Supporting Information for

Weak exchange coupling effects leading to fast magnetic relaxations in a trinuclear dysprosium single-molecule magnet

Yin-Shan Meng^{*ab}, Yu-Sen Qiao^b, Mu-Wen Yang^b, Jin Xiong^b, Tao Liu^a, Yi-Quan Zhang^c, Shang-Da Jiang^b, Bing-Wu Wang^{*b} and Song Gao^{*b}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian 116024, P. R. China. E-mail: mengys@dlut.edu.cn

^bBeijing National Laboratory for Molecular Sciences, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, P. R. China. E-mail: wangbw@pku.edu.cn; gaosong@pku.edu.cn

^cJiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.

TABLE OF CONTENTS

Table S1: Crystallographic data and refinements for 1Dy3 and 2Dy
Table S2: Kramers doublets (KDs) energy spectrum (cm ⁻¹), g-tensor of ground and excited KDs for each Dy ion in 1Dy ₃ and 2Dy. S3
Figure S1: Cole-Cole plots for 2Dy and 2Dy' in the absence of dc field
Figure S2: Frequency dependence ac susceptibility under 1 kOe dc field for 2Dy and 2Dy'S5
Figure S3: Cole-Cole plots for 2Dy and 2Dy' under 1 kOe dc field
Figure S4: Cole-Cole plots for 1Dy ₃ in the absence of dc field ······S7
Figure S5: Temperature dependence ac susceptibility under 3 kOe dc field for 1Dy ₃ ······S8
Figure S6: Frequency dependence ac susceptibility under 3 kOe dc field for 1Dy ₃ S9
Figure S7: Frequency dependence ac susceptibility for magnetically diluted 1Dy ₃ ······S10
Figure S8: Frequency dependence ac susceptibility under 1 kOe dc field for magnetically diluted 1Dy ₃
Figure S9: Cole-Cole plots for diluted 1Dy ₃ ·····S12
Figure S10 : Relaxation times (τ) versus T^{-1} plots for diluted 1Dy ₃ S13
Figure S11: The magnetic susceptibility along corresponding rotation axes for 2Dy
Figure S12: The angular-dependent susceptibility plots and simultaneous fitting

Table S1: Crystallographic data and refinement for 1Dy₃ and 2Dy. (Note: The disordered toluene was squeezed using PLATON program, details are provided in the corresponding cif document)

	1Dy ₃	2Dy
Mr	2072.93	653.67
formula	$C_{86}H_{109}B_3Dy_3N_{27}O_2$	$C_{23}H_{25}BDyN_{12}$
cryst syst	monoclinic	orthorhombic
space group	$P2_{1}/c$	Pnma
<i>a</i> , Å	14.6588(5)	25.1963(7)
b, Å	22.3712(7)	10.9647(4)
<i>c</i> , Å	28.6408(8)	11.6734(3)
<i>V</i> , Å ³	9211.4(5)	3225.03(18)
α , deg	90	90
β , deg	101.265(3)	90
γ, deg	90	90
Ζ	4	4
<i>Т</i> , К	180(2)	180(2)
μ , mm ⁻¹	2.470	2.348
λ, Å	0.71073	0.71073
Cryst size, mm ³	0.24 * 0.12 * 0.09	0.35 * 0.23 * 0.17
GOF	1.114	1.052
R _{int}	0.0780	0.0443
R_1 , $wR_2[I > 2\sigma(I)]$	0.0591, 0.0986	0.0274, 0.0389
R_1 , w R_2 [all data]	0.1383, 0.1601	0.0649, 0.0724

KDe		$1Dy_3(1)$			$1\mathrm{Dy}_3(2)$			$1\mathrm{Dy}_3(3)$			
	E		E			E					
1	0.0			0.0			0.0				
2	186.6			194.0			197.8				
3	225.3				237.7		234.9				
4	262.5			279.0			280.2				
5	307.8			314.5			324.4				
6	360.7			348.8			374.6				
7	375.5			399.0			397.4				
8	479.0			543.6			493.1				
KDs	g_x	g_y	g_z	g_x	g_y	g_z	g_x	g_y	g_z		
1	0.005	0.029	19.715	0.0006	0.018	19.730	0.001	0.0200	19.735		
2	1.583	2.968	14.582	0.810	1.713	15.537	1.460	2.779	14.345		
3	1.582	5.573	12.166	1.758	5.029	12.158	1.167	5.065	11.991		
4	1.004	4.521	8.328	1.703	2.465	8.650	2.458	4.651	8.851		
5	2.174	3.760	13.964	10.833	7.070	2.899	1.913	3.412	14.328		
6	0.488	3.883	13.440	0.224	0.414	18.868	0.768	1.772	15.208		
7	0.320	2.731	15.884	0.488	0.680	16.083	0.193	0.862	18.315		
8	0.047	0.079	19.286	0.031	0.055	19.396	0.048	0.080	19.337		
KDs		2Dy									
		Ε									
1	0.0										
2	187.6										
3	212.0										
4	225.7										
5	264.1										
6	299.8										
7	391.2										
8	628.8										
KDs	g_x	g_y	g_z								
1	0.005	0.033	19.757								
2	1.264	2.810	15.235								
3	10.648	7.263	3.395								
4	1.122	1.458	14.952								
5	2.455	4.852	9.333								
6	1.316	1.547	17.559								
7	0.425	0.514	16.336								
8	0.015	0.024	19.514								

Table S2: Kramers doublets (KDs) energy spectrum (cm⁻¹), *g*-tensor of ground and excited KDs for each Dv ion in $1Dv_3$ and $2Dv_3$.

Figure S1: (a) Cole-Cole plots fitting for the determination of the temperature dependence of τ for 2Dy in the absence of dc field; (b) Cole-Cole plots fitting for the determination of the temperature dependence of τ for 2Dy' in the absence of dc field

Figure S3: (a) Cole-Cole plots fitting for the determination of the temperature dependence of τ for 2Dy under 1 kOe dc field; (b) Cole-Cole plots fitting for the determination of the temperature dependence of τ for 2Dy' under 1 kOe dc field

Figure S4. Out-of-phase signals (χ_m) versus frequency (v) plots for **1Dy**₃ in the absence of dc field from 1 Hz to 1000 Hz. Cole-Cole plots fitting for the determination of the temperature dependence of τ for **1Dy**₃ in the absence of dc field.

Figure S5. Temperature dependence ac susceptibility under 3 kOe dc field for 1Dy₃.

Figure S7. Frequency dependence ac susceptibility in the absence of dc field for magnetically diluted $1Dy_3$.

Figure S8. Frequency dependence ac susceptibility under 1 kOe dc field for magnetically diluted **1Dy**₃.

Figure S9. Cole-Cole plots fitting for the determination of the temperature dependence of τ for diluted **1Dy**₃ in the absence of dc field (a) and under 1 kOe dc field.

Figure S10. Relaxation times (τ) versus T^{-1} plots for diluted **1Dy**₃.

S14

Figure S12. (a) The angular-dependent susceptibility plots and simultaneous fitting under 1 kOe dc field; (b) fitted *g* value along main magnetic axes using linear fitting function: y = ax corresponding to the equation: $g = \sqrt{\frac{32\chi_m T}{3}}$.

