)-N(2)-Cu(1)#7	132.0(5)			
C(7)-N(3)-Cu(1)	121.2(4)	C(8)-N(3)-Cu(1)	119.8(4)			

Symmetry transformations used to generate equivalent atoms:

#1 y,x+1,-z #2 -x+y,-x+1,z-2/3 #3 -x+y,-x+1,z+1/3 #4 y-1,x,-z #5 -y+1,x-y+1,z-1/3 #6 x-y+1,-y+2,-z+1/3 #7 -y+1,x-y+1,z+2/3

Compound Ni-L ₁						
Ni(1)-O(1)#1	2.012(4)	Ni(1)-N(2)#2	2.063(5)			
Ni(1)-O(2)#3	2.079(4)	Ni(1)-O(4)	2.085(5)			
Ni(1)-O(3)	2.097(4)	Ni(1)-N(3)	2.100(5)			
O(1)#1-Ni(1)-N(2)#2	84.75(19)	O(1)#1-Ni(1)-O(2)#3	98.50(17)			
N(2)#2-Ni(1)-O(2)#3	87.53(18)	O(1)#1-Ni(1)-O(4)	87.46(18)			
N(2)#2-Ni(1)-O(4)	87.6(2)	O(2)#3-Ni(1)-O(4)	171.91(19)			
O(1)#1-Ni(1)-O(3)	88.54(16)	N(2)#2-Ni(1)-O(3)	173.23(16)			
O(2)#3-Ni(1)-O(3)	94.35(16)	O(4)-Ni(1)-O(3)	91.2(2)			
O(1)#1-Ni(1)-N(3)	173.64(18)	N(2)#2-Ni(1)-N(3)	93.5(2)			
O(2)#3-Ni(1)-N(3)	87.50(19)	O(4)-Ni(1)-N(3)	86.4(2)			
O(3)-Ni(1)-N(3)	93.12(17)	C(9)-O(1)-Ni(1)#4	132.3(3)			
C(9)-O(2)-Ni(1)#5	129.9(4)	N(4)-O(3)-Ni(1)	123.12(15)			
N(4)-O(3)-Ni(1)#6	123.12(15)	Ni(1)-O(3)-Ni(1)#6	113.8(3)			
C(7)-N(3)-Ni(1)	121.1(4)	C(8)-N(3)-Ni(1)	119.3(4)			
C(1)-N(2)-Ni(1)#7	123.3(5)	C(3)-N(2)-Ni(1)#7	129.2(4)			

Table S3. Selected bond lengths [Å] and angles [°] for compound Ni-L₁.

Symmetry transformations used to generate equivalent atoms:

#1 y,x-1,-z #2 -x+y+1,-x+1,z-2/3 #3 -x+y+1,-x+1,z+1/3 #4 y+1,x,-z #5 -y+1,x-y,z-1/3 #6 x-y,-y,-z+1/3 #7 -y+1,x-y,z+2/3

Table S4. Selected bond length	is [Å] and	l angles [º] f	or compound Ni-L ₂ .
--------------------------------	------------	----------------	---------------------------------

Compound Ni-L ₂					
Ni(1)-O(1)#1	2.012(5)	Ni(1)-O(2)#2	2.066(4)		
Ni(1)-O(3)	2.066(4)	Ni(1)-N(3)#3	2.095(6)		
Ni(1)-N(4)	2.096(5)	Ni(1)-O(4)	2.122(5)		
O(1)#1-Ni(1)-O(2)#2	98.2(2)	O(1)#1-Ni(1)-O(3)	89.73(17)		
O(2)#2-Ni(1)-O(3)	95.33(18)	O(1)#1-Ni(1)-N(3)#3	85.1(2)		
O(2)#2-Ni(1)-N(3)#3	86.8(2)	O(3)-Ni(1)-N(3)#3	174.62(18)		
O(1)#1-Ni(1)-N(4)	174.0(2)	O(2)#2-Ni(1)-N(4)	87.1(2)		
O(3)-Ni(1)-N(4)	92.51(19)	N(3)#3-Ni(1)-N(4)	92.5(2)		
O(1)#1-Ni(1)-O(4)	87.7(2)	O(2)#2-Ni(1)-O(4)	168.9(2)		
O(3)-Ni(1)-O(4)	94.1(2)	N(3)#3-Ni(1)-O(4)	84.3(2)		
N(4)-Ni(1)-O(4)	86.6(2)	C(8)-O(1)-Ni(1)#6	133.0(4)		
C(8)-O(2)-Ni(1)#7	129.0(4)	N(7)-O(3)-Ni(1)	122.89(15)		
N(7)-O(3)-Ni(1)#4	122.89(15)	Ni(1)-O(3)-Ni(1)#4	114.2(3)		
C(9)-O(4)-Ni(1)	133.0(9)	N(6)-O(4)-Ni(1)	114.9(9)		
C(2)-N(3)-Ni(1)#8	121.0(5)	C(1)-N(3)-Ni(1)#8	133.2(7)		
C(1')-N(3)-Ni(1)#8	126.4(7)	C(4)-N(4)-Ni(1)	119.4(5)		
C(5)-N(4)-Ni(1)	122.4(4)				

Symmetry transformations used to generate equivalent atoms:

#1 y,x-1,-z #2 -x+y+1,-x+1,z+1/3 #3 -x+y+1,-x+1,z-2/3 #4 x-y,-y,-z+1/3 #5 x-y,-y,-z-2/3

#6 y+1,x,-z #7 -y+1,x-y,z-1/3 #8 -y+1,x-y,z+2/3

	BET	CO ₂	Qst	D.C
Сотроина	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(kJ mol ⁻¹)	Kei.
Cu-L ₁	716	115	24.8	This work
JLU-Liu47	1800	192	35	1
Cu-TDPAT	1938	227	42.2	2
CPM-200-Fe/Mg	1459	207.6	34.3	3
IFMC-1	780	91.4	30.7	4
JLU-Liu38	1784	92.6	24	5
CPM-20	1009	91.2		6
FJI-C1	1726.3	64	20.7	7
(Et ₂ NH ₂)[In(2,6-NDC) ₂]·2H ₂ O·DEF	891	72.2	19.6	8
$[H_2N(CH_3)_2][In(4,4'BPDC)_2] \bullet 4DMF \bullet 2H_2O$	638	34	25.8	9
$[Cu(F-pymo)_2]_n$		38.7	49-55	10
NOTT-202a	2220	~56	20-25	11
InOF-15	935.6	78	31.1	12

Table S5. Comparison of CO₂ adsorption data at 273 K.

"~"represent approximate values are obtained from the figures of reported acticles.

Table S6. Comparison of C ₃ H ₈ /CH ₄ selectivity	(0.5/0.5) at 101	kPa and 298	K of compounds	Cu-
L_1 and Ni- L_2 with the reported MOFs.				

Compound	C ₃ H ₈ /CH ₄ (0.5/0.5)	Ref.
Cu-L ₁	175	This work
Ni-L ₂	167	This work
UPC-33	41.8	13
BSF-1	353	14
$[Cu_4(PMTD)_2(H_2O)_3] \cdot 20 H_2O$	~105	15
JLU-Liu23	273	16
JLU-MOF51	220	17
$[Zn_{24}(BDPO)_{12}(DMF)_{12}]\cdot 6DMF\cdot 52H_2O$	125	18
FJI-C4	293	19
UTSA-35a	~80	20
eea-MOF-4	136	21

"~"represent approximate values are obtained from the figures of reported acticles.

Cu-L ₁	q _{m1}	b 1	1/n ₁	\mathbf{q}_{m2}	b ₂	1/n ₂	R ²
CO ₂	0.38684	0.04058	0.88895	29.56189	2.91706E-4	1.1983	1
CH ₄	1	0.00415	0.99341	1.9418	4.33339E-7	2.47973	0.99995
C_2H_6	3.58732	5.40009E-4	1.88337	0.7894	0.05024	1.06683	1
C_3H_8	2.25703	0.05579	2.40374	2.13085	0.1294	0.78189	0.99999
Ni-L ₁	q _{m1}	b ₁	1/n ₁	q _{m2}	b ₂	1/n ₂	R ²
CO ₂	7	0.00299	0.98054	16.49958	1.02113E-6	2.16191	0.99999
CH ₄	2.76023	9.25777E-6	1.98086	0.2	0.01038	1.15305	0.9999
C_2H_6	0.02944	0.11866	2.24535	3.80853	0.00678	1.22221	0.99999
C_3H_8	2.51574	0.08526	1.86066	3.04433	0.02843	0.56059	0.99998
Ni-L ₂	q _{m1}	b ₁	1/n ₁	$\mathbf{q}_{\mathbf{m2}}$	b ₂	1/n ₂	R ²
CO ₂	0.75267	0.02757	0.92348	17.66724	2.77914E-4	1.25814	1
CH ₄	1.06409	0.00329	0.9113	2.22501	1.02406E-4	1.4184	0.99985
C ₂ H ₆	4.01293	0.00478	1.30441	0.14241	0.23661	1.09311	1
C ₃ H ₈	2.17334	0.10758	0.61134	2.29706	0.08328	1.88911	1

Table S7. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of CO₂, CH₄, C₂H₆ and C₃H₈ for compounds Cu-L₁, Ni-L₁ and Ni-L₂ at 298 K.

Table S8. Comparison of O_2/N_2 selectivity at 20 kPa and 77 K.

Compound	O_2/N_2	Q _{st} of O ₂ (kJ/mol)	Ref.
Cu-L ₁	1.44	24.4	This work
Ni-L ₁	1.34	17.6	This work
Ni-L ₂	1.45	18.8	This work
Mn/Cu-BTC	1.32	~14	22
Fe/Cu-BTC	1.27	~14	22
Co/Cu-BTC	1.27	15.7	22
Cu-BTC	1.13	10.7	22
JLU-Liu31	1.34	-	23
JLU-Liu18	1.24	16	24

"~"represent approximate values are obtained from the figures of reported acticles.

References:

1. B. Liu, S. Yao, X. Y. Liu, X. Li, R. Krishna, G. H. Li, Q. H. Huo and Y. L. Liu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 32820-32828.

B. Y. Li, Z. J. Zhang, Y. Li, K. X. Yao, Y. H. Zhu, Z. Y. Deng, F. Yang, X. J. Zhou, G. H. Li,
H. H. Wu, N. Nijem, Y. J. Chabal, Z. Shi, S. H. Feng and J. Li, *Angew. Chem., Int. Ed.*, 2012, 51, 1412-1415.

3. Q. G. Zhai, X. Bu, C. Mao, X. Zhao and P. Feng, J. Am. Chem. Soc., 2016, 138, 2524-2527.

4. J. Qin, D. Du, W. Li, J. Zhang, S. Li, Z. Su, X. Wang, Q. Xu, K. Shao and Y. Lan, *Chem. Sci.*, 2012, **3**, 2114.

5. J. T. Li, X. L. Luo, N. Zhao, L. R. Zhang, Q. S. Huo and Y. L. Liu, *Inorg. Chem.*, 2017, 56, 4141-4147.

6. S. T. Zheng, T. Wu, C. Chou, A. Fuhr, P. Feng and X. Bu, J. Am. Chem. Soc., 2012, **134**, 4517-4520.

7. Y. Huang, Z. Lin, H. Fu, F. Wang, M. Shen, X. Wang and R. Cao, *ChemSusChem*, 2014, 7, 2647-2653.

J. M. Gu, J. Y. Hong, Y. S. Won, S. S. Park and S. Huh, *Eur. J. Inorg. Chem.*, 2015, 4038-4043.
J. M. Gu, S. J. Kim, Y. Kim and S. Huh, *CrystEngComm*, 2012, 14, 1819-1824.

J. A. R. Navarro, E. Barea, A. R. Dieguez, J. M. Salas, C. O. Ania, J. B. Parra, N. Masciocchi,
S. Galli and A. Sironi, *J. Am. Chem. Soc.*, 2008, **130**, 3978-3984.

 S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan,
P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake1 and M. Schröder, *Nat Mater*, 2012, 710-716.

12. J. Qian, Q. Li, L. Liang, T. T. Li, Y. Hu and S. Huang, Dalton Trans, 2017, 46, 14102-14106.

13. W. Fan, Y. Wang, Q. Zhang, A. Kirchon, Z. Xiao, L. Zhang, F. Dai, R. Wang and D. Sun, *Chem. Eur. J.*, 2018, **24**, 2137-2143.

14. Y. B. Zhang, L. F. Yang, L. Y. Wang, S. Duttwyler and H. Xing, *Angew. Chem. Int. Ed.*, 2019, 58, 8145-8150.

15. L. Meng, Z. Niu, C. Liang, X. Dong, K. Liu, G. Li, C. Li, Y. Han, Z. Shi and S. Feng, *Chem. Eur. J.*, 2018, **24**, 13181-13187.

16. X. Luo, Y. Cao, T. Wang, G. Li, J. Li, Y. Yang, Z. Xu, J. Zhang, Q. Huo, Y. Liu and M. Eddaoudi, *J. Am. Chem. Soc.*, 2016, **138**, 786-789.

17. D. Wang, J. Zhang, G. Li, J. Yuan, J. Li, Q. Huo and Y. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 31233-31239.

18. H. He, D. Y. Zhang, F. Guo and F. Sun, Inorg. Chem., 2018, 57, 7314-7320.

19. L. Li, X. Wang, J. Liang, Y. Huang, H. Li, Z. Lin and R. Cao, ACS Appl. Mater. Interfaces, 2016, 8, 9777-9781.

20. Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna and B. Chen, *Chem. Commun.*, 2012, **48**, 6493-6495.

21. Z. Chen, K. Adil, Ł. J. Weselinski, Y. Belmabkhout and M. Eddaoudi, J. Mater. Chem. A., 2015, **3**, 6276-6281.

22. D. F. Sava Gallis, M. V. Parkes, J. A. Greathouse, X. Zhang and T. M. Nenoff, *Chem. Mater.*, 2015, **27**, 2018-2025.

23. S. Yao, X. D. Sun, B. Liu, R. Krishna, G. H. Li, Q. S. Huo and Y. L. Liu, J. Mater. Chem. A,

2016, 4, 15081-15087.

24. S. Yao, D. M. Wang, Y. Cao, G. H. Li, Q. S. Huo and Y. L. Liu, *J. Mater. Chem. A*, 2015, **3**, 16627-16632.