Electronic supplementary information

Hydrothermally synthesized Chalcopyrite platelets as electrode material

for symmetric supercapacitors

Surjit Sahoo^a, Parthiban Pazhamalai^a, Vimal Kumar Mariappan^a, Ganesh Kumar

Veerasubramani^c, Nam-Jin Kim^d and Sang -Jae Kim^{a,b*}

^a Nanomaterials and System Lab, Department of Mechatronics Engineering, Jeju National

University, Jeju 63243, South Korea.

^b Department of Advanced Convergence Science and Technology, Jeju National University,

Jeju 63243, South Korea.

^cDepartment of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea

^dDepartment of Nuclear & Energy Engineering, Jeju National University,

Jeju 63243, South Korea.

*Corresponding author. Email: <u>kimsangj@jejunu.ac.kr</u>

Figure S1. Field emission-scanning electron (FE-SEM) micrographs of as prepared CuFeS₂ (A-C) at different magnification (10.0 kx, 20.0 kx, and 70.0 kx).

Figure S2. (A) EDX spectrum of as prepared CuFeS₂, and (B) FE-SEM micrographs for elemental mapping of CuFeS₂.

Figure S3. The highly magnified HR-TEM image to confirming the presence numerous hierarchically porous and interconnected CuFeS₂ platelet network.

To understand the porosity of CuFeS₂, the highly magnified micrograph (Figure S3 (A and B)) of CuFeS₂ is provided. The micrograph shows the presence numerous porous in the interconnected network. It is clearly visible that, the mesopores with a size ranged from 30-40 nm were comfortably distributed throughout the surface of interconnected CuFeS₂ platelate. These mesoporous structure in interconnected CuFeS₂ platelate are important to facilitate the mass transport of electrolyte ions within the electrodes for fast redox reactions¹. Similar mesopores structure are well matched with the previous reports ^{2–5}.

Figure S4. (A) Effect of specific capacitance of CuFeS₂ electrode with respect to scan rate, and (B) Effect of specific capacitance of CuFeS₂ electrode with respect to current.

Figure S5. (A) Nyquist plot of CuFeS₂ electrode, and (B) enlarged view of the Nyquist plot of CuFeS₂ electrode.

Figure S6. (A) Cyclic stability performance of CuFeS₂ electrode over 2000 cycles, and (B) Nyquist plot of CuFeS₂ electrode measured during initial and after the 2000 cycle.

Figure S7. Schematic illustration of the fabrication of CuFeS₂||CuFeS₂ SSD.

Figure S8. EIS analysis of CuFeS₂||CuFeS₂ SSD (A) Bode phase angle plot, and (B) Plot of variation of specific capacitance of CuFeS₂||CuFeS₂ SSD with respect to frequency.

Figure S9. (A) Nyquist plot of CuFeS₂||CuFeS₂ SSD measured during initial and after 3000 cycles, and (B) enlarged view of Nyquist plot of CuFeS₂||CuFeS₂ SSD.

Figure S10. (A) Bode phase angle plot initial and after 3000 cycles of $CuFeS_2||CuFeS_2 SSD$, and (B) Plot of variation of specific capacitance of $CuFeS_2||CuFeS_2 SSD$ with respect to frequency at initial and after 3000 cycles.

Figure S11. FE-SEM micrograph of as fabricated CuFeS₂ electrode (A and B) before electrochemical test, and (C and D) after cyclic stability test.

Figure S11 represents that the FE-SEM micrographs of $CuFeS_2$ electrode before and after the cyclic stability tests, which demonstrated that there are no structural changes occurred at the $CuFeS_2$ electrode even after 3000 cycles of continuous charge-discharge measurement. The FE-SEM micrographs suggesting the robust surface/interface of $CuFeS_2$ electrode ^{6–9}.

S. No	Material	Preparation method	Specific capacitance (F g ⁻¹)	Reference
1	RuO ₂	Chemical synthesis	50	10
2	CuO	Wet chemical 88.5		11
3	α-MoO ₃	Hydrothermal	32	12
4	CuS	Sonochemically	62.77	13
5	ZnS	Solvothermal	32.8	14
6	WS ₂	Chemical exfoliation	40	15
7	MoS ₂	Hydrothermal	19.1	16
8	CuSbSSe	Colloidal	15	17
9	CuSbS ₂	Colloidal	34	17
10	CuSbSe ₂	Colloidal	48	17
11	Cu ₃ SbS ₄	Hydrothermal	60	18
12	CuFeS ₂	Hydrothermal	95.28	This work

Table S1. Summary of electrochemical performances of CuFeS2 electrode and recentlyreported electrode materials using three-electrode configurations.

Table S2. Summary of electrochemical performances of CuFeS₂ electrode and reported Cu and Fe based electrode materials using three-electrode configurations.

S. No	Material	Preparation method	Specific capacitance (F g ⁻¹)	Reference
1	a-Fe ₂ O ₃	Solvothermal	79	19
2	Fe ₂ O ₃	Ball milling	88	20
3	α-Fe ₂ O ₃	Spray coating	75	21
4	α-FeOOH	Hydrothermal	70	22
5	CuO	Hydrothermal	85	23
6	Cu ₂ O	Hydrothermal	79	24
7	CuO	Wet chemical	88.5	11
8	CuS	Sonochemically	62.77	13
9	CuFeS ₂	Hydrothermal	95.28	This work

S. No	Material	Specific	Energy density	Power density	Reference
		capacitance (F g ⁻¹)	(Wh kg ⁻¹)	(W kg ⁻¹)	
1	Porous carbon	-	2.2	15	25
2	Ni ₂ P	1.7	0.24	40	26
3	FeS	4.62	2.56	726	27
4	MXene	4.9	0.089	700	28
5	RuS ₂	17	1.51	40	29
6	α-MnSe	23.44	2.08	25	30
7	$Cu_{12}Sb_4S_{13} \\$	26	0.85	20	31
8	Cu ₃ SbS ₃	19	0.7	30	31
9	Cu ₃ SbS ₄	17.8	0.62	30	31
10	Cu ₂ MoS ₄	28.25	3.92	100	32
11	CuFeS ₂	34.18	4.74	166	This work

Table S3. Summary of electrochemical performances of CuFeS2||CuFeS2 SSD and recentlyreported SSD.

References

- 1 S. Sahoo, R. Mondal, D. J. Late and C. S. Rout, Electrodeposited nickel cobalt manganese based mixed sulfide nanosheets for high performance supercapacitor application, *Microporous Mesoporous Mater.*, 2017, **244**, 101-108.
- 2 C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou, Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors, *Adv. Funct. Mater.*, 2012, 22, 4592–4597.
- 3 T. Peng, Z. Qian, J. Wang, D. Song, J. Liu, Q. Liu and P. Wang, Construction of masscontrollable mesoporous NiCo₂S₄ electrodes for high performance supercapacitors, *J. Mater. Chem. A*, 2014, **2**, 19376–19382.
- 4 L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors, *Energy Environ. Sci.*, 2013, 6, 2497–2504.
- 5 A. S. Poyraz, C.-H. Kuo, S. Biswas, C. K. King'ondu and S. L. Suib, A general approach to crystalline and monomodal pore size mesoporous materials, *Nat. Commun.*, 2013, **4**, 2952.
- 6 P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V. K. Mariappan and S.-J. Kim, Understanding the Thermal Treatment Effect of Two-Dimensional Siloxene Sheets and the Origin of Superior Electrochemical Energy Storage Performances, ACS Appl. Mater. Interfaces. 2019, 6, 1775-1784
- 7 N. Parveen, A. I. Al-Jaafari and J. I. Han, Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo₂O₄@3DNF framework,

Electrochim. Acta, 2019, **293**, 84–96.

- J. Chen, X. Peng, L. Song, L. Zhang, X. Liu and J. Luo, Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors, *R. Soc. open Sci.*, 2018, 5, 180842.
- 9 X. Wei, J.-S. Wei, Y. Li and H. Zou, Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors, *J. Power Sources*, 2019, **414**, 13–23.
- V. D. Patake and C. D. Lokhande, Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application, *Appl. Surf. Sci.*, 2008, 254, 2820– 2824.
- Y. X. Zhang, M. Huang, F. Li and Z. Q. Wen, Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes, *Int. J. Electrochem. Sci*, 2013, 8, 8645–8661.
- 12 I. Shakir, M. Shahid, H. W. Yang and D. J. Kang, Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices, *Electrochim. Acta*, 2010, **56**, 376–380.
- 13 K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim, Preparation of copper sulfide nanoparticles by sonochemical method and study on their electrochemical properties, *J. Nanosci. Nanotechnol.*, 2015, **15**, 4409–4413.
- 14 R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong and A. N. Grace, Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes, *Electrochim. Acta*, 2015, **178**, 647–657.

- C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer and M. Pumera, Transition metal dichalcogenides (MoS₂, MoSe₂, WS₂ and WSe₂) exfoliation technique has strong influence upon their capacitance, *Electrochem. commun.*, 2015, 56, 24–28.
- 16 L.-Q. Fan, G.-J. Liu, C.-Y. Zhang, J.-H. Wu and Y.-L. Wei, Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor, *Int. J. Hydrogen Energy*, 2015, **40**, 10150–10157.
- 17 K. Ramasamy, R. K. Gupta, S. Palchoudhury, S. Ivanov and A. Gupta, Layer-Structured Copper Antimony Chalcogenides (CuSbSe_xS_{2-x}): Stable Electrode Materials for Supercapacitors, *Chem. Mater.*, 2014, **27**, 379–386.
- 18 V. K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo and S.-J. Kim, Layered famatinite nanoplates as an advanced pseudocapacitive electrode material for supercapacitor applications, *Electrochim. Acta*, , DOI:10.1016/j.electacta.2018.04.126.
- B. P. Prasanna, D. N. Avadhani, M. S. Raghu and Y. Kumar, Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications, *Mater. Today Commun.*, 2017, **12**, 72–78.
- 20 H. Kahimbi, J. Jeong, J. W. Kim and B. G. Choi, Facile and scalable synthesis of nanostructured Fe2O3 using ionic liquid-assisted ball milling for high-performance pseudocapacitors, *Solid State Sci.*, 2018, 83, 201–206.
- 21 H.-E. Lin, Y. Kubota, Y. Katayanagi, T. Kishi, T. Yano and N. Matsushita, Solutionprocessed Cu2- xO-Fe2O3 composites as novel supercapacitor anodic materials, *Electrochim. Acta*, 2019, **323**, 134794.
- 22 Y. Wei, R. Ding, C. Zhang, B. Lv, Y. Wang, C. Chen, X. Wang, J. Xu, Y. Yang and Y.

Li, Facile synthesis of self-assembled ultrathin α -FeOOH nanorod/graphene oxide composites for supercapacitors, *J. Colloid Interface Sci.*, 2017, **504**, 593–602.

- 23 J. H. Han, H. W. Kang and W. Lee, Highly porous and capacitive copper oxide nanowire/graphene hybrid carbon nanostructure for high-performance supercapacitor electrodes, *Compos. Part B Eng.*, 2019, **178**, 107464.
- M. Cao, H. Wang, X. Wang, F. Chen, S. Ji, S. Pasupathi and R. Wang, Dual-shelled Cu₂O@Cu₉S₅@MnO₂ hollow spheres as advanced cathode material for energy storage, *J. Alloys Compd.*, 2019, 805, 977–983.
- D. Wang, F. Li, M. Liu, G. Q. Lu and H. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, *Angew. Chemie*, 2008, **120**, 379–382.
- 26 W. Du, R. Kang, P. Geng, X. Xiong, D. Li, Q. Tian and H. Pang, New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles, *Mater. Chem. Phys.*, 2015, 165, 207–214.
- S. S. Karade, P. Dwivedi, S. Majumder, B. Pandit and B. R. Sankapal, First report on a FeS-based 2 V operating flexible solid-state symmetric supercapacitor device, *Sustain*. *Energy Fuels*, 2017, 1, 1366–1375.
- 28 R. B. Rakhi, B. Ahmed, M. N. Hedhili, D. H. Anjum and H. N. Alshareef, Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti₂CT_x MXene Electrodes for Supercapacitor Applications, *Chem. Mater.*, 2015, 27, 5314–5323.
- 29 K. Krishnamoorthy, P. Pazhamalai and S. J. Kim, Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor, *Electrochim. Acta*, 2017, **227**, 85–

94.

- 30 S. Sahoo, P. Pazhamalai, K. Krishnamoorthy and S.-J. Kim, Hydrothermally prepared a-MnSe nanoparticles as a new pseudocapacitive electrode material for supercapacitor, *Electrochim. Acta*, , DOI:10.1016/j.electacta.2018.02.116.
- K. Ramasamy, R. K. Gupta, H. Sims, S. Palchoudhury, S. Ivanov and A. Gupta,
 Layered ternary sulfide CuSbS 2 nanoplates for flexible solid-state supercapacitors, J.
 Mater. Chem. A, 2015, 3, 13263–13274.
- 32 S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan and S.-J. Kim, Copper molybdenum sulfide: A novel pseudocapacitive electrode material for electrochemical energy storage device, *Int. J. Hydrogen Energy*, , DOI:10.1016/j.ijhydene.2018.04.143.