Supplementary Information

High energy-storage performance in PLZS antiferroelectric

multilayer ceramic capacitors

Xiaohui Liu^{a,b}, Yong Li^a, Ningning Sun^a and Xihong Hao^{a,b}*

 ^a Inner Mongolia Key Laboratory of Ferroelectric-related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China.
^b Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China

E-mail: <u>xhhao@imust.cn</u> (X. Hao) * Corresponding Author.

Function	Component	Content (wt%)
Powder	PLZS	59.6
Solvent	Toluene/ethanol	31.0
Dispersant	Phosphate ester	0.6
Binder	Polyvinyl butyral	5
Plasticizer	Polyethylene glycol-400	1.2
Plasticizer	Benzyl butyl phthalate	1.2
Homogenizer	Cyclohexanone	1.4

Table S1 The ratios of the component in the tape-casting slurry

Fig. S1 SEM images of PLZS ceramics with different Zr contents and the corresponding grain size distributions.

Fig. S2 The P_{max} and E_A of the MLCC with x = 0.7 with different temperature.

Fig. S3 The ΔE of the PLZS ceramics with different Zr contents under the 310 kV cm⁻¹.

Fig. S4 Frequency-dependent *P*–*E* loops of the MLCC with x = 0.7 measured at 300 kV cm⁻¹ and room temperature, (b) the corresponding W_{rec} and η at various frequencies.

Fig. S5 (a) The pulsed discharge current of the MLCC with x = 0.7 under 300 kV cm⁻¹. (b) The time dependence of the discharge energy density of the MLCC with x = 0.7 under 300 kV cm⁻¹.