Supporting Information

Fe_xNi_y/CeO₂ Loaded on N-doped Nanocarbon as an Advanced Bifunctional Electrocatalyst for the Overall Water Splitting

Lulu Chen,^{‡a} Haeseong Jang,^{‡b} Min Gyu Kim,^c Qing Qin,^{*a} Xien Liu,^{*a} and Jaephil Cho^{*b}

^aState Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China

^bDepartment of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

^cBeamline Research Division, Pohang Accelerator Laboratory (PAL) Pohang 790-784 (Korea)

List of contents

1.	Chemicals	S4
2.	Synthesis Method	S4
3.	Electrochemical Measurements	S4
Fig.	S1 The distribution of CeO ₂ , $Fe_{19}Ni$, and $Fe_{0.64}Ni_{0.36}$ nanoparticles on the ca	arbon
subs	strate.	S6
Fig.	S2 The EDS spectrum of the prepared $Fe_xNi_y/CeO_2/NC$.	S7
Fig.	S3 The XPS survey spectrum of the $Fe_xNi_y/CeO_2/NC$ catalysts.	S 8
Fig.	S4 The comparison of the binding energies of O 1s, Fe $2p$ and Ni 2	2 <i>p</i> in

 $Fe_xNi_y/CeO_2/NC$ and Fe-Ni/NC: a) O 1s, b) Ni 2p, c) Fe 2p. S9

Fig. S5 Raman spectrum of
$$Fe_xNi_y/CeO_2/NC$$
. S10

Fig. S6 a) Cyclic voltammograms recorded for a $Fe_xNi_y/CeO_2/NC$ electrode in the approximate region of 0.1-0.2 V vs. RHE at various scan rates for the purpose of determining the double layer capacitance. b) Plot showing the extraction of the double-layer capacitance (C_{dl}) of $Fe_xNi_y/CeO_2/NC$, Fe-Ni/NC, Fe-Ce/NC, Ni-Ce/NC. S11 Fig. S7 The XRD patterns of the $Fe_xNi_y/CeO_2/NC$ catalysts before test and after HER and OER testing. S12

Fig. S8 High resolution XPS spectra of the as-synthesized $Fe_xNi_y/CeO_2/NC$ composite. a) Ce 3*d* before and after OER testing. b) Ce 3*d* before and after HER testing. S13 **Figure S9** XPS spectra of the as-synthesized $Fe_xNi_y/CeO_2/NC$ composite. a) Fe 2*p*, and b) Ni 2*p* before and after OER testing. c) Fe 2*p* and d) Ni 2*p* before and after HER testing. S14

Table S1 The change of the relative contents of Ce ³⁺ and Ce ⁴⁺ in the hybrid	orid catalyst			
before and after HER/OER testing.	S13			
Table S2 Comparison of catalytic properties of $Fe_xNi_y/CeO_2/NC$ and report	ted catalyst			
HER in alkaline electrolyte.	S15			
Table S3 Comparison of catalytic properties of $Fe_xNi_y/CeO_2/NC$ and reported catalyst				
OER in alkaline electrolyte.	S16			
Table S4 Comparison of catalytic performance of $Fe_xNi_y/CeO_2/NC$ for two	o-electrode			
water splitting to reported catalysts.	S17			

Chemicals

Melamine Monomer ($C_3H_6N_6$) was purchased from TCI (Shanghai) Development Co. Ltd. Fe(NO₃)₃·9H₂O (MW: 404) and Ce(NO₃)₃·6H₂O (MW: 434.22) were obtained from MACKLIN Co., Ltd. Ni(NO₃)₂·6H₂O (MW: 290.79), Nafion (5 wt%), commercial Pt/C (20 wt%) catalyst and commercial IrO₂ catalyst were ordered at Sigma – Aldrich Co. Ltd. All of the reagents were purchased and directly used without further purification.

Synthesis Method

Synthesis of Fe_xNi_y/CeO₂/NC catalyst: In a typical synthesis procedure, 1.0 g of $C_3H_6N_6$ was added into 40 mL of deionized water under vigorously stirring to form a homogeneous solution. Then, 0.1 g of Fe(NO₃)₃·9H₂O, 0.1 g of Ce(NO₃)₃·6H₂O and 0.1 g of Ni(NO₃)₂·6H₂O were successively added to the above solution and continuously stirred for 12 h at room temperature. Afterward, the emulsion-like solution was heated to 70 °C to remove the most solvent and then further dried in vacuum at 80 °C for 2 h. After that, the obtained black power was annealed at 700 °C for 2 h under an Ar atmosphere with a gas flow rate of 150 mL min⁻¹. When cooled to room temperature at Ar atmosphere, the obtained products were collected and directly used for electrochemical tests.

Synthesis of Fe-Ni/NC, Fe-Ce/NC, Ni-Ce/NC catalysts: The synthetic methods of Fe-Ni/NC, Fe-Ce/NC, and Ni-Ce/NC catalysts are similar with that of $Fe_xNi_y/CeO_2/NC$ catalyst, except without the addition of $Ce(NO_3)_3 \cdot 6H_2O$ or $Fe(NO_3)_3 \cdot 9H_2O$ or $Ni(NO_3)_2 \cdot 6H_2O$ into the reaction systems.

Electrochemical Measurements

The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances of the prepared catalysts were tested in a 1.0 M KOH

electrolyte using a traditional three-electrode system, using a graphite rod and a reversible hydrogen electrode as the counter electrode and the reference electrode, respectively. The working electrode was prepared by loading 5 μ L of the catalyst ink on a glass carbon (GC, 3 mm) electrode. The catalyst ink was obtained by dispersing 3.0 mg of catalyst powers and 60 μ L of Nafion (5 wt%) in 0.3 mL of ultra-pure water and 0.15 mL of ethanol by ultrasonic for 15 min. The polarization curves were measured at a scan rate of 5 mV s⁻¹. All the data are originally obtained without iR compensation. The electrocatalytic stability of the catalysts was investigated by the chronoamperometry method at a constant potential of -0.24 V (vs. RHE) for HER and 1.47 V (vs RHE) for OER. The electrochemically active surface area (ECSA) of the Fe_xNi_y/CeO₂/NC is systematically evaluated by the electrochemical double-layer capacitance (C_{dl}) using CVs with varied scan rates in the potential range of 0.1 V – 0.2 V (vs RHE).

Overall water splitting. The overall water splitting performance of the $Fe_xNi_y/CeO_2/NC$ catalyst was evaluated in a self-assembled two-electrode setup with the catalyst as both the anode and cathode. The Ni foam (1 × 1 cm) with loading 0.2 mg of catalyst as the working electrode. The polarization curves were recorded at a scan rate of 5 mV s⁻¹. The applied voltage was fixed at 0.8 V - 2.0 V. The durability test was investigated by the chronoamperometry method at a constant voltage of 1.70 V for 24 h.

Fig. S1 The distribution of CeO₂, $Fe_{19}Ni$, and $Fe_{0.64}Ni_{0.36}$ nanoparticles on the carbon substrate.

	-0	Element C	Wt% 37.32	Map Sum Spectrum
~		N	0.50	777982343
s/e	- Fe	0	14.53	
9	- 14	Fe	32.77	
		Ni	3.05	
		Се	11.83	Ce Ce
	0-1			
	0 5 10	15	20 25	30 35 keV

Fig. S2 The EDS spectrum of the prepared $Fe_xNi_y/CeO_2/NC$.

Fig. S3 The XPS survey spectrum of the $Fe_xNi_y/CeO_2/NC$ catalysts.

Fig. S4 The comparison of the binding energies of O 1*s*, Fe 2*p* and Ni 2*p* in $Fe_xNi_y/CeO_2/NC$ and Fe-Ni/NC: a) O 1s, b) Ni 2p, c) Fe 2p.

Fig. S5 Raman spectrum of $Fe_xNi_y/CeO_2/NC$.

Fig. S6 a) Cyclic voltammograms recorded for a $Fe_xNi_y/CeO_2/NC$ electrode in the approximate region of 0.1-0.2 V vs. RHE at various scan rates for the purpose of determining the double layer capacitance. b) Plot showing the extraction of the double-layer capacitance (C_{dl}) of $Fe_xNi_y/CeO_2/NC$, Fe-Ni/NC, Fe-Ce/NC, Ni-Ce/NC.

Fig. S7 The XRD patterns of the $Fe_xNi_y/CeO_2/NC$ catalysts before and after HER and OER testing.

Fig. S8 High resolution XPS spectra of the as-synthesized $Fe_xNi_y/CeO_2/NC$ composite. a) Ce 3*d* before and after OER testing. b) Ce 3*d* before and after HER testing.

Table S1 The change of the relative contents of Ce^{3+} and Ce^{4+} in the hybrid catalyst before and after HER/OER testing.

Condition	Percentage of Ce ³⁺	Percentage of Ce ⁴⁺
Before test	28.3%	71.7%
After HER	10.26%	89.74%
After OER	9.4%	90.6%

Fig. S9 XPS spectra of the as-synthesized $Fe_xNi_y/CeO_2/NC$ composite. a) Fe 2*p*, and b) Ni 2*p* before and after OER testing. c) Fe 2*p* and d) Ni 2*p* before and after HER testing.

Table S2 Comparison of catalytic properties of $Fe_xNi_y/CeO_2/NC$ and reported catalystHER in alkaline electrolyte

Catalysts	Catalyst loading (mg cm ⁻²)	Overpotentia@j (mV@10 mA cm ⁻	Electrolyte	Ref.
FeNi&CeO ₂ /C	0.41	240	1.0 M KOH	This work
NiFe LDH- NS@DG10	0.28	300	1.0 M KOH	1
EG/Co _{0.85} Se/Ni Fe-LDH	4.00	~260	1.0 M KOH	2
Ni ₃ FeN-NPs	0.35	158	1.0 M KOH	3
NiCoP/rGO	0.15	209	1.0 M KOH	4
Ni ₃ S ₂ /NF	N/A	223	1.0 M KOH	5
FeP NAs/CC	N/A	218	1.0 M KOH	6
NCNT/MnO- (MnFe) ₂ O ₃	0.14	212	1.0 M KOH	7

Table S3 Comparison of catalytic properties of $Fe_xNi_y/CeO_2/NC$ and reported catalystOER in alkaline electrolyte

Catalysts	Catalyst	Overpotentia@j	Electrolyte	Ref.
	loading	(mV@10 mA cm ⁻²)		
FeNi&CeO2/C	0.41	240	1.0 M KOH	This work
NiFe LDH- NS@DG10	0.28	210	1.0 M KOH	1
FeCoNi-2	0.32	325	1.0 M KOH	8
Porous Ni-P	N/A	~312	1.0 M KOH	9
NiFe LDH/NGF	0.25	340	0.1 M KOH	10
NiCo ₂ O ₄	0.28	380	1.0 M KOH	11
Ni ₃ FeN/r-GO	0.50	279	1.0 M KOH	12
NiCo ₂ O ₄ hollow microcuboids	1.00	290	1.0 M NaOH	13
NiFe LDH/r- GO	0.25	210	1.0 M KOH	14
NiFe-SW film	N/A	240	1.0 M KOH	15
NiFe-MoO _x NS	0.20	276	1.0 M KOH	16

1 0 1	5			
Catalysts	Catalyst loading	Voltage@j	Catalyst	Ref.
	8	(V@10 mA cm ⁻	support	
FeNi&CeO ₂ /C	0.20	1.70	NF	This work
Ni ₃ S ₂ /NF	N/A	1.76@13	NF	5
NCNT/MnO-	0.21	1.71	NF	7
(MnFe) ₂ O ₃				
Ni _{0.33} Co _{0.67} S ₂ NWs	0.30	1.72	TF	17
NiFe LDH	N/A	1.70	NF	18
Ni ₅ P ₄	3.5	1.70	NF	19
Co ₁ Mn ₁ CH	5.6	1.68	NF	20
Fe-Co CF	1.2 or 2.0	1.68	CFP	21
NiFe/NiCo ₂ O ₄	N/A	1.67	NF	22
Fe-CoP/Ti	N/A	1.60	TF	23
NiCoP/Ni foam	5.0	1.77	NF	24

Table S4 Comparison of catalytic performance of $Fe_xNi_y/CeO_2/NC$ for two-electrodewater splitting to reported catalysts

NF: Ni foam; CFP: carbon fiber paper; TF: Ti foil

References

1. Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M. T.; Hong, M.; Yan, X.; Qian, G. J. A. M., A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. *Advanced Materials* **2017**, *29* (17), 1700017.

2. Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S.; Zhuang, X.; Feng, X. J. E.; Science, E., Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. *Energy & Environmental Science* **2016**, *9* (2), 478-483.

Jia, X.; Zhao, Y.; Chen, G.; Shang, L.; Shi, R.; Kang, X.; Waterhouse, G. I.; Wu,
 L. Z.; Tung, C. H.; Zhang, T. J. A. E. M., Ni₃FeN Nanoparticles Derived from Ultrathin
 NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting
 Electrocatalyst. *Advanced Energy Materials* 2016, 6 (10), 1502585.

4. Li, J.; Yan, M.; Zhou, X.; Huang, Z. Q.; Xia, Z.; Chang, C. R.; Ma, Y.; Qu, Y. J. A. F. M., Mechanistic insights on ternary Ni^{2-} _xCo_xP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. *Advanced Functional Materials* **2016**, *26* (37), 6785-6796.

Feng, L.-L.; Yu, G.; Wu, Y.; Li, G.-D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou,
 X. J. J. o. t. A. C. S., High-index faceted Ni₃S₂ nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. *Journal of the American Chemical Society* 2015, *137* (44), 14023-14026.

6. Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; Luo, Y. J. A. C., Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. *Angewandte Chemie International Edition* **2014**, *4* (11), 4065-4069.

7. Qin, Q.; Li, P.; Chen, L.; Liu, X., Coupling Bimetallic Oxides/Alloys and N-Doped Carbon Nanotubes as Tri-Functional Catalysts for Overall Water Splitting and Zinc–Air Batteries. *ACS Appl. Mater. Interfaces* **2018**, *10* (46), 39828-39838.

Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G.; Chen, J.; Zhang, R.; Chen, Q. J.
 A. C., Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. *ACS Catalysis* 2016, 7 (1), 469-479.

9. Wang, X.; Li, W.; Xiong, D.; Liu, L. J. J. o. M. C. A., Fast fabrication of selfsupported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. *Journal of Materials Chemistry A* **2016**, *4* (15), 5639-5646.

 Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. J.
 A. M., Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. *Advanced Materials* 2015, *27* (30), 4516-4522.

11. Han, L.; Yu, X. Y.; Lou, X. W. J. A. m., Formation of Prussian-Blue-Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Co-Mixed Oxide for Enhanced Oxygen Evolution. *Advanced Materials* **2016**, *28* (23), 4601-4605.

Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C.; Komarneni, S.; Yang, D.; Yao, X.
 J. A. n., Electronic structure tuning in Ni₃FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. *ACS Nano* 2018, *12* (1), 245-253.

Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. J. A.
 C. I. E., Hierarchical NiCo₂O₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. *Angewandte Chemie International Edition* **2016**, *55* (21), 6290-6294.

14. Ma, W.; Ma, R.; Wang, C.; Liang, J.; Liu, X.; Zhou, K.; Sasaki, T. J. A. n., A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. *ACS Nano* **2015**, *9* (2), 1977-1984.

15. Zhang, W.; Wu, Y.; Qi, J.; Chen, M.; Cao, R. J. A. E. M., A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. *Advanced Energy Materials* 2017, *7* (9), 1602547.
16. Xie, C.; Wang, Y.; Hu, K.; Tao, L.; Huang, X.; Huo, J.; Wang, S. J. J. o. M. C. A., In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO₄^{2–} intercalated layered double hydroxides for the oxygen evolution reaction. *Journal of Materials Chemistry A* 2017, *5* (1), 87-91.

17. Peng, Z.; Jia, D.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. J. A. E. M., From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. *Advanced Energy Materials* **2015**, *5* (9), 1402031.

18. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.;

Tilley, S. D.; Fan, H. J.; Grätzel, M. J. S., Water photolysis at 12.3% efficiency via S20

perovskite photovoltaics and Earth-abundant catalysts. *Science* **2014**, *345* (6204), 1593-1596.

19. Marc, L.; Sandra, K. C.; Christian, P.; Hans-Peter, S.; Markus, A.; Menny, S. J. A. C., The Synthesis of Nanostructured Ni_5P_4 Films and their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting. *Angewandte Chemie International Edition* **2015**, *54* (42), 12361-12365.

20. Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.-Y.; Jin, S.-F.; Gao, F.; Wan, L.-J.; Hu, J.-S. J. J. o. t. A. C. S., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. *Journal of the American Chemical Society* **2017**, *139* (24), 8320-8328.

21. Liu, W.; Du, K.; Liu, L.; Zhang, J.; Zhu, Z.; Shao, Y.; Li, M. J. N. E., One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. *Nano Energy* **2017**, *38*, 576-584.

22. Xiao, C.; Li, Y.; Lu, X.; Zhao, C. J. A. F. M., Bifunctional porous NiFe/NiCo₂O₄/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. *Advanced Functional Materials* **2016**, *26* (20), 3515-3523.

23. Tang, C.; Zhang, R.; Lu, W.; He, L.; Jiang, X.; Asiri, A. M.; Sun, X. J. A. m., Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. *Advanced Materials* **2017**, *29* (2), 1602441.

24. Li, Y.; Zhang, H.; Jiang, M.; Kuang, Y.; Sun, X.; Duan, X. J. N. R., Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. *Nano Research* **2016**, *9* (8), 2251-2259.