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Experimental Section

Synthesis of SBA-15

According to previous work,S1 SBA-15 was prepared via a supramolecular self-

assembly method. Typically, Pluronic® 123 (4.0 g) was dissolved in 94 mL deionized 

water, and stirred for 2 h at 313 K. Subsequently, HCl (20 mL) and TEOS (8.8 g) 

were added into above mixture, which was stirred continuously for 24 h at 313 K. The 

mixture was put into an autoclave and hydrothermally treated at 373 K for 24 h. Then 

white precipitate was collected by filtration, washed with copious amount of 

deionized water until neutral pH and dried at 333 K overnight. The organic template 

was removed by calcination at 823 K for 6 h to obtain the SBA-15 support.

Synthesis of SBA-15-NH2

Functionalization of SBA-15 with amine groups was referring to a reported 

procedure.S2 1.0 g of SBA-15 was mixed with 6 mL of APTES in 60 mL of anhydrous 

toluene after treated at 378 K for 12 h. The resulting slurry was allowed to stir and 

reflux for 24 h at 353 K under the nitrogen atmosphere. The SBA-15-NH2 was 

obtained as a white precipitate after washed with ethanol and dried at 313 K under 

vacuum overnight. In addition, to obtain varying -NH2 groups loading on SBA-15, 

varying dosage of APTES (1.5 mL, 3 mL, 6 mL, 9 mL, and 12 mL) was added.
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Figure S1. SEM images of the (a) SBA-15, (b) SBA-15-NH2, (c) fresh-prepared 
Pd0.85Ir0.15/SBA-15-NH2 NCs, and (d) Pd0.85Ir0.15/SBA-15-NH2 NCs after reusability 
test.
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Figure S2. (a) Small-angle XRD patterns of (a1) SBA-15, (a2) SBA-15-NH2, and (a3) 
Pd0.85Ir0.15/SBA-15-NH2 NCs; (b) Wide-angle XRD patterns of (b1) Ir/SBA-15-NH2, 
(b2) Pd0.2Ir0.8/SBA-15-NH2, (b3) Pd0.4Ir0.6/SBA-15-NH2, (b4) Pd0.6Ir0.4/SBA-15-NH2, 
(b5) Pd0.8Ir0.2/SBA-15-NH2, (b6) Pd0.85Ir0.15/SBA-15-NH2, (b7) Pd0.9Ir0.1/SBA-15-NH2, 
and (b8) Pd/SBA-15-NH2 NCs.

X-ray diffraction (XRD) was applied to investigate the detailed crystal structure of 

the as-prepared specimens. Figure S2a shows the small-angle XRD patterns of the 

SBA-15, SBA-15-NH2, and Pd0.85Ir0.15/SBA-15-NH2 NCs. It can be seen that the three 

peaks at 2θ = 0.90°, 1.59°, and 1.89° are observed for all catalyst samples, which can 

be attributed to the (100), (110), and (200) planes of the ordered two-dimensional 

hexagonal mesoporous structure. Moreover, the framework of SBA-15 is maintained 

after the APTES functionalization and the loading of PdIr NPs, which agrees very 

well with the results measured by nitrogen adsorption-desorption isotherms (Figure 1) 

and FT-IR spectra (Figure 3a). The wide-angle XRD patterns (Figure S2b) shows that 

the strong and broad diffraction patterns at 2θ=15-35° can be attributed to the 

amorphous silica. Besides the diffraction of amorphous silica, the peaks between 

those of metallic Pd (111) (JCPDS: 87-0637) and Ir (111) (JCPDS: 06-0598) are also 

observed for the specimens, suggesting the formation of PdIr alloy structure.
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Figure S3. (a-c) High-resolution TEM images (inset of a) corresponding SAED 
pattern, and (d) particle distribution of the Pd0.85Ir0.15/SBA-15-NH2 NCs.
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Figure S4. (a-c) TEM images and (d) particle distribution of Pd/SBA-15-NH2 NCs.
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Figure S5. (a-c) TEM images and (d) particle distribution of Ir/SBA-15-NH2 NCs.



S9

Figure S6. Wide-angle XRD patterns for the Ir/SBA-15-NH2 NCs (a) after and (b) 
before treated at 823 K for 4 h in Ar atmosphere.

As shown in Figure S6, the diffraction peaks of metallic Ir was absent in the 

Ir/SBA-15-NH2 NCs. It can be attributed to the high dispersion of Ir NPs on SBA-15-

NH2 with very small particle size and low crystallinity. The TEM images (Figure S5) 

confirmed that the Ir NPs are well dispersed on SBA-15-NH2. After Ir/SBA-15-NH2 

NCs was treated at 823 K for 4 h in Ar atmosphere, the typically diffraction peaks of 

metallic Ir at 2θ = 40.6°, 47.3°, 69.14°, and 83.4° were appeared, and the peaks are 

indexed as (111), (200), (220), and (311) plans of metallic Ir (JCPDS: 06-0598), 

respectively. 
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Figure S7. (a-b) TEM images and (c) particle distribution of Pd0.85Ir0.15/SBA-15 NCs.
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Figure S8. (a) The survey XPS spectrum of Pd0.85Ir0.15/SBA-15-NH2 NCs and XPS 
spectra of N 1s in the Pd0.85Ir0.15/SBA-15-NH2 NCs.
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Figure S9. Volume of the generated gas (CO2 + H2) versus time for the 
dehydrogenation of FA in FA-SF aqueous solution over Pd0.85Ir0.15/SBA-15-NH2 
NCs (a) with different metal loadings at 298 K and (b) the corresponding initial 
TOF values (nPdIr/nFA = 0.02, FA/SF=1/3).
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Figure S10. TEM images of Pd0.85Ir0.15/SBA-15 NCs with different PdIr loading (a) 5 
wt%, (b) 10 wt% and (c) 20wt %.
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Figure S11. Volume of the generated gas (CO2 + H2) versus time for the 
dehydrogenation of FA in FA-SF aqueous solution over physical mixture of 
Pd0.85Ir0.15 and SBA-15-NH2 and Pd0.85Ir0.15/SBA-15-NH2 NCs at 298 K (nPdIr/nFA = 
0.02, FA/SF=1/3, 10 wt% ).
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Figure S12. Volume of the generated gas (CO2 + H2) versus time for the 
dehydrogenation of FA in FA-SF aqueous solution over Pd0.85M0.15/SBA-15-NH2 NCs 

(M = Ir, Pt, Ru, Au, Rh, and Ag) at 298 K and (b) the corresponding initial TOF value 
(nPdIr/nFA = 0.02, FA/SF=1/3, 10 wt% ).



S16

Figure S13. Volume of the generated gas (CO2 + H2) versus time for the 
dehydrogenation of FA in the presence of different SF/FA molar ratios and (inset) 
pure SF aqueous solution over Pd0.85Ir0.15/SBA-15-NH2 NCs at 298 K (nPdIr/nFA = 0.02, 
10 wt% ). 
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Figure S14. Volume of the generated gas (CO2+H2) versus time for the 
dehydrogenation of FA in FA-SF aqueous solution over Pd0.85Ir0.15/SBA-15-NH2 NCs 
(a) with different volume of APTES at 298 K and (b) the corresponding initial TOF 
values (nPdIr/nFA = 0.02, FA/SF=1/3, 10 wt%).
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Figure S15. Volume of the generated gas (CO2+H2) versus time for the 
dehydrogenation of FA in FA-SF aqueous solution over Pd0.85Ir0.15/SBA-15-NH2 NCs 
with/without NaOH trap at 298 K (nPdIr/nFA = 0.02, FA/SF=1/3, 10 wt%).
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Figure S16. Reusability test of the optimized Pd0.85Ir0.15/SBA-15-NH2 NCs for the 
dehydrogenation of FA in FA-SF aqueous solution at 298 K.
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Figure S17. (a) Small-angle XRD patterns and (b) wide-angle XRD patterns for (a1, 
b1) the Pd0.85Ir0.15/SBA-15-NH2 NCs and (a2, b2) Pd0.85Ir0.15/SBA-15-NH2 NCs after 
reusability test.
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Figure S18. (a) SEM images, (b,c) TEM images, and (d) particle distribution of 
Pd0.85Ir0.15/SBA-15-NH2 NCs after reusability test.
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Table S1 Catalytic activities for the dehydrogenation of formic acid catalyzed by 
different heterogeneous catalysts.

Catalyst Temp.
(K) additive Ea

(kJ/mol)
TOF[a]

(h-1) Ref.

Without Additive

Au0.5Pd0.5/NH2-N-rGO 298 None -- 4445.6 S3

Ag0.025Pd0.975/NH2-N-rGO 298 None -- 2556.2 S3

Pd0.85Ir0.15/SBA-15-NH2 298 None 26.7 1500 This work

Pd60Au40/ZrSBA-15-AP 298 None 42.5 1185 S4

PdAu-MnOx/N-SiO2 298 None 26.2 785 S5

SBA-15-Amine/Pd 299 None 377 S2

CoAuPd/DNA-rGO 298 None 85 S6

AuPd-CeO2/N-rGO 298 None 52.9 S7

Pd-MnOx/SiO2-NH2 323 None 1300 S8

With Additive

Pd0.85Ir0.15/SBA-15-NH2 298 SF 26.7 3087 This work

Pd@CN900K 298 SF 46.9 1963[b] S9

Au1Pd1.5/MIL-101-NH2 298 SF 32.5 526[b] S10

Au0.28Pd0.47Co0.25/MIL-101-NH2 298 SF 32.5 347[b] S11

Au2Pd3@(P)N-C 303 SF 34.8 5400[b] S12

Pd1Au1/72-LA 303 SF 34.4 3583[b] S13

In situ-Pd@MSC 303 SF 31.7 2965 S14

Pd@SS-CNR 303 SF 38.8 1878[b] S15

(Co6)Ag0.1Pd0.9/RGO 323 SF 43.1 2739[b] S16

Au2Pd8/SBA-15-Amine 323 SF 47.6 1786 S17

Pd0.58Ni0.18Ag0.24/C 323 SF 20.5 85 S18

Pd0.85Ir0.15/SBA-15-NH2 328 SF 26.7 8248 This work

Pd0.6Ag0.4@ZrO2/C/rGO 333 SF 50.1 4500 S19

AuPd@ED-MIL-101 363 SF -- 106 S20

PdAu@Au/C 365 SF -- 59.6 S21

[a] Initial TOF values calculated on initial reaction time or initial conversion of FA.
[b] TOF values calculated on the complete time of gas releasing.

mailto:Pd0.6Ag0.4@zro2/C/rGO
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