Supporting Information

Construction of a 1-D Sm(III) coordination polymer with long-chain Schiff base ligand: Dual-emissive response to metal ions

Jieni Liu, Ting Zhu, Xiaoping Yang,* Hongfen Chen, Dongliang Shi, Desmond Schipper and Richard A. Jones

Contents

1. General Procedures	S2
2. ¹ H NMR spectra of H ₂ L	S3
3. IR spectra of H ₂ L and complex 1	S4
4. Powder XRD patterns of 1	S5
5. The thermogravimetric analysis of 1	S6
6. ¹ H NMR spectrum of 1	S7
7. The excitation and emission spectra of the free H ₂ L	S8
8. The lanthanide visible and NIR emission lifetimes of 1	S9
9. Visible lanthanide luminescence response of 1 to the addition of metal ions	S10
10. Ligand-centered emission response of 1 to the addition of metal ions	S14
11. X-Ray Crystallography	S17

<u>1. General Procedures</u>

All reactions were performed under dry oxygen-free dinitrogen atmospheres using standard Schlenk techniques. The Schiff-base ligands H₂L was prepared according to well established procedures.¹ Physical measurements: NMR: AVANCE III AV500. 500 spectrometer (¹H, 500 MHz) at 298 K; IR: Nicolet IS10 spectrometer; Powder XRD: D8ADVANCE. Elemental analyses (C, H, N) of compounds were carried out on a EURO EA3000 elemental analysis after dried in an oven at 100°C for 2 h. Melting points were obtained in sealed glass capillaries under dinitrogen and are uncorrected. The thermogravimetric analyses (TA) were carried out on a TA Instruments Q600. Absorption spectra were obtained on a UV-3600 spectrophotometer.

Photophysical Studies Visible and NIR luminescence spectra were recorded on a FLS 980 fluorimeter. The light source for the spectra was a 450 W xenon arc lamp with continuous spectral distribution from 190 to 2600 nm. Liquid nitrogen cooled Ge PIN diode detector was used to detect the NIR emissions from 800 nm to 1700 nm. The temporal decay curves of the fluorescence signals were stored by using the attached storage digital oscilloscope. The quantum yields (Φ_{em}) were obtained by using an integrating sphere, according to eqn $\Phi_{em} = N_{em} / N_{abs}$, where N_{em} and N_{abs} are the numbers of emitted and absorbed photons, respectively. Systematic errors have been deducted through the standard instrument corrections.

All experiments were carried out at room temperature. DMF was used in the measurements of NMR, UV-vis absorption, excitation and emission spectra. For the emission spectra of the Sm(III) complex, the excitation wavelength (λ_{ex}) is 365 nm.

Ref. (1) Lam, F.; Xu, J.-X.; Chan, K.-S. J. Org. Chem., 1996, 61, 8414-8418.

2. ¹H NMR spectrum of H₂L

Figure S1. ¹H NMR spectrum of H₂L in CDCl₃ at room temperature (with assignment of protons from "A" to "I").

<u>3. IR spectra of H₂L and complex 1</u>

Figure S2. IR spectra of H_2L and complex **1**.

4. Powder XRD patterns of 1

Figure S3. Powder XRD patterns of 1.

5. The thermogravimetric analysis of 1

Figure S4. The thermogravimetric analysis of 1.

6. ¹H NMR spectrum of 1

Figure S5. ¹H NMR spectra of **1** in *d*-DMF at room temperature.

7. The excitation and emission spectra of the free H₂L

Figure S6. The excitation and emission spectra of the free H₂L in DMF at room temperature. ($\lambda_{ex} = 420 \text{ nm}, \lambda_{em} = 500 \text{ nm}$)

8. The lanthanide visible and NIR emission lifetimes of 1

Figure S7. The lanthanide visible and NIR emission lifetimes of **1** in DMF at room temperature.

S12

Figure S8. Visible lanthanide luminescence response of $1 (50 \mu M)$ to the addition of metal ions.

10. Ligand-centered emission response of 1 to the addition of metal ions

S15

Figure S9. Ligand-centered emission response of 1 (50 μ M) to the addition of metal ions.

<u>11. X-Ray Crystallography</u>

Sm(1)-O(1)	2.329(15)	O(1)-Sm(1)-O(5)	126.4(6)
Sm(1)-O(4)	2.351(14)	O(4)-Sm(1)-O(5)	82.9(5)
Sm(1)-O(2)	2.452(16)	O(2)-Sm(1)-O(5)	73.9(5)
Sm(1)-O(3)	2.471(12)	O(3)-Sm(1)-O(5)	66.7(4)
Sm(1)-N(4)	2.613(16)	N(4)-Sm(1)-O(5)	130.1(5)
Sm(1)-O(5)	2.674(16)	O(1)-Sm(1)-O(6)	80.6(6)
Sm(1)-O(6)	2.717(17)	O(4)-Sm(1)-O(6)	128.9(6)
Sm(1)-N(1)	2.778(18)	O(2)-Sm(1)-O(6)	69.7(6)
O(1)-Sm(1)-O(4)	150.5(3)	O(3)-Sm(1)-O(6)	70.0(5)
O(1)-Sm(1)-O(2)	80.6(6)	N(4)-Sm(1)-O(6)	134.9(5)
O(4)-Sm(1)-O(2)	108.2(5)	O(5)-Sm(1)-O(6)	46.5(3)
O(1)-Sm(1)-O(3)	108.1(5)	O(1)-Sm(1)-N(1)	69.0(5)
O(4)-Sm(1)-O(3)	85.2(5)	O(4)-Sm(1)-N(1)	87.2(5)
O(2)-Sm(1)-O(3)	136.5(3)	O(2)-Sm(1)-N(1)	70.2(5)
O(1)-Sm(1)-N(4)	90.9(5)	O(3)-Sm(1)-N(1)	153.2(4)
O(4)-Sm(1)-N(4)	68.1(5)	N(4)-Sm(1)-N(1)	82.4(2)
O(2)-Sm(1)-N(4)	152.6(5)	O(5)-Sm(1)-N(1)	137.5(5)
O(3)-Sm(1)-N(4)	71.0(4)	O(6)-Sm(1)-N(1)	132.7(6)

Table S1. Selected Bond Lengths (Å) and A	Angles (°) for 1.
---	-------------------