Support Information

Amine-functionalized mesoporous silica-supported PdIr catalyst: boosting roomtemperature hydrogen generation from formic acid

Wendan Nie,^{‡a} Yixing Luo,^{‡a} Qifeng Yang,^a Gang Feng,^b Qilu Yao,^a and Zhang-Hui Lu^a*

^aInstitute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China. ^bCollege of Chemistry, Nanchang University, Nanchang 330031, China.

[‡]These authors contributed equally.

*E-mail: luzh@jxnu.edu.cn

Table of Contents

Experimental Section

- Figure S1. SEM images of as-prepared catalysts.
- Figure S2. XRD patterns of as-prepared catalysts.
- Figure S3. HRTEM images of Pd_{0.85}Ir_{0.15}/SBA-15-NH₂ NCs.
- Figure S4. TEM images of Pd/SBA-15-NH₂ NCs.
- Figure S5. TEM images of Ir/SBA-15-NH₂ NCs.
- Figure S6. XRD patterns of Ir/SBA-15-NH₂ NCs before/after heat treatment.
- **Figure S7.** TEM images of Pd_{0.85}Ir_{0.15}/SBA-15 NCs.
- Figure S8. XPS spectra of Pd_{0.85}Ir_{0.15}/SBA-15-NH₂ NCs.
- Figure S9. Catalytic performance influenced by metal loading.
- Figure S10. TEM images of Pd_{0.85}Ir_{0.15}/SBA-15 NCs with different PdIr loading.
- Figure S11. Catalytic performance influenced by physical mixture and co-reduction.
- Figure S12. Catalytic performance influenced by different Pd-M composition.
- Figure S13. Catalytic performance influenced by the FA/SF molar ratio.
- Figure S14. Catalytic performance influenced by APTES.
- Figure S15. NaOH trap experiment for the generated gas.
- **Figure S16.** Reusability test of the Pd_{0.85}Ir_{0.15}/SBA-15 NCs.
- Figure S17. XRD patterns of Pd_{0.85}Ir_{0.15}/SBA-15 NCs before/after reusability test.
- Figure S18. SEM and TEM images of Pd_{0.85}Ir_{0.15}/SBA-15 NCs after reusability test.
- Table S1 Catalytic activities of different heterogeneous catalysts.

Reference

Experimental Section

Synthesis of SBA-15

According to previous work,^{S1} SBA-15 was prepared via a supramolecular selfassembly method. Typically, Pluronic® 123 (4.0 g) was dissolved in 94 mL deionized water, and stirred for 2 h at 313 K. Subsequently, HCl (20 mL) and TEOS (8.8 g) were added into above mixture, which was stirred continuously for 24 h at 313 K. The mixture was put into an autoclave and hydrothermally treated at 373 K for 24 h. Then white precipitate was collected by filtration, washed with copious amount of deionized water until neutral pH and dried at 333 K overnight. The organic template was removed by calcination at 823 K for 6 h to obtain the SBA-15 support.

Synthesis of SBA-15-NH₂

Functionalization of SBA-15 with amine groups was referring to a reported procedure.^{S2} 1.0 g of SBA-15 was mixed with 6 mL of APTES in 60 mL of anhydrous toluene after treated at 378 K for 12 h. The resulting slurry was allowed to stir and reflux for 24 h at 353 K under the nitrogen atmosphere. The SBA-15-NH₂ was obtained as a white precipitate after washed with ethanol and dried at 313 K under vacuum overnight. In addition, to obtain varying -NH₂ groups loading on SBA-15, varying dosage of APTES (1.5 mL, 3 mL, 6 mL, 9 mL, and 12 mL) was added.

Figure S1. SEM images of the (a) SBA-15, (b) SBA-15-NH₂, (c) fresh-prepared $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs, and (d) $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs after reusability test.

Figure S2. (a) Small-angle XRD patterns of (a1) SBA-15, (a2) SBA-15-NH₂, and (a3) $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs; (b) Wide-angle XRD patterns of (b1) Ir/SBA-15-NH₂, (b2) $Pd_{0.2}Ir_{0.8}/SBA-15-NH_2$, (b3) $Pd_{0.4}Ir_{0.6}/SBA-15-NH_2$, (b4) $Pd_{0.6}Ir_{0.4}/SBA-15-NH_2$, (b5) $Pd_{0.8}Ir_{0.2}/SBA-15-NH_2$, (b6) $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$, (b7) $Pd_{0.9}Ir_{0.1}/SBA-15-NH_2$, and (b8) $Pd/SBA-15-NH_2$ NCs.

X-ray diffraction (XRD) was applied to investigate the detailed crystal structure of the as-prepared specimens. Figure S2a shows the small-angle XRD patterns of the SBA-15, SBA-15-NH₂, and Pd_{0.85}Ir_{0.15}/SBA-15-NH₂ NCs. It can be seen that the three peaks at $2\theta = 0.90^{\circ}$, 1.59°, and 1.89° are observed for all catalyst samples, which can be attributed to the (100), (110), and (200) planes of the ordered two-dimensional hexagonal mesoporous structure. Moreover, the framework of SBA-15 is maintained after the APTES functionalization and the loading of PdIr NPs, which agrees very well with the results measured by nitrogen adsorption-desorption isotherms (Figure 1) and FT-IR spectra (Figure 3a). The wide-angle XRD patterns (Figure S2b) shows that the strong and broad diffraction patterns at 2θ =15-35° can be attributed to the amorphous silica. Besides the diffraction of amorphous silica, the peaks between those of metallic Pd (111) (JCPDS: 87-0637) and Ir (111) (JCPDS: 06-0598) are also observed for the specimens, suggesting the formation of PdIr alloy structure.

Figure S3. (a-c) High-resolution TEM images (inset of a) corresponding SAED pattern, and (d) particle distribution of the $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs.

Figure S4. (a-c) TEM images and (d) particle distribution of Pd/SBA-15-NH₂ NCs.

Figure S5. (a-c) TEM images and (d) particle distribution of Ir/SBA-15-NH₂ NCs.

Figure S6. Wide-angle XRD patterns for the $Ir/SBA-15-NH_2 NCs$ (a) after and (b) before treated at 823 K for 4 h in Ar atmosphere.

As shown in Figure S6, the diffraction peaks of metallic Ir was absent in the Ir/SBA-15-NH₂ NCs. It can be attributed to the high dispersion of Ir NPs on SBA-15-NH₂ with very small particle size and low crystallinity. The TEM images (Figure S5) confirmed that the Ir NPs are well dispersed on SBA-15-NH₂. After Ir/SBA-15-NH₂ NCs was treated at 823 K for 4 h in Ar atmosphere, the typically diffraction peaks of metallic Ir at $2\theta = 40.6^{\circ}$, 47.3°, 69.14°, and 83.4° were appeared, and the peaks are indexed as (111), (200), (220), and (311) plans of metallic Ir (JCPDS: 06-0598), respectively.

Figure S7. (a-b) TEM images and (c) particle distribution of $Pd_{0.85}Ir_{0.15}/SBA-15$ NCs.

Figure S8. (a) The survey XPS spectrum of $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs and XPS spectra of N 1s in the $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs.

Figure S9. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of FA in FA-SF aqueous solution over $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs (a) with different metal loadings at 298 K and (b) the corresponding initial TOF values ($n_{Pdir}/n_{FA} = 0.02$, FA/SF=1/3).

Figure S10. TEM images of $Pd_{0.85}Ir_{0.15}$ /SBA-15 NCs with different PdIr loading (a) 5 wt%, (b) 10 wt% and (c) 20wt %.

Figure S11. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of FA in FA-SF aqueous solution over physical mixture of Pd_{0.85}Ir_{0.15} and SBA-15-NH₂ and Pd_{0.85}Ir_{0.15}/SBA-15-NH₂ NCs at 298 K ($n_{PdIr}/n_{FA} = 0.02$, FA/SF=1/3, 10 wt%).

Figure S12. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of FA in FA-SF aqueous solution over $Pd_{0.85}M_{0.15}/SBA-15-NH_2$ NCs (M = Ir, Pt, Ru, Au, Rh, and Ag) at 298 K and (b) the corresponding initial TOF value $(n_{PdIr}/n_{FA} = 0.02, FA/SF=1/3, 10 \text{ wt\%})$.

Figure S13. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of FA in the presence of different SF/FA molar ratios and (inset) pure SF aqueous solution over Pd_{0.85}Ir_{0.15}/SBA-15-NH₂ NCs at 298 K ($n_{PdIr}/n_{FA} = 0.02$, 10 wt%).

Figure S14. Volume of the generated gas (CO_2+H_2) versus time for the dehydrogenation of FA in FA-SF aqueous solution over Pd_{0.85}Ir_{0.15}/SBA-15-NH₂ NCs (a) with different volume of APTES at 298 K and (b) the corresponding initial TOF values $(n_{PdIr}/n_{FA} = 0.02, FA/SF=1/3, 10 \text{ wt}\%)$.

Figure S15. Volume of the generated gas (CO_2+H_2) versus time for the dehydrogenation of FA in FA-SF aqueous solution over $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs with/without NaOH trap at 298 K ($n_{PdIr}/n_{FA} = 0.02$, FA/SF=1/3, 10 wt%).

Figure S16. Reusability test of the optimized $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs for the dehydrogenation of FA in FA-SF aqueous solution at 298 K.

Figure S17. (a) Small-angle XRD patterns and (b) wide-angle XRD patterns for (a1, b1) the $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs and (a2, b2) $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs after reusability test.

Figure S18. (a) SEM images, (b,c) TEM images, and (d) particle distribution of $Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$ NCs after reusability test.

Catalyst	Temp. (K)	additive	<i>E_a</i> (kJ/mol)	TOF ^[a] (h ⁻¹)	Ref.
Without Additive					
Au _{0.5} Pd _{0.5} /NH ₂ -N-rGO	298	None		4445.6	S 3
Ag _{0.025} Pd _{0.975} /NH ₂ -N-rGO	298	None		2556.2	S 3
Pd _{0.85} Ir _{0.15} /SBA-15-NH ₂	298	None	26.7	1500	This work
Pd ₆₀ Au ₄₀ /ZrSBA-15-AP	298	None	42.5	1185	S4
PdAu-MnO _x /N-SiO ₂	298	None	26.2	785	S5
SBA-15-Amine/Pd	299	None		377	S2
CoAuPd/DNA-rGO	298	None		85	S6
AuPd-CeO ₂ /N-rGO	298	None		52.9	S7
Pd-MnOx/SiO ₂ -NH ₂	323	None		1300	S8
With Additive					
$Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$	298	SF	26.7	3087	This work
Pd@CN900K	298	SF	46.9	1963 ^[b]	S9
Au ₁ Pd _{1.5} /MIL-101-NH ₂	298	SF	32.5	526 ^[b]	S10
$Au_{0.28}Pd_{0.47}Co_{0.25}/MIL101NH_2$	298	SF	32.5	347 ^[b]	S11
$Au_2Pd_3(a)(P)N-C$	303	SF	34.8	5400 ^[b]	S12
Pd ₁ Au ₁ /72-LA	303	SF	34.4	3583 ^[b]	S13
In situ-Pd@MSC	303	SF	31.7	2965	S14
Pd@SS-CNR	303	SF	38.8	1878 ^[b]	S15
(Co ₆)Ag _{0.1} Pd _{0.9} /RGO	323	SF	43.1	2739 ^[b]	S16
Au ₂ Pd ₈ /SBA-15-Amine	323	SF	47.6	1786	S17
Pd _{0.58} Ni _{0.18} Ag _{0.24} /C	323	SF	20.5	85	S18
Pd _{0.85} Ir _{0.15} /SBA-15-NH ₂	328	SF	26.7	8248	This work
Pd _{0.6} Ag _{0.4} @ZrO ₂ /C/rGO	333	SF	50.1	4500	S19
AuPd@ED-MIL-101	363	SF		106	S20
PdAu@Au/C	365	SF		59.6	S21

Table S1 Catalytic activities for the dehydrogenation of formic acid catalyzed by different heterogeneous catalysts.

[a] Initial TOF values calculated on initial reaction time or initial conversion of FA.

[b] TOF values calculated on the complete time of gas releasing.

References

- [S1] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024-6036.
- [S2] K. Koh, J.-E. Seo, J. H. Lee, A. Goswami, C. W. Yoon and T. Asefa, J. Mater. Chem. A, 2014, 2, 20444-20449.
- [S3] S.-J. Li, Y.-T. Zhou, X. Kang, D.-X. Liu, L. Gu, Q.-H. Zhang, J.-M. Yan and Q. Jiang, *Adv. Mater.*, 2019, 1806781.
- [S4] Z. Wang, X. Hao, D. Hu, L. Li, X. Song, W. Zhang and M. Jia, Catal. Sci. Technol., 2017, 7, 2213-2220.
- [S5] Y. Karatas, A. Bulut, M. Yurderi, I. E. Ertas, O. Alal, M. Gulcan, M. Celebi, H. Kivrak, M. Kaya and M. Zahmakiran, *Appl. Catal.*, *B*, 2016, 180, 586-595.
- [S6] Z.-L. Wang, H.-L. Wang, J.-M. Yan, Y. Ping, S.-II. O, S.-J. Li and Q. Jiang, Chem. Commun., 2014, 50, 2732-2734.
- [S7] Z.-L. Wang, J.-M. Yan, Y.-F. Zhang, Y. Ping, H.-L. Wang and Q. Jiang, Nanoscale, 2014, 6, 3073-3077.
- [S8] A. Bulut, M. Yurderi, Y. Karatas, M. Zahmakiran, H. Kivrak, M. Gulcan and M. Kaya, *Appl. Catal.*, B, 2015, 164, 324-333.
- [S9] Q. Wang, N. Tsumori, M. Kitta and Q. Xu, ACS Catal., 2018, 8, 12041-12045.
- [S10]J. Cheng, X. Gu, P. Liu, H. Zhang, L. Ma and H. Su, *Appl. Catal., B*, 2017, **218**, 460-469.
- [S11]J. Chen, X. Gu, P. Liu, T. Wang and H. Su, J. Mater. Chem. A, 2016, 4, 16645-16652.

- [S12]Q. Wang, L. Chen, Z. Liu, N. Tsumori, M. Kitta and Q. Xu, Adv. Funct. Mater., 2019, 1903341.
- [S13]W. Hong, M. Kitta, N. Tsumori, Y. Himeda, T. Autrey and Q. Xu, J. Mater. Chem. A, 2019, 7, 18835-18839.
- [S14]Q.-L. Zhu, F.-Z. Song, Q.-J. Wang, N. Tsumori, Y. Himeda, T. Autrey and Q. Xu, J. Mater. Chem. A, 2018, 6, 5544-5549.
- [S15]L. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori, Z. Liu and Q. Xu, Adv. Mater., 2019, 1900440.
- [S16]Y. Chen, Q.-L. Zhu, N. Tsumori and Q. Xu, J. Am. Chem. Soc., 2015, 137, 106-109.
- [S17]L. Xu, F. Yao, J. Luo, C. Wan, M. Ye, P. Cui and Y. An, *RSC Adv.*, 2017, 7, 4746-4752.
- [S18]M. Yurderi, A. Bulut, M. Zahmakiran and M. Kaya, *Appl. Catal.*, *B*, 2014, 160-161, 514-524.
- [S19]F.-Z. Song, Q.-L. Zhu, X. Yang, W.-W. Zhan, P. Pachfule, N. Tsumori and Q. Xu, Adv. Energy Mater., 2018, 8, 1701416.
- [S20]X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita and Q. Xu, J. Am. Chem. Soc., 2011, 133, 11822-11825.
- [S21]Y. Huang, X. Zhou, M. Yin, C. Liu and W. Xing, Chem. Mater., 2010, 22, 5122-5128.