Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

The effects of Ni ions' charge disproportionation on the high electrochemical performance of Ni₁₋

_xCo_xO nanoparticles

Mingyan Chuai, Kewei Zhang, Xi Chen and Mingzhe Zhang*

^a State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.

*Corrsponding Author: zhangmz@jlu.edu.cn;

Experiment section

Materials characterization

The compositions of samples were investigated using energy-dispersive X-ray spectroscopy (EDS) attached to a scanning electron microscope (MAagellan-400).

Figure S1. Elemental mapping images of Ni_{1-x}Co_xO (x=0.055) nanoparticles. (a) The electronic image of total elements; (b) Co K α 1; (c) O K α 1 and (d) Ni K α 1.

Figure S2. The models of (a) $Ni_{32}O_{32}$, (b) $Ni_{31}Co_1O_{32}$ respectively.

Table S1. The	integral	intensity	of	PDOS	for	each	band	of	Ni-3d	orbital	and	O-2p	orbital
energy levels.													

		e _g *	eg ^b	T _{2g}	Total
	Ni ₃₂ O ₃₂	52.3135	111.1668	101.5453	265.0256
Ni-3d	Ni ₃₁ Co ₁ O ₃₂	52.8885	110.8735	101.3808	265.1428
O-2p	Ni ₃₂ O ₃₂	14.7985	7.3345	7.9502	30.0832
	Ni ₃₁ Co ₁ O ₃₂	14.7592	7.2093	7.9074	29.8759

Table. S2. The effective mass of the energy band near the Fermi energy level corresponding to the $Ni_{32}O_{32}$ and $Ni_{31}Co_1O_{32}$ structures.

Structures	Fermi level (eV)	Electron effective mass	т ₀ (Кg)
Ni ₃₂ O ₃₂	0	0.0057 m ₀	9.10938215(45)× 10 ⁻³¹
$Ni_{31}Co_1O_{32}$	0	0.0096 m ₀	9.10938215(45)× 10 ⁻³¹

The electron effective mass values of $Ni_{31}Co_1O_{32}$ structure are higher than that of $Ni_{32}O_{32}$ structure, which indicates that the conductive ability of $Ni_{31}Co_1O_{32}$ structure are higher than that of $Ni_{32}O_{32}$ structure. Therefore, the $Ni_{1-x}Co_xO$ electrode materials with good electrical conductivity exhibits the better electrochemical performance.

Fig. S3. (a) Low magnifification and (b) high magnifification FESEM image of Ni_{1-x}Co_xO (x=0.055) electrode before 50,000 GCD cycles.

Fig. S4. (a) Low magnifification and (b) high magnifification FESEM image of Ni_{1-x}Co_xO (x=0.055) electrode after 50,000 GCD cycles.

Table S3. Comparison of the specific capacitance of $Ni_{1-x}Co_xO$ electrodes with some recently reported materials.

Materials/	Current	Electrolyte	Specific	Reference
electrodes	density		capacitance	
NiCoO-net	1.5 A g ⁻¹	2 М КОН	1060.0 F g-1	[1]
Ni-Co-O-1	1 A g ⁻¹	6 М КОН	722.0 F g ⁻¹	[2]
Ni-Co oxide	1 A g ⁻¹	6 М КОН	1539.0 F g ⁻¹	[3]
Co-doped NiO	6 A g ⁻¹	1 М КОН	720.0 F g ⁻¹	[4]
NCOs	1 A g ⁻¹	1 М КОН	506.0 F g ⁻¹	[5]
Mn-NiO	5 mA cm ⁻²	6 М КОН	1166.0 F g ⁻¹	[6]
NiCo ₂ O ₄ @NiO	2 A g ⁻¹	1 М КОН	1188.0 F g ⁻¹	[7]
Ni _{1-x} Co _x O (x=0.055)	1 A g ⁻¹	6 М КОН	1665.3 F g⁻¹	this work

Fig. S5. CV curves of NiO and Ni_{1-x}Co_xO (x=0.055) electrode materials at a sweep rate of 1 mV s⁻¹.

Reference

- [1] E. Umeshbabu, G. Rajeshkhanna, G. Ranga Rao, J. Solid. State. Electrochem., 2016, 20, 1837-1844.
- [2] H. L. Wang, Q. M. Gao, L. Jiang, *Small.*, 2011, **7**, 2454-2459.
- [3] G. X. Hu, C. H. Tang, C. X. Li, H. M. Li, Y. Wang, H. Gong, J. Electrochem. Soc., 2011, 158, 695-699.
- [4] D. W. Liang, S. L. Wu, J. Liu, Z. F. Tian, C. H. Liang, J. Mater. Chem. A., 2016, 4, 10609-10617.
- [5] X. H. Lu, X. Huang, S. L. Xie, T. Zhai, C. S. Wang, P. Zhang, M. H. Yu, W. Li, C. L. Liang, Y. X. Tong, J. Mater. Chem., 2012, 22, 13357-13364.
- [6] X. Han, B. Q. Wang, C. Yang, G. Meng, R. F. Zhao, Q. N. Hu, O. Triana, M. Iqbal, Y. P. Li, A. J. Han,
 J. F. Liu, ACS Appl. Energy Mater., 2019, 2, 2072-2079.
- [7] F. Yang, K. Zhang, W. Y. Li, K. B. Xu., J. Colloid. Interf. Sci., 2019, 556, 386-391.