Insights on the complexity of the excited states of Eu-doped luminescent materials Electronic Supplementary Information (ESI)

Jonas J. Joos,¹ Philippe F. Smet,¹ Luis Seijo,² and Zoila Barandiarán²

¹LumiLab, Department of Solid State Sciences, and Center for Nano- and

Biophotonics (NB Photonics), Ghent University, 9000 Ghent, Belgium

² Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera,

and Condensed Matter Physics Center (IFIMAC),

Universidad Autónoma de Madrid, 28049 Madrid, Spain

(Dated: November 8, 2019)

I. INTRODUCTION

Here we describe the details and collect the results of ab *initio* calculations on the electronic structure of Eu²⁺ and Eu³⁺ ions in alkaline earth fluoride, MeF₂, and sulfide, MeF, host crystals (Me = Ca, Sr, Ba). They use wave function theory and the embedded cluster approximation and have been performed with the MOLCAS package.¹

second-order Douglas-Kroll-Hess The relativistic (DKH) many-electron Hamiltonian^{2,3} has been used in all calculations. In a first step, the spin-orbit coupling operator is removed from the Hamiltonian so that spin-orbit free state-average restricted-activespace self-consistent-field (SA-RASSCF) variational $calculations^{4-8}$ are done on a many-electron active configurational space. The definition of the active spaces are detailed below. These SA-RASSCF calculations take care of the non-dynamic electron correlation. They are in fact multi-configurational SCF calculations in which the molecular orbital coefficients and the configuration interaction expansion coefficients are variational. Subsequently, the SA-RASSCF wave functions are used in multi-state second-order perturbation theory (MS-RASPT2) calculations.⁹⁻¹³ In this way, dynamic correlation effects in the ground and excited states of the embedded clusters are taken into account. The MS-RASPT2 calculations use the (occupied and empty) molecular orbitals optimized in the SA-RASSCF calculations and some selected electron shells are correlated as described below.

In a second step, the full DKH Hamiltonian is used, the atomic mean-field integrals approximation (AMFI)¹⁴ is adopted for its spin-orbit coupling part, and restricted-active-space state-interaction spin-orbit calculations (RASSI-SO)¹⁵ are done. The RASSI-SO calculations are a particular means to use the spin-freestate-shifting operator (SFSS)¹⁶ in order to efficiently and effectively combine spin-orbit couplings calculated with non-dynamically correlated wave functions (e.g. RASSCF), together with spin-orbit coupling free energies calculated with dynamic correlation (e.g. RASPT2). In them, we chose the transformed RASSCF wave functions (first-order wave functions of the MS-RASPT2 method) of the spin-orbit-free states of interest as a many-electron basis, and the MS-RASPT2 energies as shifting factors.

A. MeF₂ and MeS AIMP embedding potentials

The Hamiltonians of the otherwise isolated clusters are supplemented with the *ab initio* model potential (AIMP) embedding operators¹⁷ of MeF_2 and MeS (Me = Ca, Sr, Ba). Those of the MeF_2 fluorides have been obtained elsewhere;¹⁸ those of the MeS rock-salts have been obtained in this work and are available from the authors. The MeS embedding potentials have been calculated in self-consistent embedded-ions (SCEI)¹⁹ Hartree-Fock (HF) calculations and they are made of: 1) total-ion embedding AIMPs representing Ca^{2+} , Sr^{2+} , or Ba^{2+} cations and S^{2-} anions, which are located at experimental sites of the MeS host lattices within a cube made of $5 \times 5 \times 5$ unit cells centered on Ca^{2+} , Sr^{2+} , or Ba^{2+} , depending on the case; and 2) a set of 3309 additional point charges at lattice sites are generated by the zero-multipole method of Gellé and Lepetit,²⁰ which closely reproduce the Ewald potential²¹ within the clusters. The experimental crystal structures of CaS,²² SrS,²³ and BaS²³ are: space group number 225, Fm-3m cubic, with lattice constants a =5.710 Å (CaS), 6.021 Å (SrS), 6.3748 Å (BaS).

The effect of the AIMP embedding potentials of the MeF₂ and MeS hosts on the studied clusters is to include: 1) host electrostatic interactions (made of long-range point-charge or Madelung contributions and short-range charge density Coulomb contributions), 2) host-cluster exchange interactions, and 3) Pauli repulsion interactions from the host (non-orthogonality repulsive contributions due to cluster-host antisymmetry requirements). The Pauli repulsions from the S 3p shells as obtained in the SCEI calculations are known to be underestimated²⁴ and they are corrected following the prescriptions in Ref. 24, increasing their associated projection constants in order to achieve the experimental M-S bond length within less than 0.01 Å.

B. \mathbf{Eu}^{2+} in \mathbf{MeF}_2 and \mathbf{MeS}

 Eu^{2+} and Eu^{3+} ions are assumed to substitute for the alkaline earth Ca^{2+} , Sr^{2+} , or Ba^{2+} in the fluoride and sulfide hosts leading to 8-fold cubic and 6-fold octahedral coordination, respectively. Non-local charge compensation is assumed for the trivalent dopant in this work.

The Hamiltonian and wave functions of the clusters,

embedded in MeF₂ or MeS, comprise the Eu impurity ion at (0, 0, 0), eight F or six S ligands at variable (x,x,x) or (0,0,x) positions, and twelve or six Me second neighbors at fixed positions, $(\frac{1}{2}, \frac{1}{2}, 0)$ or (1,0,0), respectively, as follows: $(EuF_8Me_{12})^{18+}$, $(EuF_8Me_{12})^{19+}$, or $(EuS_6Me_6)^{2+}$, $(EuS_6Me_6)^{3+}$, for Eu^{2+} , Eu^{3+} containing clusters. The embedded cluster calculations include all the electrons of the dopant and ligands and limited representations of the Me^{2+} second neighbors, as described next.

The following Gaussian atomic natural orbital relativistic basis sets ANO-RCC for the $Europium^{25}$ dopant and the Fluorine or Sulfur ligands,²⁶ were used to expand the clusters molecular orbitals: $\operatorname{Eu}(25s22p15d11f4g2h)[9s8p5d4f3g2h]$ (quadruple-zeta with polarization quality) and F(14s9p4d)[5s4p3d] or S(17s12p5d)[6s5p3d] (quadruple-zeta with polarization without f nor g-functions quality). In the Eu-doped MeF_2 calculations, all occupied shells of the Me^{2+} second neighbor ions were considered frozen and their outermost s and p orbitals were used, contracted as [1s1p]orthogonalization functions, for which the Me^{2+} embedding AIMP data were used. Five s-type Gaussian functions were also added to the cluster bases at the next six neighboring interstitial sites.¹⁸ In the Eudoped MeS calculations, the description of the six Me^{2+} ions located next to the sulfur ligands in the (100) axes was improved further: only the inner shells of the Me^{2+} ions were frozen ([Mg] core for Ca^{2+} , [Zn] core for Sr^{2+} , and [Cd] core for Ba^{2+}); the corresponding atomic natural orbitals of the ANO-RCC set were used to build the core AIMP operators;²⁷ the 6-electron valence of the Me^{2+} were treated explicitly using the following valence bases, adapted from the ANO-RCC sets: Ca(20s16p6d)[3s4p1d], Sr(23s19p12d)[3s4p1d],Ba(26s22p15d)[3s4p1d]. Using the D_{2h} point group in the calculations the number of symmetry adapted basis functions of the fluoride and sulfide clusters is: 469 and 471, respectively.

In the SA-RASSCF calculations on the Eu^{2+} clusters we used a restricted active space made of 7 electrons in 20 molecular orbitals of main character Eu-4f, Eu-5d, Eu-6s, and Eu-5f (6 electrons in 20 MOs for Eu^{3+} clusters). We computed the following terms and used the following state-averages for the molecular orbital optimizations: For states in the $4f^7$ configuration of Eu²⁺, $1^{8}A_{1u}$ term; $2^{6}A_{1u}$, $2^{6}A_{2u}$, and $4^{6}E_{u}$; and $6^{6}T_{1u}$ and $6^{6}T_{2u}$ terms. For the $4f^{6}5d$ and $4f^{6}6s$ configurations of Eu^{2+} , $1 \ ^{8}A_{1g}$, $2 \ ^{8}A_{2g}$, and $3 \ ^{8}E_{g}$; $6 \ ^{8}T_{1g}$ and $5 \ ^{8}T_{2g}$; $39 \ ^{6}A_{1g}$, $36 \ ^{6}A_{2g}$, and $75 \ ^{6}E_{g}$; and $108 \ ^{6}T_{1g}$ and $111 \ ^{6}T_{2g}$ terms. For the $4f^{6}$ configuration of Eu^{3+} , $1 \ ^{7}A_{2g}$; $1 \ ^{7}T_{1g}$ and $1\ ^7T_{2g}$; and $7\ ^5A_{1g}$, $5\ ^5A_{2g}$, and $13\ ^5E_g$; $16\ ^5T_{1g}$ and $18\ ^5T_{2g}$ terms. In all cases, all possible occupations were allowed in the Eu-4f shells and up to four electrons were allowed in the Eu-5d, Eu-6s, and Eu-5f shells (we refer to this calculations as SA-RASSCF(4f/5d6s5f - 4e); this restricted active space should be fairly close to a complete 7-electron (or 6-electron) active space where all possible occupations of the 20 molecular orbitals would

be allowed. Inclusion of the Eu 5*f*-shells in the active space is needed for a better account of the large radial correlation effects in the 4*f*-shell, which strongly affect interconfigurational transitions also in the first half of the lanthanide series.²⁸ The number of configuration state functions (CSF) generated in each spin and D_{2h} symmetry block range between 4500 and 41500 CSF, for the Eu²⁺ clusters, and between 3400 and 24000 CSF, for the Eu³⁺ clusters.

In the MS-RASPT2 calculations we correlated all cluster valence electrons except those with main character Eu-4*d*. We used the standard IPEA value $(0.25 \text{ au})^{29}$ and an imaginary level shift of 0.15 to avoid intruder states.³⁰ Symmetry analyses of the SA-RASSCF multiconfigurational reference wave functions allowed us to perform MS-RASPT2 calculations over actual spin and O_h symmetry blocks, which avoids symmetry breakings at the MS-RASPT2 level of calculations and beyond. In the case of the MeF_2 hosts, small spikes or irregularities in the potential energy surfaces were found coinciding with sharp avoided crossings between some high energy lying spin sextet excited states of the $4f^65dt_{2q}^1$ and $4f^6ITE^1_{a_{1a}}$ configurations, which did not disappear using different and reasonable values of MS-RASPT2 parameters. These high energy sextet states were excluded from the subsequent RASSI-SO calculations.

The results of the SA-RASSCF and MS-CASPT2 spinorbit free calculations for Eu^{2+} and Eu^{3+} clusters are collected in Tables S1–S3 for the MeF₂ hosts, and Tables S4–S6 for the MeS hosts. Figures S1 and S2 show the corresponding MS-CASPT2 energy curves.

Finally, the spin-orbit coupling calculations (RASSI-SO) were done allowing the coupling of all MS-RASPT2 states of spin multiplicity $2S + 1 \ge 6$ for Eu²⁺ and $2S + 1 \ge 5$ for Eu³⁺ mentioned above. Ultimately, the quality of all of the limitations imposed on the extent of spin-orbit coupling should be revealed by the comparisons between theoretical and experimental spectra discussed in the main body of this paper.

The results of the spin-orbit coupling RASSI-SO calculations for Eu^{2+} and Eu^{3+} cluster are collected in Tables S9–S11 for the MeF₂ hosts, and Tables S12–S14 for the MeS hosts. The corresponding energy curves for Eu^{2+} and Eu^{3+} are in Fig. 3 of the paper and here in Fig. S3, respectively.

C. Accuracy of the computed energies

Calculated and experimental energies are compared in Table S15 and Fig. 2. It is based on the results of this work and experimental excitation energies for the Eu^{2+} and Eu^{3+} -doped fluoride and sulfide crystals. This table displays only those levels for which experimental spectroscopic data is available. All computed energies can be found in Tables S9–S14.

- ¹ G. Karlström, R. Lindh, P. A. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P. O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, "Molcas: A program package for computational chemistry," Comput. Mater. Sci. 28, 222–239 (2003).
- ² M. Douglas and N. M. Kroll, "Quantum electrodynamical corrections to the fine structure of helium," Ann. Phys. (N.Y.) 82, 89–155 (1974).
- ³ B. A. Hess, "Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators," Phys. Rev. A **33**, 3742-3748 (1986).
- ⁴ B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, "A complete active space SCF method (CASSCF) using a densitymatrix formulated super-CI approach," Chem. Phys. 48, 157-173 (1980).
- ⁵ P. E. M. Siegbahn, A. Heiberg, B. O. Roos, and B. Levy, "Comparison of the super-CI and the newton-raphson scheme in the complete active space SCF method," Phys. Scr. **21**, 323–327 (1980).
- ⁶ P. E. M. Siegbahn, A. Heiberg, J. Almlöf, and B. O. Roos, "The complete active space SCF (CASSCF) method in a newton-raphson formulation with application to the HNO molecule," J. Chem. Phys. **74**, 2384–2396 (1981).
- ⁷ J. Olsen, B. O. Roos, P. Jørgensen, and J. A. Jensen, "Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces," J. Chem. Phys. 89, 2185-2192 (1988).
- ⁸ P.-Å. Malmqvist, A. Rendell, and B. O. Roos, "The restricted active space self-consistent-field method, implemented with a split graph unitary group approach," J. Phys. Chem. **94**, 5477–5482 (1990).
- ⁹ K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, "Second-order perturbation theory with a CASSCF reference function," J. Phys. Chem. **94**, 5483– 5488 (1990).
- ¹⁰ K. Andersson, P.-Å. Malmqvist, and B. O. Roos, "Secondorder perturbation theory with a complete active space self-consistent field reference function," J. Chem. Phys. **96**, 1218-1226 (1992).
- ¹¹ A. Zaitsevskii and J.-P. Malrieu, "Multi-partitioning quasidegenerate perturbation theory. A new approach to multireference Møller-Plesset perturbation theory," Chem. Phys. Lett. 233, 597-604 (1995).
- ¹² J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, "The multi-state CASPT2 method," Chem. Phys. Lett. 288, 299-306 (1998).
- ¹³ P.-Å. Malmqvist, K. Pierloot, A. R. Moughal Shahi, C. J. Cramer and L. Gagliardi, "The restricted active space followed by second-order perturbation theory method: Theory and application to the study of CuO₂ and Cu₂O₂ systems," J. Chem. Phys. **128**, 204109 (2008).
- ¹⁴ B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, "A mean-field spin-orbit method applicable to correlated wavefunctions," Chem. Phys. Lett. **251**, 365-371 (1996).
- ¹⁵ P. A. Malmqvist, B. O. Roos, and B. Schimmelpfennig, "The RASSI approach with spin-orbit coupling," Chem. Phys. Lett. **357**, 230-240 (2002).
- ¹⁶ R. Llusar, M. Casarrubios, Z. Barandiarán, and L. Seijo, "Ab initio model potential calculations on the electronic spectrum of Ni²⁺-doped MgO including correlation, spin-

orbit and embedding effects," J. Chem. Phys. **105**, 5321–5330 (1996).

- ¹⁷ Z. Barandiarán and L. Seijo, "The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu⁺," J. Chem. Phys. 89, 5739–5746 (1988).
- ¹⁸ Z. Barandiarán and L. Seijo, "Intervalence charge transfer luminescence: Interpaly between anomalous and 5d - 4femissions in Yb-doped florite-type crystals," J. Chem. Phys. **141**, 234704 (2014).
- ¹⁹ L. Seijo and Z. Barandiarán, "Ab initio model potential study of local distortions around Cr⁺ and Cr³⁺," J. Chem. Phys. **94**, 8158–8164 (1991).
- ²⁰ A. Gellé and M.-B. Lepetit, "Fast calculation of the electrostatic potential in ionic crystals by direct summation method," J. Chem. Phys. **128**, 244716 (2008).
- ²¹ P. P. Ewald, "Die berechnung optischer und elektrostatischer gitterpotentiale," Ann. Phys. **369**, 253–287 (1921).
- ²² T. Kobayashi, K. Susa, and S. Taniguchi, "Preparation and semiconductive properties of rock salt type solid solution systems, $Cd_{1-x}M_xS$ (M = Sr, Ca, Mg, Pb, Sn)," J. Phys. Chem. Solids **40**, 781–785 (1979).
- ²³ R. W. G. Wyckoff, Crystal Structures (Wiley, New York, 1963).
- ²⁴ J. L. Pascual, N. Barros, Z. Barandiarán, and L. Seijo, "Improved embedding ab initio model potentials for embedded cluster calculations," J. Phys. Chem. A **113**, 12454-12460 (2009).
- ²⁵ B. O. Roos, R. Lindh, P. A. Malmqvist, V. Veryazov, P. O. Widmark and A. C. Borin, "New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF₃," J. Phys. Chem. A **112**, 11431–11435 (2008).
- ²⁶ B. O. Roos, R. Lindh, P. A. Malmqvist, V. Veryazov, and P. O. Widmark, "Main group atoms and dimers studied with a new relativistic ANO basis set," J. Phys. Chem. A 108, 2851–2858 (2004).
- ²⁷ L. Seijo and Z. Barandiarán, "The ab initio model potential method: A common strategy for effective core potential and embedded cluster calculations," in *Computational Chemistry: Reviews of Current Trends*, Vol. 4, edited by J. Leszczyński (World Scientific, Singapore, 1999) pp. 55-152.
- ²⁸ Z. Barandiarán and L. Seijo, "Radial correlation effects on interconfigurational excitations at the end of the lanthanide series: A restricted active space secons order perturbation study of yb²⁺ and srcl₂:yb²⁺," J. Chem. Phys. **138**, 074102 (2013).
- ²⁹ G. Ghigo, B. O. Roos, and P.-Å. Malmqvist, "A modified definition of the zeroth-order hamiltonian in multiconfigurational perturbation theory (caspt2)," Chem. Phys. Lett. **396**, 142 (2004).
- ³⁰ N. Forsberg and P.-Å. Malmqvist, "Multiconfiguration perturbation theory with imaginary level shift," Chem. Phys. Lett. 274, 196 (1997).
- ³¹ R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallogr. A **32**, 751–767 (1976).
- ³² M. C. Downer, C. D. Corderomontalvo, and H. Crosswhite, "Study of new 4f⁷ levels of Eu²⁺ in CaF₂ and SrF₂ using two-photon absorption-spectroscopy," Phys. Rev. B

28, 4931–4943 (1983).

- ³³ C. Dujardin, B. Moine, and C. Pedrini, "One-photon and two-photon spectroscopy of $f \rightarrow d$ and $f \rightarrow f$ transitions of Eu^{2+} ions in $M_{1-x}N_xF_2$ mixed fluoride-crystals (M, N = Ba, Sr, Ca; $0 \le x \le 1$)," J. Lumin. **54**, 259–270 (1993).
- ³⁴ C. Pedrini, M. F. Joubert, and D. S. McClure, "Photoionization processes of rare-earth dopant ions in ionic crystals," J. Lumin. **125**, 230–237 (2007).
- ³⁵ S. V. Gastev, J. K. Choi, and R. J. Reeves, "Laser spectroscopy of Eu³⁺ cubic centers in the CaF₂ bulk single crystal," Phys. Solid State **51**, 44-49 (2009).
- ³⁶ N Yamashita, S. Fukumoto, S. Ibuki, and H. Ohnishi, "Photoluminescence of Eu²⁺ and Eu³⁺ centers in CaS:Eu,Na phosphors," Jpn. J. Appl. Phys. **32**, 3135–3139 (1993).
- ³⁷ N. Yamashita, O. Harada, and K. Nakamura, "Photoluminescence spectra of Eu²⁺ centers in Ca(S,Se)Eu and Sr(S,Se)Eu," Jpn. J. Appl. Phys. **34**, 5539–5545 (1995).
- ³⁸ P. F. Smet, J. E. Van Haecke, F. Loncke, H. Vrielinck, F. Callens, and D. Poelman, "Anomalous photoluminescence in BaS:Eu," Phys. Rev. B **74** (2006).

TABLE S1: Spectroscopic constants of the ground and excited states of Eu^{2+} and Eu^{3+} -doped CaF₂ cubic defects calculated using the relativistic spin-free second order Douglas-Kroll-Hess Hamiltonian with AIMP CaF₂ embedding. The embedded cluster RASSCF results include basic bonding interactions and 4f-shell radial correlation; the MS-RASPT2 ones include also dynamic correlation of 79 or 78 valence electrons in the Eu 5s, 5p, F 2s, 2p, closed shells and Eu 4f, 5d, 6s open shells. Eu–F bond distances ($d_{\operatorname{Eu}-\mathrm{F},e}$ in Å), EuF₈ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), and minimum-to-minimum energy differences (T_e in cm⁻¹) are given. See Figs. S1, S2 and text for details.

		RASSCF			MS-RASPT2	
term	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e
		Eu^{2}	$^+$ -doped CaF ₂			
$4f^{7}(^{8}F)$						
$1 {}^{8}A_{1u}$	2.433	416	0	2.388	423	0
		$4f^{6}(5d + I7)$	$(E_{a_{1g}})^1$ excited	states		
$4f^6(^7F)5de_g^1$						
Octets						
$1 {}^{8}T_{2a}$	2.419	420	24344	2.372	429	27329
$1 {}^{8}E_{a}^{2g}$	2.417	420	24709	2.370	423	27804
$1 {}^{8}T_{1a}^{9}$	2.419	420	25333	2.373	429	28008
$2 {}^{8}T_{1a}^{1g}$	2.419	420	26392	2.373	429	29265
$2 \ ^{8}T_{2g}^{-g}$	2.418	420	28127	2.372	429	30178
Sextets						
$1 {}^{6}T_{1q}$	2.420	419	30627	2.372	427	31468
$1 {}^{6}T_{2q}$	2.418	420	34491	2.370	430	34362
$1 {}^{6}E_{q}$	2.416	419	35180	2.366	428	34942
$2 {}^{6}T_{1q}$	2.418	419	35857	2.370	430	35142
$2 {}^{6}T_{2g}$	2.417	420	38708	2.369	429	37059
$4f^6(^7F)(5dt_2^1)$	$(g + ITE_{a_{1g}}^1)^{a}$					
Octets						
$3 {}^{8}T_{1a}$	2.466	414	44495	2.418	407	47987
$3 {}^{8}T_{2a}^{2g}$	2.467	414	43971	2.421	406	48085
$2 {}^{8}E_{a}^{5}$	2.467	414	43750	2.421	420	48122
$1 {}^{8}A_{2a}^{9}$	2.467	413	48041	2.312	403	48572
$4 {}^{8}T_{1a}^{-3}$	2.467	414	46877	2.380	406	49474
$4 \ {}^{8}T_{2a}$	2.468	414	48102	2.354	758	50161
$3 \ {}^{8}E_{a}^{5}$	2.467	414	47453	2.421	419	51029
$5 \ ^{8}T_{1g}^{9}$	2.467	412	48842	2.376	456	51179
$2 {}^{8}A_{2a}^{1g}$	2.400	870	51527	2.399	1060	51591
$5 \ {}^{8}T_{2a}^{-s}$	2.400	867	51644	2.394	622	51819
$6 {}^{8}T_{1a}^{-3}$	2.401	962	51567	2.397	834	51968
$1 \ {}^{8}A_{1g}$	2.467	413	48888	2.421	419	51984
		$4f^7$	excited states			
$4f^{7}(^{6}P)$						
$1 {}^{6}T_{1u}$	2.432	416	33652	2.386	422	30587
$4f^{7}(^{6}I)$						
$1^{-6}T_{2u}$	2.432	416	37088	2.386	422	34192
$1^{6}E_{}$	2 432	416	37108	$\frac{2.386}{2.386}$	423	34424

mee, beijo and	Daranaran					pupporting in	10111
$1 {}^{6}A_{2u}$	2.432	416	37117	2.386	422	34553	
$2^{-6}T_{2u}$	2.432	415	37277	2.386	422	34560	
$1 {}^{6}A_{1u}$	2.432	416	37375	2.386	422	34701	
$2^{6}T_{1u}$	2.433	416	37359	2.386	423	34705	
10 (17 (6 D)							
$4f'(^{\circ}D)$							
$2^{6}E_u$	2.432	416	41048	2.385	423	37164	
$3 \ ^{6}T_{2u}$	2.432	416	41198	2.386	422	37294	
$4f^{7}(^{6}G, ^{6}F)$							
$4 {}^{6}T_{2u}$	2.429	416	54808	2.383	423	48989	
$3^{6}T_{1u}$	2.429	416	55007	2.383	422	49254	
$3^{6}E_{u}$	2.432	416	55369	2.386	422	49298	
$2^{6}A_{2n}$	2.431	416	55387	2.385	423	49723	
$2^{6}A_{1}$	2 433	415	56104	2 387	422	50047	
$5 {}^{6}T_{2}$	2.100	416	55651	2.386	422	50263	
$4 {}^{6}T_{1}$	2.432 2.433	416	56051	2.387	422	50203 50517	
	2.100	110	00001	2.001	122	00011	
$4f^7(^6H)$							
$5^{6}T_{1u}$	2.431	416	60996	2.384	423	54720	
$4^{6}E_{u}$	2 431	416	61118	2 384	422	54796	
$6^{6}T_{1}$	2 432	416	61532	2 386	423	55261	
$6^{6}T_{2u}$	2.432	416	61626	2.387	423	55411	
• - <u>2</u> u		2					
		Eu ^o	⁺ -doped CaF ₂				
$4f^6(^7F)$ ^a							
$1 {}^{7}A_{2q}$	2.290	488	0	2.257	501	0	
$1 {}^{7}T_{1a}$	2.293	488	1215	2.261	493	1532	
$1 \ ^{7}T_{2g}^{1g}$	2.294	488	1485	2.262	495	1663	
$4f^{6}(^{5}D)$							
rj (12)							
$1 E_g$	2.292	488	23818	2.260	493	22107	
$1 \ {}^{3}T_{2g}$	2.292	488	23977	2.260	493	22239	
$4f^{6}({}^{5}L, {}^{5}G)$							
$2^{5}E_{g}$	2.290	488	27372	2.258	493	26362	
$1 {}^{5}T_{1g}$	2.290	488	27419	2.258	493	26451	
$1 {}^{5}A_{1q}$	2.290	488	27444	2.258	493	26676	
$2 {}^{5}T_{2a}$	2.292	487	28136	2.259	496	26702	
$2 {}^{5}T_{1g}$	2.292	488	28148	2.261	494	27288	
$3 {}^{5}E_{a}$	2.292	488	28329	2.260	494	27314	
$3 \frac{5}{7} T_{2a}$	2 292	488	28337	2.261	493	27808	
$3 \frac{5}{2g}$	2.292	488	28071	2.201	497	27810	
$5 I_{1g}$ 5Λ	2.292	400	20941	2.200	404	21013	
$4 A_{1g}$	2.294	400	29209	2.202	494	21041	
$4 L_a$	2.292	489	28793	2.201	495	28031	
4.5m	0.000	100	00004	0.000	100	00040	

Joos, Smet, Seijo and Barandiarán

^a Mixings and avoided crossings between states of the $4f^6({}^7F)5dt_{2g}^1$ and $4f^6({}^7F)ITE_{a_{1g}}^1$ configurations make most energy curves strongly anharmonic. The shape of the energy curves can be seen in Fig. S1. A value of $d_{\mathrm{Eu-F},e}$ for states of the $4f^6({}^7F)5dt_{2g}^1$ configuration of about 2.421 Å can be deduced from states in the 8E_g and ${}^8A_{1g}$ symmetry blocks where the $4f^6({}^7F) \times ITE_{a_{1g}}$ coupling is absent.

^b The energy difference between the Eu³⁺ $4f^6 - 1^7 A_{2g}$ and the Eu²⁺ $4f^7 - 1^8 A_{1u}$ minima at MS-RASPT2 level is 17494 cm⁻¹.

TABLE S2: Spectroscopic constants of the ground and excited states of Eu^{2+} and Eu^{3+} -doped SrF₂ cubic defects calculated using the relativistic spin-free second order Douglas-Kroll-Hess Hamiltonian with AIMP SrF₂ embedding. The embedded cluster RASSCF results include basic bonding interactions and 4*f*-shell radial correlation; the MS-RASPT2 ones include also dynamic correlation of 79 or 78 valence electrons in the Eu 5*s*, 5*p*, F 2*s*, 2*p*, closed shells and Eu 4*f*, 5*d*, 6*s* open shells. Eu–F bond distances ($d_{\operatorname{Eu}-\mathrm{F},e}$ in Å), EuF₈ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), and minimum-to-minimum energy differences (T_e in cm⁻¹) are given. See Figs. S1, S2 and text for details.

		RASSCF		I	MS-RASPT2	
term	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e
		Eu^2	$^+$ -doped SrF ₂			
$4f^{7}(^{8}F)$						
$1 \ ^8A_{1u}$	2.522	363	0	2.470	370	0
		$4f^{6}(5d + I7)$	$(E_{a_{1g}})^1$ excited	states		
$4f^6(^7F)5de_g^1$						
Octets						
$1 {}^{8}T_{2q}$	2.506	366	25443	2.451	371	28455
$1 {}^{8}E_{q}$	2.503	363	25933	2.448	374	29048
$1 {}^{8}T_{1a}$	2.506	365	26378	2.451	366	29114
$2 {}^{8}T_{1a}$	2.506	365	27436	2.451	377	30359
$2 \ ^{8}T_{2g}^{2g}$	2.505	365	29232	2.450	362	31344
Sextets						
$1 {}^{6}T_{1q}$	2.506	365	31590	2.451	372	32521
$1 {}^{6}T_{2q}$	2.504	364	35498	2.448	360	35531
$1 {}^{6}E_{q}$	2.502	360	36320	2.444	372	36179
$2 {}^{6}T_{1q}$	2.505	364	36826	2.449	365	36292
$2 \ {}^{6}T_{2g}$	2.502	362	39728	2.448	375	38266
$4f^6(^7F)(5dt_{2g}^1$	$_{g} + ITE^{1}_{a_{1g}})$ a					
Octets						
$3 {}^{8}T_{2a}$	2.558	363	41696	2.503	430	45834
$3 {}^{8}T_{1}$	2 555	363	42315	$\frac{2}{2}501$	522	45862
$2^{8}E_{-}$	2 557	363	41455	$\frac{2}{2}504$	364	45864
$\frac{2}{4} \frac{2}{8} \frac{2}{7}$	2 557	363	44592	2.502	465	47230
$1^{8}A_{2}$	2.558	362	45705	2.302 2.374	332	47522
$3^{8}E$	2.550 2.557	363	45158	2.503	367	48766
$4 \frac{8}{2}$	2.558	362	45750	2.000	344	18922
$5 \frac{8}{7}$	2.558	362	46529	2.150	389	18981
$1^{8}A_{1}$	2.558	362	46545	2.402	367	40501
$5 \frac{8}{T_{a}}$	2.000	507	40705	2.504	039	49092 50005
$\frac{5}{28} \frac{12g}{12g}$	2.402	588	49705	2.451	932 594	50108
$6 {}^{8}T_{1q}$	2.402 2.470	553	49974	2.400 2.458	$524 \\ 518$	50492
0		A £7	avaited states			
		41	excited states			
$4f^{7}(^{6}P)$						
$1 {}^{6}T_{1u}$	2.522	362	33747	2.469	369	30725
$4f^{7}(^{6}I)$						
$1 {}^{6}T_{2u}$	2.522	363	37184	2.468	369	34372
$1^{-6}E_{a}$	2.521	363	37206	2.468	370	34585

· J-						- 11- 0	-
$2^{6}T_{2u}$	2.522	363	37356	2.469	369	34713	
$1 {}^{6}A_{2u}$	2.522	363	37206	2.469	369	34713	
$1 {}^{6}A_{1u}$	2.522	363	37431	2.469	369	34811	
$2 {}^{6}T_{1u}$	2.522	363	37410	2.469	369	34819	
$4f^{7}(^{6}D)$							
96 <i>F</i>	9 591	262	41156	9 469	270	27246	
$2 L_u$ 2 6T	2.521	269	41100	2.400	370	27454	
$3 I_{2u}$	2.322	302	41288	2.409	309	37434	
$4f^{7}(^{6}G, ^{6}F)$							
$4^{6}T_{2u}$	2.519	362	55029	2.466	369	49353	
$3^{6}E_{u}$	2.521	363	55497	2.467	370	49494	
$3 {}^{6}T_{1u}$	2.519	362	55235	2.466	369	49557	
$2^{6}A_{2u}$	2.521	363	55518	2.467	370	49951	
$2^{6}A_{1u}$	2.522	363	56111	2.470	369	50135	
$5 {}^{6}T_{2u}$	2.522	363	55746	2.469	369	50404	
$4 {}^{6}T_{1u}$	2.523	363	56043	2.470	369	50582	
$4f^{7}(^{6}H)$							
5 ⁶ T	2 520	363	61170	2 467	360	55007	
$4^{6}F$	2.520	363	61203	2.407	370	55073	
$6 {}^{6}T$	2.520	363	61619	2.401	370	55401	
$6 {}^{6}T_{2u}$	2.522 2.522	363	61682	2.469 2.469	$370 \\ 370$	55561	
• - 2 <i>u</i>		Eu ³	+-doped SrF ₂				
$4f^{6}(7E)$ b		Eu					
4J (F)							
$1 {}^{7}A_{2q}$	2.346	436	0	2.310	440	0	
$1 {}^{7}T_{1q}$	2.349	432	1037	2.314	447	1265	
$1 \ ^{7}T_{2g}^{-3}$	2.349	431	1281	2.315	445	1387	
$4f^{6}(^{5}D)$							
15 <i>E</i>	9.947	191	99717	9 9 1 1	440	91020	
$1 \ L_g$ $1 \ ^5T$	2.347	434	23717	2.311	449	21930	
1 1 _{2g}	2.348	432	23030	2.515	447	22047	
$4f^{6}({}^{5}L, {}^{5}G)$							
$2 {}^{5}E_{g}$	2.346	436	27364	2.310	448	26282	
$1 {}^{5}T_{1g}$	2.346	436	27400	2.310	448	26362	
$1 {}^{5}A_{1g}$	2.346	435	27413	2.310	449	26577	
$2 {}^{5}T_{2q}$	2.348	432	28021	2.310	448	26615	
$2 {}^{5}T_{1q}$	2.348	433	28010	2.313	448	27059	
$3 {}^{5}E_{q}$	2.349	432	28171	2.312	449	27133	
$2 {}^{5}A_{1a}$	2.349	431	28999	2.314	450	27539	
$3 {}^{5}T_{2a}$	2.349	431	28174	2.314	445	27540	
$3 {}^{5}T_{1g}^{-g}$	2.349	432^{-}	28788	2.313	447	27604	
$4 {}^{5}E_{a}^{5}$	2.349	432	28639	2.313	448	27759	
$4 {}^{5}T_{2a}$	2.349	433	28521	2.315	450	27843	
9	+•	200					

Joos, Smet, Seijo and Barandiarán

^a Mixings and avoided crossings between states of the $4f^6({}^7F)5dt_{2g}^1$ and $4f^6({}^7F)ITE_{a_{1g}}^1$ configurations make most energy curves strongly anharmonic. The shape of the energy curves can be seen in Fig. S1. A value of $d_{\mathrm{Eu}-\mathrm{F},e}$ for states of the $4f^6({}^7F)5dt_{2g}^1$ configuration of about 2.504 Å can be deduced from states in the 8E_g and ${}^8A_{1g}$ symmetry blocks where the $4f^6({}^7F) \times ITE_{a_{1g}}$ coupling is absent.

^b The energy difference between the Eu³⁺ $4f^6 - 1^7A_{2g}$ and the Eu²⁺ $4f^7 - 1^8A_{1u}$ minima at MS-RASPT2 level is 18459 cm⁻¹.

TABLE S3: Spectroscopic constants of the ground and excited states of Eu^{2+} and Eu^{3+} -doped BaF₂ cubic defects calculated using the relativistic spin-free second order Douglas-Kroll-Hess Hamiltonian with AIMP BaF₂ embedding. The embedded cluster RASSCF results include basic bonding interactions and 4f-shell radial correlation; the MS-RASPT2 ones include also dynamic correlation of 79 or 78 valence electrons in the Eu 5s, 5p, F 2s, 2p, closed shells and Eu 4f, 5d, 6s open shells. Eu–F bond distances ($d_{\operatorname{Eu}-F,e}$ in Å), EuF₈ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), and minimum-to-minimum energy differences (T_e in cm⁻¹) are given. See Fig. S1, S2 and text for details.

		RASSCF]	MS-RASPT2	
term	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e
		Eu^{2}	+-doped BaF ₂			
$4f^{7}(^{8}F)$						
$1 \ ^{8}A_{1u}$	2.621	311	0	2.558	320	0
		$4f^{6}(5d + I7)$	$(E_{a_{1g}})^1$ excited	lstates		
$4f^6(^7F)5de_g^1$						
Octets						
$1 {}^{8}T_{2g}$	2.599	277	26522	2.533	327	29705
$1 \ {}^{8}T_{1g}$	2.601	276	27396	2.534	327	30323
$1 {}^{8}E_{g}$	2.597	293	27101	2.535	324	30458
$2 \ ^{8}T_{1g}$	2.601	276	28458	2.534	326	31578
$2 {}^{8}T_{2g}$	2.597	294	30334	2.532	327	32626
Sextets						
$1 {}^{6}T_{1g}$	2.601	275	32542	2.533	323	33714
$1 {}^{6}T_{2g}$	2.596	297	36528	2.529	325	36784
$1 {}^{6}E_{g}$	2.595	307	37442	2.526	325	37547
$2 {}^{6}T_{1g}$	2.597	292	37819	2.530	325	37574
$2^{6}T_{2g}$	2.595	309	40792	2.529	322	39610
$4f^6(^7F)(5dt_2^1)$	$_{g} + ITE^{1}_{a_{1g}})$ a					
Octets						
$3 {}^{8}T_{2a}$	2.655	319	39787	2.591	317	44164
$2 {}^{8}E_{a}^{-9}$	2.655	319	39537	2.591	316	44166
$3 {}^{8}T_{1a}$	2.653	325	40503	2.588	317	44315
$4 {}^{8}T_{1a}$	2.655	319	42698	2.591	315	45569
$3 {}^{8}E_{a}$	2.655	319	43245	2.591	316	47066
$1 {}^{8}A_{2a}^{3}$	2.656	318	43739	2.500	812	47092
$4 \ {}^{8}T_{2a}$	2.656	319	43772	2.599	416	47222
$5 \ {}^{8}T_{1a}^{-s}$	2.656	318	44577	2.599	475	47679
$1 {}^{8}A_{1a}$	2.656	318	44577	2.591	315	47969
$5 \ ^{8}T_{2a}$	2.530	467	49334	2.516	480	49419
$2 {}^{8}A_{2a}$	2.526	486	49362	2.540	455	49457
$6 \ ^8T_{1g}$	2.552	345	49428	2.523	466	49529
		$4f^7$	excited states			
$4f^{7}(^{6}P)$						
$1 \ ^{6}T_{1u}$	2.620	310	33822	2.556	320	30960
$4f^{7}(^{6}I)$						
$1^{-6}T_{2u}$	2.620	310	37264	2.555	321	34626
$1^{6}E_{u}$	2.620	310	37287	2.555	321	34834

/ 5						11 0	
$2^{6}T_{2u}$	2.620	310	37419	2.556	320	34956	
$1 {}^{6}A_{2u}$	2.620	310	37281	2.556	320	34960	
$1 {}^{6}A_{1u}$	2.621	310	37476	2.557	320	35019	
$2 {}^{6}T_{1u}$	2.621	310	37455	2.557	320	35027	
$4f^{7}(^{6}D)$							
0.6F	2 620	310	41946	9 555	291	3760.0	
$2 L_u$ 2 6T	2.020	210	41240	2.000	321	37009	
$3 \circ I_{2u}$	2.620	310	41359	2.555	317	37723	
$4f^{7}(^{6}G, ^{6}F)$							
$4 {}^{6}T_{2u}$	2.618	309	55213	2.553	353	49754	
$3^{6}E_{u}$	2.619	310	55606	2.555	320	49781	
$3^{6}T_{1u}$	2.618	309	55424	2.554	323	49939	
$2^{6}A_{2u}$	2.619	310	55627	2.555	320	50251	
$2 {}^{6}A_{1u}$	2.621	310	56112	2.557	320	50311	
$5 {}^{6}T_{2u}$	2.620	310	55825	2.555	320	50644	
$4 \ {}^{6}T_{1u}$	2.622	$310 \\ 310$	56034	2.557	321	50741	
$4f^{7}(^{6}H)$							
$5^{6}T_{1}$	2 619	310	61316	2554	322	55355	
$1^{6}E$	2.619	310	61/39	2.554	321	55415	
^{6}T	2.015	310	61688	2.554	320	55635	
$5^{6}T_{2u}$	2.620	$310 \\ 310$	61734	2.550 2.557	$320 \\ 320$	55787	
		${ m Eu}^{3}$	+-doped BaF ₂				
$4f^{6}(^{7}F)^{b}$							
$1^{7}A_{2}$	2 300	40.9	0	2 360	40.1	0	
$1 A_{2g}$ 1 7T	2.599	409	807	2.300	401	1190	
$1 I_{1g}$ 1 7T	2.401	408	097	2.303	400	1120	
Γ_{2g}	2.402	406	1124	2.364	401	1210	
$4f^{6}(^{5}D)$							
$1 \ {}^5E_g$	2.400	410	23639	2.361	399	21897	
$1 \ {}^{5}T_{2g}$	2.400	410	23765	2.362	399	21993	
$4f^{6}(^{5}L,^{5}G)$							
$2 {}^{5}E_{a}$	2.399	408	27357	2.360	399	26329	
$1 {}^{5}T_{1a}$	2.399	410	27385	2.360	399	26411	
$1^{5}A_{1a}$	2.399	410	27388	2.360	399	26620	
$2^{5}T_{2}$	$\frac{2}{2}$ 401	408	27924	2.360	396	26662	
$2^{5}T_{1}$	2.101	400	27924	2,369	400	26986	
2^{-1}	2.401	400	21505	2,002	400	20000	
$S = E_g$ $S = 5T_c$	2.401 9.401	409	20047	2.302	400	21091	
5_{A}	2.401	406	20041	2.000 9.264	400	21392	
ΔA_{1a}	Z.4UZ	400	20040	2.304	400	27409	
$5 5 T^{-9}$	9 40 1	400	90671	11 12/211		07590	
$3 {}^{5}T_{1g}^{1g}$	2.401	409	28671	2.362	399	27532	
$3 {}^{5}T_{1g}$ $4 {}^{5}E_{g}$	2.401 2.401	409 409	28671 28527	2.362 2.363	$\begin{array}{c} 399 \\ 401 \\ 401 \end{array}$	27532 27636	

^a Mixings and avoided crossings between states of the $4f^6({}^7F)5dt_{2g}^1$ and $4f^6({}^7F)ITE_{a_{1g}}^1$ configurations make most energy curves strongly anharmonic. The shape of the energy curves can be seen in Fig. S1. A value of $d_{\mathrm{Eu-F},e}$ for states of the $4f^6({}^7F)5dt_{2g}^1$ configuration of about 2.591 Å can be deduced from states in the 8E_g and ${}^8A_{1g}$ symmetry blocks where the $4f^6({}^7F) \times ITE_{a_{1g}}$ coupling is absent.

^b The energy difference between the Eu³⁺ $4f^6 - 1^7 A_{2g}$ and the Eu²⁺ $4f^7 - 1^8 A_{1u}$ minima at MS-RASPT2 level is 17463 cm⁻¹.

TABLE S4: Spectroscopic constants of the ground and excited states of Eu^{2+} and Eu^{3+} -doped CaS octahedral defects calculated using the relativistic spin-free second order Douglas-Kroll-Hess Hamiltonian with AIMP CaS embedding. The embedded cluster RASSCF results include basic bonding interactions and 4f-shell radial correlation; the MS-RASPT2 ones include also dynamic correlation of 99 or 98 valence electrons in the Eu 5s, 5p, S 3s, 3p, Ca 3p closed shells and Eu 4f, 5d, 6s open shells. Eu–S bond distances $(d_{\operatorname{Eu-S},e} \text{ in } \mathring{A})$, EuS₆ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), and minimum-to-minimum energy differences (\mathbb{T}_e in cm⁻¹) are given. See Fig. S1, S2 and text for details.

	RASSCF			MS-RASPT2			
term	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_{e}	
		${ m Eu}^2$	²⁺ -doped CaS				
$4f^{7}(^{8}F)$							
$1 \ ^{8}A_{1u}$	2.911	305	0	2.876	284	0	
$4f^{6}(^{7}F)5dt^{1}_{2g}$							
Octets							
$1^{8}E_{g}$	2.892	303	20437	2.849	292	19952	
$1 {}^{8}T_{2q}$	2.892	303	20504	2.848	279	20278	
$1 {}^{8}T_{1q}$	2.893	303	20938	2.847	276	20492	
$2 {}^{8}T_{1q}$	2.891	303	21914	2.848	282	21014	
$2^{8}E_{a}$	2.890	302	22710	2.847	283	21603	
$1 {}^{8}A_{2a}^{9}$	2.890	302	23435	2.846	281	22004	
$2 {}^{8}T_{2a}^{-9}$	2.890	303	23428	2.847	280	22664	
$1 {}^{8}A_{1a}$	2.890	302	24309	2.846	281	22750	
$3 \ {}^{8}T_{1g}^{1g}$	2.890	303	24324	2.847	281	23292	
Sextets							
$1 {}^{6}T_{1q}$	2.890	303	25290	2.849	283	25656	
$2^{6}T_{1q}$	2.888	302	29115	2.845	284	28318	
$1 {}^{6}E_{q}$	2.888	302	29049	2.845	284	28363	
$1 {}^{6}T_{2a}^{3}$	2.887	302	29211	2.845	284	28543	
$1 {}^{6}A_{2a}$	2.885	302	31345	2.843	284	29071	
$2^{6}T_{2a}^{-9}$	2.885	302	31799	2.844	284	29805	
$2^{6}E_{a}^{-9}$	2.884	301	32148	2.842	284	30267	
$3^{6}T_{1g}$	2.885	301	32565	2.843	283	30551	
$1 {}^{6}A_{1g}$	2.883	301	33701	2.841	284	31007	
$4f^{6}(^{7}F)(5de_{g}^{1}+$	$+ 6sa_{1g}^1)$						
Octets							
$3 {}^{8}T_{2g}$	2.925	303	40556	2.883	276	41139	
$4 {}^{8}T_{1q}$	2.924	302	42007	2.881	275	42067	
$3^{8}E_{q}$	2.924	302	41934	2.878	277	42955	
$5 \ ^{8}T_{1q}$	2.924	302	42930	2.881	275	43750	
$4 {}^{8}T_{2q}$	2.923	301	44113	2.881	274	43933	
$6 {}^{8}T_{1a}$	2.947	303	56762	2.901	274	50986	
$5 {}^{8}T_{2a}$	2.947	303	57017	2.901	275	51380	
$2 \ ^{8}A_{2g}^{-g}$	2.947	304	57185	2.901	228	51621	
Sextets							
$3 \ ^{6}T_{2g}$	2.891	303	45053	2.849	281	45389	
$4 {}^{6}T_{1g}$	2.905	292	45346	2.850	453	45722	
$3^{6}E_{g}$	2.891	302	45660	2.849	281	45741	
$5 {}^{6}T_{1g}$	2.891	306	45779	2.850	419	45904	
$4 {}^{6}T_{2q}$	2.895	298	46171	2.851	282	46328	
$2 {}^{6}A_{1q}$	2.890	302	47372	2.848	280	46790	
$6 {}^{6}T_{1q}$	2.891	303	48057	2.867	289	48651	

$5 {}^{6}T_{2q}$	2.891	303	48057	2.854	273	49773
$2 {}^{6}A_{2a}$	2.890	303	49514	2.849	279	49881
$7 {}^{6}T_{1a}$	2.890	303	48286	2.855	252	49936
$3 {}^{6}A_{1g}$	2.890	303	48523	2.849	279	50183
$4^{6}E_{a}$	2.891	303	48285	2.852	277	50185
$6 {}^{6}T_{2a}^{9}$	2.890	303	48733	2.850	335	50219
$8^{6}T_{1g}$	2.890	302	48651	2.857	286	50291
$7 {}^{6}T_{2g}$	2.890	303	48901	2.850	288	50447
$9^{6}T_{1a}$	2.897	293	48941	2.851	265	50504
$5^{6}E_{a}$	2 890	303	48901	2 850	281	50535
$10^{6}T_{1a}$	2 895	293	49536	2 850	285	50581
$4^{6}A_{1a}$	2.891	303	49656	2.849	279	50754
$8^{6}T_{2}$	2 893	298	49367	2 849	271	50829
$11 \frac{6}{T_{1-}}$	2 890	304	49689	2 848	235	50994
$9^{6}T_{2}$	2.891	299	49831	2 849	300	51024
$6 {}^{6}E_{-}$	2 890	298	49883	2 849	286	51095
$10^{6}T_{2}$	2.891	305	49899	2 849	282	51112
$11^{6}T_{2}$	2 890	300	50515	2 849	268	51280
$3^{6}A_{0}$	2.890	302	49842	2 849	280	51311
$7^{6}E$	2 893	303	50032	2.853	264	51366
$12 {}^{6}T_{2}$	2.890	303	50685	2.848	277	51460
$12^{6}T_{1-}$	2.895	304	49944	2.850	289	51473
$8^{6}E$	2.890	299	51194	2.850	209	51604
$13 {}^{6}T_{0}$	2.892	297	51111	2.849	270	51886
$13 \ {}^{6}T_{1}$	2.892	303	50558	2.849	272	51925
$14^{6}T_{2}$	2.890	304	51165	2.853	265	52342
$11 \ 12g$ $14 \ ^{6}T_{1}$	2.890	302	51147	2.853	200	52370
$5^{6}A_{1}$	2.890	302	51114	2.805	280	52373
$15^{6}T_{1}$	2.892	303	52685	2.849	266	52435
$4^{6}A_{0}$	2.892	302	51129	2.848	280	52482
$0^{6}E$	2.000	300	51865	2.810	260	52525
$15 \frac{6}{T_0}$	2.001	302	51787	2.857	201	52581
$16 \ ^{6}T_{2}$	2.895	307	52917	2.851	240	52713
$16 \ ^{6}T_{1}$	2,000	296	53231	2.861	301	52753
$10^{-6}E$	2,901	290	53098	2.860	306	52778
$10^{-}L_{g}$ $17^{-6}T_{2}$	2.500	294	53638	2.865	249	53831
$11 \ ^{6}E$	2.894	305	5/308	2.809	245	54406
$17 \ ^{6}T_{1}$	2.890	303	54978	2.849	210	54553
$6^{6} 4_{1}$	2.031	303	54514	2.848	202	54802
$18^{6}T_{2}$	2.890	302	54677	2.849	270	54820
$5^{6} 4_{2g}$	2.891	302	54426	2.800	278	54885
$10^{6}T_{2}$	2,000	991	55628	2.049	210	55061
$13 \ 12g$ $18 \ ^{6}T_{1}$	2.502	303	55098	2.840	265	55216
10^{-11g} $12^{-6}E$	2.891	302	55202	2.045	275	55332
$12 \ D_g$ $10^{6}T_1$	2.890	302	55737	2.848	210	55441
$20^{6}T_{2}$	2,001	378	55967	2.848	236	55694
$13^{6}E$	2.500	304	56276	2.848	260	55792
$21 \frac{6}{T_0}$	2.895	307	56681	2.040	300	56063
21 12g $20 {}^{6}T_{1}$	2.031	307	56887	2.840	263	56265
$6^{6} 4_{2}$	2.891	302	56548	2.848	200	56266
0 112g	2.050	002	00040	2.040	202	00200
		$4f^7$ exci	ted states			
		+j exel	acce states			
$4f^{7}(^{6}P)$						
$1 {}^{6}T_{1u}$	2.909	304	33449	2.870	280	30009
$Af^{7}(^{6}I)$						
чJ (1)						
$1 {}^{6}T_{2u}$	2.909	304	36913	2.869	281	33773
$1 {}^{6}A_{1u}$	2.909	304	36931	2.870	281	33887
$2 {}^{6}T_{1u}$	2.909	304	36938	2.869	280	33914

s, Smet, Seijo an	d Barandiarán					Supporting Info	ormation
a 677	2 000	201	0.00.4.4	0.040	200		
$2 \ ^{\circ}T_{2u}$	2.909	304	36944	2.869	280	33957	
$1 {}^{6}E_{u}$ $1 {}^{6}A_{2u}$	2.909 2.909	$\frac{304}{304}$	36957 36922	$\frac{2.870}{2.870}$	$\frac{280}{281}$	33957 34063	
$4f^{7}(^{6}D)$							
$2^{6}T_{2}$	2 000	304	40805	2 860	281	36463	
$2 {}^{6}E_{u}$	2.908	304	40838	2.869 2.869	$\frac{281}{280}$	36637	
		Eu^{3}	³⁺ -doped CaS				
$4f^{6}(^{7}F)^{a}$							
1 777	0.760	290	0	9 79 9	200	0	
$\begin{array}{ccc} 1 & I_{1g} \\ 1 & ^7T \end{array}$	2.703	320	U 562	2.728	308	0	
$1 I_{2g}$ 1 7 A	2.704	321 290	000 419	2.729	308	472	
$1 A_{2g}$	2.704	320	412	2.731	308	190	
$4f^{6}(^{5}D)$							
$1 {}^{5}T_{2g}$	2.763	320	23001	2.727	307	21050	
$1 \ {}^5E_g$	2.763	320	23064	2.727	307	21176	
$4f^{6}(^{5}L, ^{5}G)$							
$1 {}^{5}T_{1a}$	2.763	320	26932	2.726	307	25573	
$2 {}^{5}E_{q}$	2.763	320	26867	2.726	307	25617	
$1 {}^{5}A_{1q}$	2.763	320	27262	2.726	307	25619	
$2 {}^{5}T_{2q}$	2.763	320	26830	2.727	307	25994	
$3 {}^{5}T_{2a}^{-3}$	2.763	320	27068	2.725	307	26111	
$3 {}^{5}E_{a}^{-3}$	2.763	320	27251	2.726	307	26238	
$4 {}^{5}T_{2q}$	2.763	320	27871	2.727	308	26253	
$2 {}^{5}T_{1q}$	2.763	320	27246	2.727	307	26322	
$3 {}^{5}T_{1q}$	2.763	320	27760	2.727	308	26552	
$4 {}^{5}E_{q}$	2.763	320	27731	2.727	307	26621	
$2^{5}A_{1}$	2.763	320	27651	2,727	307	26751	

^a The energy difference between the Eu³⁺ $4f^6 - 1^7T_{1g}$ and the Eu²⁺ $4f^7 - 1^8A_{1u}$ at MS-RASPT2 level is 25681 cm⁻¹.

TABLE S5: Spectroscopic constants of the ground and excited states of Eu^{2+} and Eu^{3+} -doped SrS octahedral defects calculated using the relativistic spin-free second order Douglas-Kroll-Hess Hamiltonian with AIMP SrS embedding. The embedded cluster RASSCF results include basic bonding interactions and 4f-shell radial correlation; the MS-RASPT2 ones include also dynamic correlation of 99 or 98 valence electrons in the Eu 5s, 5p, S 3s, 3p, Sr 4p closed shells and Eu 4f, 5d, 6s open shells. Eu–S bond distances $(d_{\operatorname{Eu-S},e} \text{ in } \mathbb{A})$, EuS₆ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), and minimum-to-minimum energy differences (T_e in cm⁻¹) are given. See Fig. S1, S2 and text for details.

	RASSCF			I	MS-RASPT2			
term	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e		
		${ m Eu}^2$	²⁺ -doped SrS					
$4f^{7}(^{8}S)$								
$1 {}^{8}A_{1u}$	2.984	282	0	2.974	267	0		
		$4f^{6}(5d +$	$(6s)^1$ excited st	ates				
$4f^6(^7F)5dt^1_{2g}$								
Octets								
$1 {}^{8}T_{2g}$	2.963	280	21571	2.943	264	21873		
$1 {}^{8}E_{g}$	2.963	280	21479	2.944	263	21960		
$1 {}^{8}T_{1g}$	2.963	280	21975	2.943	263	22092		
$2 {}^{8}T_{1g}$	2.963	280	22987	2.943	264	22596		
$2^{8}E_{g}$	2.962	279	23840	2.942	264	23747		
$1 {}^{8}A_{2g}$	2.961	279	24611	2.941	264	24194		
$2 {}^{8}T_{2g}$	2.962	279	24568	2.942	264	24309		
$1 {}^{8}A_{1g}$	2.961	279	25482	2.941	264	24922		
$3 \ ^{8}T_{1g}$	2.961	279	25493	2.941	264	24934		
Sextets								
$1 {}^{o}_{c}T_{1g}$	2.962	279	26429	2.945	264	27174		
$2 {}^{o}_{c} T_{1g}$	2.958	279	30382	2.940	264	30034		
$1 {}^{\mathrm{o}}_{c} E_{g}$	2.958	279	30329	2.940	265	30073		
$1 {}^{o}_{c} T_{2g}$	2.958	279	30514	2.940	264	30279		
$1 {}^{6}A_{2g}$	2.955	278	32748	2.938	264	30893		
$2 {}^{o}_{c} T_{2g}$	2.955	278	33191	2.938	264	31633		
$2 {}^{o}E_{g}$	2.955	278	33564	2.936	264	32153		
$3 {}^{o}T_{1g}$	2.956	278	33949	2.937	263	32409		
$1 {}^{6}A_{1g}$	2.954	277	35165	2.935	264	32927		
$4f^6(^7F)(5de_g^1$	$+ 6sa_{1g}^1)$							
Octets								
$3 {}^{8}T_{2g}$	3.000	277	39729	2.984	263	40486		
$4 {}^{8}T_{1g}$	2.998	278	41229	2.982	263	41435		
$3 {}^{8}E_{g}$	2.999	278	41114	2.981	262	42198		
$5 {}^{8}T_{1g}$	2.998	278	42128	2.982	263	43095		
$4 {}^{8}T_{2g}$	2.998	277	43320	2.982	262	43333		
$6 {}^{8}T_{1g}$	3.022	282	55155	2.999	261	49671		
$5 {}^{8}T_{2g}$	3.022	283	55385	3.000	264	50028		
$2 {}^{8}A_{2g}$	3.023	283	55559	3.000	265	50087		
Sextets	2.627	251		2.672	250	102.11		
$4 T_{1g}$	2.985	274	45413	2.973	258	46244		
$3 \ ^{\circ}T_{2g}$	2.962	279	46169	2.945	263	46885		
$3 \ E_g$	2.962	278	46753	2.945	266	47237		
$5 {}^{\circ}T_{1g}$	2.963	278	46857	2.946	263	47409		
$4 \ ^{\circ}T_{2g}$	2.972	272	46891	2.953	250	47576		

$2^{6}A_{1}$	2 961	279	48528	2943	264	48382
$6 {}^{6}T_{1}$	2.901	219	40020	2.940	379	40302
$7 \frac{6}{T}$	2.505	200	49407	2.901	266	50347
$F^{6}T$	2.902	211	49407	2.971	200	50347
$5 I_{2g}$	2.902	280	49137	2.907	280	50372
$4 E_g$	2.962	279	49401	2.978	204	50945
$2^{-}A_{2g}$	2.962	279	50632	2.945	264	51398
$6 {}^{\circ} I_{2g}$	2.961	278	49888	2.946	268	51558
$3 {}^{\circ}A_{1g}$	2.962	279	49644	2.945	264	51680
$8 {}^{o}T_{1g}$	2.969	274	49666	2.941	267	51701
$7 {}^{0}_{c}T_{2g}$	2.961	273	50068	2.946	256	51897
$9 {}^{o}_{c} T_{1g}$	2.961	283	49798	2.945	270	51954
$5 {}^{0}_{c}E_{g}$	2.961	279	50068	2.945	265	52016
$8 {}^{o}T_{2g}$	2.969	286	50179	2.954	242	52047
$10^{o}T_{1g}$	2.975	285	50124	2.945	264	52059
$9 {}^{6}T_{2g}$	2.963	280	50866	2.952	295	52226
$4 {}^{6}A_{1g}$	2.962	279	50773	2.945	264	52266
$6 {}^{6}E_{g}$	2.973	267	50724	2.950	306	52390
$11 \ {}^{6}T_{1g}$	2.961	278	50851	2.941	261	52479
$10^{-6}T_{2g}$	2.961	280	51017	2.945	257	52629
$7^{-6}E_{g}$	2.961	281	51071	2.944	266	52665
$11 \ {}^{6}T_{2g}$	2.966	273	51524	2.942	266	52700
$3^{6}A_{2g}$	2.962	279	50983	2.944	263	52853
$12 \ {}^{6}T_{1g}$	2.963	283	50885	2.962	229	52990
$12 \ {}^{6}T_{2q}$	2.962	280	51777	2.945	262	53014
$8^{6}E_{q}$	2.966	277	52157	2.942	265	53135
$13 \ {}^{6}T_{1q}$	2.961	279	51710	2.954	208	53381
$13 {}^{6}T_{2a}$	2.966	278	52033	2.944	262	53418
$14 \ {}^{6}T_{1a}^{-3}$	2.961	279	52315	2.946	255	53440
$9^{6}E_{a}^{19}$	2.964	279	52876	2.946	276	53528
$14 {}^{6}T_{2a}$	2.961	279	52321	2.958	239	53731
$15 {}^{6}T_{1g}^{2g}$	2.967	270	53682	2.967	253	53792
$4^{6}A_{2a}$	2.961	279	52290	2.989	286	53820
$15 {}^{6}T_{2a}$	2.963	280	52795	2.962	264	53826
$5^{6}A_{1c}$	2.961	279	52286	2.942	264	53991
$16^{6}T_{1}$	2 966	292	53777	2.959	238	54072
$10^{-6}E_{-}$	2.967	286	53723	2 943	268	54102
$16 \frac{6}{T_{2}}$	2 963	280	53832	2 9 5 9	200	54109
$17 {}^{6}T_{2}$	2.000 2.972	202	54385	2.955	245	54366
$17 \ ^{6}T_{1}$	2.962	280	55351	2,000	368	54662
$5^{6} 4_{2}$	2.962	200	55555	2.002	376	54687
$18 {}^{6}T_{2}$	2.966	267	55752	2.002	3/18	54907
$10^{-1}2g$ $11^{-6}F$	2.500	201	55266	2.900	264	55003
$11 \ D_g$ $10 \ ^6T_2$	2.905	200	55878	2.545	263	56141
$13 \ 12g$ $18 \ ^{6}T.$	2.909	230	56159	2.554	470	56175
$6^{6} A$	2,905	279	55652	2.952	264	56331
$0 A_{1g}$	2.902	219	57701	2.945	204	56456
$0 A_{2g}$	2.909	250	56065	2.950	510	56520
$20 \ 12g$ $10 \ ^{6}T$	2.901	274	56905	2.952	019 254	56800
$19 I_{1g}$ $10^{6}E$	2.902	275	56270	2.900	304	56096
$12 E_g$	2.901	219	50570	2.945	205	50920
$20 I_{1g}$	2,909	∠40 950	07900 57774	2.904	0/0 496	57039
$21 \ 12g$ 12.6 E	2.959	259	0///4 E7000	2.952	450	57341
13 [°] E _g	2.962	280	57289	2.943	203	57378
$21 \ ^{\circ}I_{1g}$	3.000	684	58336	2.950	1149	57916
$22 1_{2g}$	3.000	624	58487	2.954	(23	58008
$i {}^{\circ}A_{2g}$	3.000	552	58587	2.951	919	58135
		4.67	• • • •			
		4f'	excited states			
$4f^7(^6P)$						
$1 \ ^{6}T_{1u}$	2.982	281	33535	2.969	267	30266

$4f^{7}(^{6}I)$						
$1 {}^{6}T_{2u}$	2.982	281	37010	2.968	265	34034
$1 {}^{6}A_{1u}$	2.982	281	37031	2.969	267	34135
$2 {}^{6}T_{1u}$	2.982	281	37036	2.969	265	34178
$1^{-6}E_u$	2.982	281	37052	2.969	266	34215
$2^{6}T_{2u}$	2.982	281	37040	2.969	264	34228
$1 {}^{6}A_{2u}$	2.982	281	37014	2.969	267	34308
$4f^{7}(^{6}D)$						
$3 {}^{6}T_{2u}$	2.981	281	40916	2.968	265	36773
$2^{6}E_{u}$	2.981	281	40948	2.968	267	36908
		Eu^{3+}	doped SrS			
$4f^6(^7F)$ ^a						
$1 {}^{7}T_{1a}$	2.812	300	0	2.799	286	0
$1 {}^{7}T_{2q}$	2.813	300	531	2.800	285	425
$1 {}^{7}A_{2g}$	2.813	300	366	2.801	295	654
$4f^{6}(^{5}D)$						
$1 {}^{5}T_{2a}$	2.812	300	23014	2.797	285	21111
$1 {}^{5}E_{g}$	2.812	300	23069	2.798	284	21228
$4f^{6}({}^{5}L, {}^{5}G)$						
$1 {}^{5}T_{1a}$	2.811	300	26960	2.797	285	25657
$2 {}^{5}E_{g}$	2.811	300	26901	2.797	283	25702
$1 {}^{5}A_{1g}$	2.812	300	27254	2.797	285	25710
$2 {}^{5}T_{2g}$	2.811	299	26866	2.798	284	26033
$3 \ {}^{5}T_{2g}$	2.812	300	27084	2.797	285	26210
$3 {}^{5}E_{g}$	2.812	300	27248	2.797	284	26320
$4 {}^{5}T_{2g}$	2.812	300	27873	2.797	285	26328
$2 {}^{5}T_{1g}$	2.812	300	27241	2.797	285	26385
$3 \ _{2}^{5}T_{1g}$	2.811	300	27780	2.798	284	26599
$4 {}^{5}E_{g}$	2.812	300	27749	2.798	285	26665
$2 \ {}^{5}A_{1g}$	2.811	300	27675	2.798	284	26785

^a The energy difference between the Eu³⁺ $4f^6 - 1^7T_{1g}$ and the Eu²⁺ $4f^7 - 1^8A_{1u}$ at MS-RASPT2 level is 19903 cm⁻¹.

TABLE S6: Spectroscopic constants of the ground and excited states of Eu^{2+} and Eu^{3+} -doped BaS octahedral defects calculated using the relativistic spin-free second order Douglas-Kroll-Hess Hamiltonian with AIMP BaS embedding. The embedded cluster RASSCF results include basic bonding interactions and 4f-shell radial correlation; the MS-RASPT2 ones include also dynamic correlation of 99 or 98 valence electrons in the Eu 5s, 5p, S 3s, 3p, Ba 5p closed shells and Eu 4f, 5d, 6s open shells. Eu–S bond distances $(d_{\operatorname{Eu-S},e} \text{ in } \mathring{A})$, EuS₆ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), and minimum-to-minimum energy differences (\mathbb{T}_e in cm⁻¹) are given. See Fig. S1, S2 and text for details.

		RASSCF		Γ	AS-RASPT2	
term	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_{e}	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e
		Eu^2	²⁺ -doped BaS			
$4f^{7}(^{8}S)$						
$1 {}^{8}A_{1u}$	3.135	227	0	3.087	204	0
		$4f^{6}5d$	¹ excited states	5		
$4f^{6}(^{7}F)5dt^{1}_{2g}$						
Octets						
$1 {}^{8}T_{2g}$	3.112	226	23409	3.034	196	22371
$1 {}^{8}T_{1g}$	3.113	226	23722	3.033	195	22555
$1 {}^{8}E_{g}$	3.112	226	23268	3.038	197	22742
$2 \ ^{8}T_{1q}$	3.112	226	24713	3.034	197	23036
$2^{8}E_{a}$	3.109	225	25617	3.034	196	24531
$2^{8}T_{2a}^{9}$	3.109	225	26344	3.030	194	24667
$1^{8}A_{0}$	3 107	225	26440	3.032	196	25014
$3 \frac{8}{T}$	3 107	220	20110	3.030	105	25011
$1 {}^{8}A_{1g}$	3.107 3.107	$\frac{220}{224}$	27275	3.030	$195 \\ 196$	25525 25703
Sextets						
$1 {}^{6}T_{1}$	3 100	225	28108	3.034	10/	28268
$2^{6}T$	3 104	220	20100	3 0 2 5	102	21068
$2 I_{1g}$ 1 $6E$	2 104	220	22040	2.025	192	21100
$1 E_g$	5.104 9.109	220	32000	3.023	191	31108
$1 {}^{\circ}T_{2g}$	3.103	222	32239	3.024	192	31345
$1 {}^{o}A_{2g}$	3.099	219	34467	3.022	191	31968
$2 {}^{0}T_{2g}$	3.099	219	34883	3.021	191	32662
$2 \ ^{\mathrm{o}}E_g$	3.099	219	35243	3.018	190	33167
$3 {}^{6}T_{1g}$	3.100	218	35547	3.019	191	33410
$1 {}^{6}A_{1g}$	3.096	220	36846	3.016	189	33907
$4f^6(^7F)5de_g^1$						
Octets						
$3 {}^{8}T_{2a}$	3.145	221	37477	3.056	162	37539
$4 {}^{8}T_{1a}^{-3}$	3.142	219	39025	3.051	163	38254
$3 {}^{8}E_{2}$	3.143	219	38842	3.059	188	39554
$5 \frac{8}{7}$	3 142	218	39846	3.050	161	40091
$4 {}^{8}T_{2g}$	3.141	$210 \\ 217$	41019	3.044	153	40265
		$4f^{7}$	excited states			
$4f^{7}(^{6}P)$						
$1 {}^{6}T_{1u}$	3.134	227	33666	3.080	158	30453
$4f^{7}(^{6}I)$						
$1 \ ^{6}T_{2u}$	3.134	227	37150	3.075	254	34195

S, SJo						~	
$2 {}^{6}T_{1u}$	3.134	227	37186	3.080	202	34350	
$1 {}^{6}A_{1u}$	3.134	227	37183	3.080	202	34353	
$1^{-6}E_{u}$	3.134	227	37187	3.081	204	34416	
$2 {}^{6}T_{2u}$	3.134	227	37187	3.080	188	34422	
$1 {}^{6}A_{2u}$	3.134	227	37153	3.080	202	34517	
$4f^{7}(^{6}D)$							
a 677	0 100	007	11000	0.070	150	05000	
$3 \ ^{\circ}T_{2u}$	3.133	227	41086	3.079	176	37006	
$2 \ ^{\circ}E_u$	3.133	227	41109	3.079	171	37138	
		${ m Eu}^{ m i}$	³⁺ -doped BaS				
$4f^6(^7F)$ ^a							
$1^{7}T_{1a}$	2.893	259	0	2.828	249	0	
$1 {}^{7}T_{2a}$	2.893	259	464	2.829	249	363	
$1 {}^{7}A_{2g}$	2.940	374	-218	2.831	249	592	
$4f^{6}(^{5}D)$							
$1^{5}T_{-}$	2 80.2	250	23028	2 826	240	91192	
$1 \ 12g$ $1 \ 5E$	2.092	259	23028	2.820	249	21125	
1 Lg	2.052	205	20004	2.021	249	21221	
$4f^{6}(^{5}L,^{5}G)$							
$1 {}^{5}T_{1q}$	2.892	258	27001	2.826	249	25692	
$2 {}^{5}E_{g}$	2.891	259	26955	2.826	248	25738	
$1 {}^{5}A_{1g}$	2.892	259	27220	2.826	248	25746	
$2 {}^{5}T_{2g}$	2.891	259	26924	2.827	248	26008	
$3 {}^{5}T_{2g}$	2.892	259	27098	2.826	249	26265	
$3 {}^{5}E_{g}$	2.892	259	27223	2.826	248	26354	
$4 {}^{5}_{2}T_{2g}$	2.892	259	27859	2.826	248	26357	
$2 {}^{5}_{2} T_{1g}$	2.892	259	27214	2.826	248	26393	
$3 \ _{2}^{5}T_{1g}$	2.892	259	27806	2.827	249	26589	
$4 {}^{\mathrm{o}}_{5}E_{g}$	2.892	259	27770	2.827	248	26647	
$2 {}^{_{3}}A_{1g}$	2.892	259	27708	2.827	248	26753	
2 A1g	2.092	209	21106	2.021	240	20135	_

^a The energy difference between the Eu³⁺ $4f^6 - 1^7T_{1g}$ and the Eu²⁺ $4f^7 - 1^8A_{1u}$ at MS-RASPT2 level is 24089 cm⁻¹.

TABLE S7. $O_h \Gamma_{6u}$, Γ_{7u} , and Γ_{8u} states derived from the lowest energy multiplets of the $4f^7$ configuration.

					$2 \mathrm{J}$					Γ_{6u}	Γ_{7u}	Γ_{8u}
$4f^{7}(^{8}S_{J})$				7						1	1	1
$4f^{7}(^{6}P_{J})$		3	5	7						1	2	3
$4f^{7}(^{6}D_{J})$	1	3	5	7	9					3	2	5
$4f^{7}(^{6}F_{J})$	1	3	5	7	9	11				4	3	7
$4f^{7}(^{6}G_{J})$		3	5	7	9	11	13			4	5	9
$4f^{7}(^{6}H_{J})$			5	7	9	11	13	15		5	6	11
$4f^7(^6I_J)$				7	9	11	13	15	17	7	6	13

			Total]	High spi	n		Low spin	n
	J	Γ_{6g}	Γ_{7g}	Γ_{8g}	Γ_{6g}	Γ_{7g}	Γ_{8g}	Γ_{6g}	Γ_{7g}	Γ_{8g}
$4f^6(^7F_J) \times ^2E_g$										
	0	0	0	1	0	0	1	0	0	0
	1	1	1	2	1	1	1	0	0	1
	2	2	2	3	1	1	2	1	1	1
	3	2	2	5	1	1	3	1	1	2
	4	3	3	6	2	2	3	1	1	3
	5	4	4	7	2	2	4	2	2	3
	6	4	4	9	2	2	5	2	2	4
	$^{7}F_{0,1,2,3,4,5,6}$	16	16	33	9	9	19	7	7	14
$4f^{6}(^{7}F_{J}) \times^{2} T_{2g}$										
	0	0	1	1	0	1	1	0	0	0
	1	1	2	3	1	1	2	0	1	1
	2	3	2	5	2	1	3	1	1	2
	3	4	3	7	2	2	4	2	1	3
	4	4	5	9	2	3	5	2	2	4
	5	5	6	11	3	3	6	2	3	5
	6	7	6	13	4	3	7	3	3	6
	$^{7}F_{0,1,2,3,4,5,6}$	24	25	49	14	14	28	10	11	21
$4f^{6}(^{7}F_{J}) \times^{2} A_{1g}$										
	0	1	0	0	1	0	0	0	0	0
	1	1	0	1	0	0	1	1	0	0
	2	0	1	2	0	1	1	0	0	1
	3	1	2	2	1	1	1	0	1	1
	4	2	1	3	1	0	2	1	1	1
	5	2	1	4	1	1	2	1	0	2
	6	2	3	4	1	2	2	1	1	2
	$^{7}F_{0,1,2,3,4,5,6}$	9	8	16	5	5	9	4	3	7

TABLE S8. $O_h \Gamma_{6g}$, Γ_{7g} , and Γ_{8g} states derived from the ${}^7F_J \times ({}^2E_g + {}^2T_{2g} + {}^2A_{1g})$ coupling.

TABLE S9: Spectroscopic constants and analyses of the spin-orbit wave functions of the ground and lowest lying excited states of Eu^{2+} and Eu^{3+} -doped CaF_2 cubic defects. Eu-F bond distances $(d_{\operatorname{Eu}-\operatorname{F},e} \text{ in } \operatorname{\AA})$, EuF_8 breathing mode harmonic vibrational frequencies $(\omega_{a_{1g}} \text{ in } \operatorname{cm}^{-1})$, minimum-to-minimum energy differences $(\operatorname{T}_e \text{ in } \operatorname{cm}^{-1})$, and relative absorption and emission oscillator strengths $(f_i^{abs}/f_{ref} \text{ and } f_i^{emi}/f_{ref})$ are given. Calculated radiative emission lifetime for the $4f^6({}^7F_J)5de_g^1 - 1\Gamma_{8g}$ excited state is 0.553 μs . Local distortion around the Eu^{2+} impurity, relative to experimental crystal structure $d_{Ca-F} = 2.366$ Å, is $d_{\operatorname{Eu}-\operatorname{F},e}(1\Gamma_{6u}) - d_{\operatorname{Ca}-\operatorname{F}} = +0.022$; ionic radii mismatch is +0.13 Å³¹. See Fig. 3, S3 and text for details.

State	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e	f_i^{abs}/f_{ref} a	f_i^{emi}/f_{ref} a		W	eights	of terms	larger t	han 10%	Ъ	
					Eu^{2+} -d	loped C	aF_2						
-7 (9 -													
$4f'({}^{8}S_{7})$	/2) ^c		_										
$1 \Gamma_{6u}$	2.388	423	0		1.00	97.76	$1 {}^{\circ}A_{1u}$						
$1 \Gamma_{8u}$	2.388	423	0		0.86	97.76	$1 {}^{\circ}A_{1u}$						
$1 \Gamma_{7u}$	2.388	423	0		0.04	97.76	$1 {}^{\circ}A_{1u}$						
				4j	$f^6(5d + ITE_d)$	$(a_{1g})^1 ex$	cited sta	tes					
$4f^{6}(^{7}F_{J}$	$)5de_{q}^{1}$ High	-Spin o	coupling	d									
$1 \Gamma_{8g}$	2.373	$\bar{428}$	25720	1.00		51.00	$1^{8}T_{2g}$	31.49	$1 {\ }^{8}T_{1g}$	11.47	$1^{8}E_{g}$		
$1 \Gamma_{7g}$	2.373	428	25897	0.54		55.32	$1 \ ^{8}T_{2g}$	34.13	$1 \ ^{8}T_{1g}$				
$2 \Gamma_{8g}$	2.372	428	25984	0.09		68.21	$1 \ ^{8}T_{2g}$	20.76	$1^{-8}E_{g}$				
$2 \Gamma_{7g}$	2.372	428	26407	0.74		41.59	$1 \ ^{8}T_{1g}$	41.14	$1 \ ^{8}T_{2g}$	13.55	$1^{-8}E_{g}$		
$3 \Gamma_{8g}$	2.372	427	26676	0.99		34.12	$1 \ ^{8}T_{2g}$	29.75	$1^{-8}E_{g}$	26.23	$1 \ ^{8}T_{1g}$		
$1 \Gamma_{6g}$	2.372	427	26797	0.38		32.70	$1 \ {}^{8}E_{g}$	27.51	$1 \ ^{8}T_{2g}$	20.68	$1 \ ^{8}T_{1g}$	14.25	$2^{-8}T_{1g}$
$4 \Gamma_{8g}$	2.373	428	27326	2.10		57.24	$1 \ ^{8}T_{1g}$	17.05	$1 \ ^8T_{2g}$	13.08	$2^{-8}T_{1g}$		
$2 \Gamma_{6g}$	2.372	428	27376	0.26		36.28	$1 \ ^{8}T_{2g}$	19.85	$2^{-8}T_{1g}$	19.21	$1^{-8}E_{g}$	18.83	$1 {}^{8}T_{1g}$
$5 \Gamma_{8g}$	2.372	426	27511	0.25		49.00	$1^{-8}E_{g}$	27.02	$2^{-8}T_{1g}$	17.52	$1 \ ^{8}T_{2g}$		
$3 \Gamma_{7g}$	2.372	428	27602	0.87		46.62	$1 \ ^{8}T_{1g}$	28.71	$1^{-8}E_{g}$	19.55	$1 \ ^{8}T_{2g}$		
$6 \Gamma_{8g}$	2.372	427	27779	0.44		36.07	$1^{-8}E_{g}$	34.16	$1 \ ^{8}T_{2g}$	12.48	$1 \ ^{8}T_{1g}$	10.57	$2^{-8}T_{2g}$
$7 \Gamma_{8g}$	2.372	429	28219	0.72		40.15	$2^{-8}T_{1g}$	22.52	$1 {\ }^{8}T_{1g}$	17.94	$1 \ ^8T_{2g}$	17.64	$2^{-8}T_{2g}$
$3 \Gamma_{6g}$	2.372	429	28221	0.74		48.24	$1 {}^{8}T_{1g}$	19.50	$2^{8}T_{1g}$	18.55	$2^{8}T_{2g}$		
$8 \Gamma_{8g}$	2.372	428	28738	1.79		50.76	$1 \ ^{8}T_{1g}$	24.95	$2^{-8}T_{1g}$	11.50	$1 \ ^{8}T_{2g}$		
$9 \Gamma_{8g}$	2.372	428	28823	0.48		26.68	$1 \ ^{8}T_{2g}$	23.99	$1^{-8}E_{g}$	18.32	$2^{-8}T_{1g}$	16.50	$1 {}^{8}T_{1g}$
						14.01	$2^{-8}T_{2g}$						
$4 \Gamma_{7g}$	2.372	428	28870	0.60		31.19	$1 {}^{8}T_{2g}$	25.68	$1 {\ }^{8}T_{1g}$	22.02	$1^{8}E_{g}$	10.58	$2^{8}T_{1g}$
						10.18	$2^{-8}T_{2g}$						
$4 \Gamma_{6g}$	2.372	429	28916	0.31		29.84	$2^{-8}T_{1g}$	24.84	$1 \ ^{8}T_{2g}$	24.10	$2^{8}T_{2g}$	15.49	$1 {}^{8}T_{1g}$
$5 \Gamma_{7g}$	2.372	430	29006	0.99		39.81	$1 \ ^{8}T_{1g}$	30.80	$1 \ ^8T_{2g}$	23.62	$2^{-8}T_{1g}$		
$10 \Gamma_{8g}$	2.372	428	29256	0.01		55.51	$2^{-8}T_{2g}$	22.40	$1^{-8}E_{g}$	16.32	$1 \ ^{8}T_{2g}$		
$5 \Gamma_{6g}$	2.372	429	29259	0.07		52.76	$2^{-8}T_{2g}$	23.28	$1 {}^{8}T_{2g}$	12.29	$2^{8}T_{1g}$	10.12	$1^{8}E_{g}$
$11 \ \Gamma_{8g}$	2.372	428	29545	0.98		34.42	$1 \ ^{8}T_{2g}$	26.81	$1 \ ^{8}T_{1g}$	18.48	$1^{-8}E_{g}$	15.65	$2^{-8}T_{1g}$
$6 \Gamma_{6g}$	2.372	429	29549	0.57		41.65	$1 \ ^{8}T_{2g}$	19.23	$1 \ ^{8}T_{1g}$	18.74	$2^{-8}T_{2g}$	14.56	$2^{-8}T_{1g}$
$6 \Gamma_{7q}$	2.372	429	30023	0.01		54.67	$2^{8}T_{1q}$	18.58	$2^{8}T_{2q}$	13.20	$1 \ ^{8}T_{2q}$		
$14 \Gamma_{8q}$	2.372	429	30260	1.37		41.50	$2^{8}T_{1q}$	26.42	$1 \ {}^{8}T_{1a}$	16.03	$2^{8}T_{2a}$	10.30	$1 {}^{8}T_{2a}$
$7 \Gamma_{7q}$	2.372	428	30685			72.69	$2^{8}T_{2q}$	13.28	$1^{8}E_{q}$		5		0
$15 \Gamma_{8q}$	2.372	429	30738	3.19		65.59	$1 {}^{8}T_{1q}$	23.35	$1 {}^{8}T_{2q}$				
7 Γ _{6q}	2.372	429	30758	1.71		70.89	$1 {}^{8}T_{1q}$	23.27	$1 {}^{8}T_{2a}$				
$16 \Gamma_{8q}$	2.372	429	30867	0.87		55.89	$2^{8}T_{2q}$	20.59	$2^{8}T_{1a}$	13.81	$1 {\ }^{8}T_{1a}$		
8 Γ _{6q}	2.372	429	30998	0.14		54.15	$2^{8}T_{2q}$	30.54	$2^{8}T_{1a}$		5		
18 Γ _{8α}	2.372	428	31238	1.27		42.66	$2 \ ^{8}T_{1q}^{-s}$	20.62	$1 \ {}^{8}T_{1a}^{-s}$	16.96	$1^{-8}E_{q}$		
9 Γ _{6a}	2.372	428	31295	0.05		55.46	$2 \ ^{8}T_{1a}$	17.91	$2^{8}T_{2\sigma}$	12.84	$1 \ {}^{8}E_{a}$	10.56	$1^{-8}T_{2a}$
$19 \Gamma_{8a}$	2.372	429	31600	0.16		67.44	$2 {}^{8}T_{1a}^{3}$	11.14	$1 {}^{8}E_{a}$		3		3
9 Γ _{7α}	2.372	429	31753			76.40	$2 \ ^{8}T_{1a}^{-s}$		3				
$20 \Gamma_{8a}$	2.372	429	32531	0.02		87.68	$2 \ ^{8}T_{2a}^{-s}$						
21 Γ_{8a}	2.372	429	32707	0.01		78.56	$2 {}^{8}T_{2a}^{-g}$	18.93	$2^{-8}T_{1\sigma}$				
$10 \Gamma_{7q}$	2.372	429	32742			80.31	$2^{8}T_{2q}$	18.12	$2^{8}T_{1q}$				

 $4f^6(^7F_J)5de_g^1$ Mixed-Spin coupling ^d

12 Γ_{8g} 13 Γ_{8g}	$\begin{array}{c} 2.373 \\ 2.372 \end{array}$	$\begin{array}{c} 427\\ 428 \end{array}$	$29855 \\ 29950$	$\begin{array}{c} 0.24 \\ 0.38 \end{array}$	$50.18 \\ 42.22 \\ 10.38$	$1 {}^{6}T_{1g}$ $1 {}^{6}T_{1g}$ $1 {}^{8}T_{2g}$	$\begin{array}{c} 13.53\\ 15.14 \end{array}$	$1 {}^{8}T_{2g}$ $1 {}^{8}E_{g}$	$\begin{array}{c} 12.57 \\ 12.74 \end{array}$	$2 {}^{8}T_{1g}$ $2 {}^{8}T_{2g}$	$\begin{array}{c} 10.93 \\ 12.61 \end{array}$	$2 {}^{8}T_{2g}$ $2 {}^{8}T_{1g}$
$Af^{6}(^{7}F)$	$5de^1$ I or	w Spin c	ounling (d								
4 ј (<i>г</i> ј 8 Г~	2372	w-эрш с 497	31106	0.01	83.67	$1^{6}T_{1}$	12 47	$1^{6}T_{2}$				
$17 \Gamma_{0}$	2.372	427	31202	0.01	81.84	$1^{6}T_{1}$	12.47	1 12g				
$10 \Gamma_{6a}$	2.370	428	32743	0.02	49.43	$1^{6}T_{1a}$	34.31	$1^{6}T_{2a}$	13.51	$2^{-6}T_{1a}$		
$\frac{10}{22} \Gamma_{e_{\sigma}}$	2.371	428	32877	0.04	54.33	$1^{6}T_{1a}$	31.95	$1^{6}T_{2a}$	11.23	$2^{6}T_{1a}$		
$11 \Gamma_{7a}$	2.371	428	33177	0.03	75.35	$1 {}^{6}T_{1a}$	11.53	$1 {}^{6}T_{2a}$	11.20	- + 1g		
$11 \Gamma_{6a}$	2.369	428	33390	0.01	55.12	$1 {}^{6}T_{2a}$	26.34	$1 {}^{6}E_{a}^{2}$	16.16	$1^{6}T_{1a}$		
23 Γ_{8a}	2.370	428	33632	0.02	27.98	$1 {}^{6}E_{a}^{5}$	26.93	$1 {}^{6}T_{1a}^{9}$	19.86	$1 {}^{6}T_{2a}^{1g}$	18.97	$2^{6}T_{1a}$
$12 \Gamma_{7q}$	2.370	429	33723		48.88	$2^{6}T_{1q}^{3}$	23.30	$1 {}^{6}E_{q}$	19.13	$1 {}^{6}T_{2q}^{-s}$		-3
$24 \Gamma_{8g}$	2.369	428	34252	0.01	30.17	$1 {}^{6}E_{g}$	29.69	$2 {}^{6}T_{1g}$	25.51	$1 {}^{6}T_{2g}$		
$13 \Gamma_{7g}$	2.370	430	34392		39.51	$1 \ {}^{6}T_{2g}$	31.62	$2 \ ^{6}T_{1g}$	22.37	$1 {}^{6}T_{1g}$		
$12 \Gamma_{6g}$	2.372	429	34401	0.01	62.39	$2^{6}T_{1g}$	17.50	$1 {}^{6}T_{1g}$				
$25 \ \Gamma_{8g}$	2.369	428	34962	0.02	39.13	$2^{6}T_{1g}$	23.79	$1 {}^{6}T_{2g}$	22.94	$1^{6}E_{g}$	11.11	$2^{6}T_{2g}$
$26 \Gamma_{8g}$	2.370	430	35076	0.01	50.56	$1 {}^{6}T_{2g}$	18.41	$2^{6}T_{1g}$	13.40	$1 {}^{6}T_{1g}$	11.72	$1^{-6}E_{g}$
$27 \Gamma_{8g}$	2.369	428	35778	0.02	32.90	$1^{6}E_{g}$	30.68	$1 {}^{6}T_{2g}$	23.64	$2^{6}T_{1g}$		
$13 \Gamma_{6g}$	2.369	428	35820	0.01	41.06	$1 {}^{6}_{c} T_{2g}$	38.67	$1 {}^{6}_{c} E_{g}$	11.84	$1 {}^{6}_{c} T_{1g}$		
$14 \Gamma_{7g}$	2.370	429	35994		63.69	$2 {}^{o}_{c} T_{1g}$	12.53	$1^{o}_{c}T_{2g}$	12.35	$1 \ ^{o}E_{g}$		
$28 \Gamma_{8g}$	2.370	430	36086	0.01	82.38	$2 {}^{o}T_{2g}$	11.17	$2 {}^{o}T_{1g}$				
$14 \Gamma_{6g}$	2.369	430	36332	0.03	56.75	$1 \ {}^{0}T_{2g}$	23.93	$1 {}^{0}E_{g}$				
29 Γ_{8g}	2.370	430	36530	0.04	68.38	$1 {}^{o}T_{2g}$	20.43	$2 \ {}^{o}T_{1g}$				
$15 \ \Gamma_{7g}$	2.369	428	37046	0.04	47.03	$1 {}^{\circ}E_{g}$	42.56	$2 \ {}^{o}T_{1g}$		1.677		
$30 \ \Gamma_{8g}$	2.369	429	37415	0.04	36.06	$2 \ ^{o}T_{1g}$	33.80	$1 {}^{\circ}E_{g}$	25.74	$1 \ {}^{o}T_{2g}$		
$31 \Gamma_{8g}$	2.369	429	37553	0.02	64.56	$2 \ ^{\circ}T_{2g}$	15.31	$1 \ ^{\circ}E_{g}$	15.21	$2 \circ T_{1g}$		
$15 \Gamma_{6g}$	2.370	430	37558	0.01	84.80	$2 \ ^{\circ}T_{2g}$	11.26	$2 \ ^{\circ}T_{1g}$				
$32 \ \Gamma_{8g}$	2.370	429	37605	0.01	66.14	$2 \ ^{\circ}T_{1g}$	17.54	$2 \circ T_{2g}$				
$10 \Gamma_{6g}$	2.369	428	39325		91.44	$2 \ ^{\circ}T_{2g}$						
$33 \ \Gamma_{8g}$	2.369	429	39343		90.53	2 120						
10 1	0.070	400	20254		00.00	29 0.677						
$16 \Gamma_{7g}$	2.370	429	39354		90.02	$2^{6}T_{2g}$						
16 Γ_{7g} 4 $f^6 ({}^7F_7$	2.370 $(5dt_{2-}^1 +$	$429 - ITE_{-}^{1}$	39354) High-S	pin coupling ^{d,e}	90.02	$2 {}^{6}T_{2g}$						
16 Γ_{7g} 4 $f^6({}^7F_J$ 34 Γ_{8g}	2.370 $)(5dt_{2g}^{1} + 2.419$	429 - $ITE^{1}_{a_{1g}}$ 401	39354) High-S 46209	pin coupling ^{d,e} 0.47	90.02 39.85	$2^{6}T_{2g}^{2g}$	32.64	$3 \ ^{8}T_{1a}$				
16 Γ_{7g} $4f^6({}^7F_J)$ 34 Γ_{8g} 35 Γ_{8g}	2.370) $(5dt_{2g}^1 + 2.419)$ 2.419	429 - $ITE_{a_{1g}}^{1}$ 401 407	39354) High-S 46209 46403	pin coupling ^{d,e} 0.47 0.24	90.02 39.85 49.49	$2^{6}T_{2g}^{2}$ $3^{8}T_{2g}^{2}$ $4^{8}T_{1g}^{2}$	$32.64 \\ 25.18$	$3 {}^{8}T_{1g}$ $2 {}^{8}E_{g}$	16.72	4 ⁸ <i>T</i> ₂		
16 Γ_{7g} 4 $f^6({}^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g}	2.370) $(5dt_{2g}^1 + 2.419)$ 2.419 2.417	$429 \\ - ITE^{1}_{a_{1g}} \\ 401 \\ 407 \\ 324$	39354) High-S 46209 46403 46948	pin coupling ^{d,e} 0.47 0.24 0.19	90.02 39.85 49.49 39.83	$ \begin{array}{c} 2 & ^{-12g} \\ 2 & ^{6}T_{2g} \\ \end{array} $ $ \begin{array}{c} 3 & ^{8}T_{2g} \\ 4 & ^{8}T_{1g} \\ 3 & ^{8}T_{2g} \end{array} $	$32.64 \\ 25.18 \\ 36.67$	$3 {}^{8}T_{1g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{1g}$	16.72	$4 \ ^{8}T_{2g}$		
16 Γ_{7g} 4 $f^6({}^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g}	$2.370 \\)(5dt_{2g}^{1} + 2.419 \\ 2.419 \\ 2.417 \\ 2.420 \\ \end{cases}$	$429 \\ - ITE^{1}_{a_{1g}} \\ 401 \\ 407 \\ 324 \\ 372 \\$	39354) High-S 46209 46403 46948 46979	pin coupling ^{d,e} 0.47 0.24 0.19 0.58	90.02 39.85 49.49 39.83 41.85	$\begin{array}{c} 3 & ^{8}T_{2g} \\ 3 & ^{8}T_{2g} \\ 4 & ^{8}T_{1g} \\ 3 & ^{8}T_{2g} \\ 3 & ^{8}T_{2g} \end{array}$	32.64 25.18 36.67	$egin{array}{cccc} 3 & {}^8T_{1g} \ 2 & {}^8E_g \ 3 & {}^8T_{1g} \end{array}$	16.72	$4 \ ^8T_{2g}$		
16 Γ_{7g} 4 $f^6({}^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g}	$\begin{array}{c} 2.370 \\)(5dt_{2g}^1 + \\ 2.419 \\ 2.419 \\ 2.417 \\ 2.420 \\ 2.420 \end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377 \end{array}$	39354) High-S 46209 46403 46948 46979 47043	pin coupling $^{ m d,e}$ 0.47 0.24 0.19 0.58 0.69	90.02 39.85 49.49 39.83 41.85 39.85	$\begin{array}{c} 3 & ^{8}T_{2g} \\ 3 & ^{8}T_{2g} \\ 4 & ^{8}T_{1g} \\ 3 & ^{8}T_{2g} \\ 3 & ^{8}T_{2g} \\ 4 & ^{8}T_{1g} \end{array}$	32.64 25.18 36.67 31.81	$3 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$	16.72 20.65	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$		
16 Γ_{7g} 4 $f^6({}^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g}	$\begin{array}{c} 2.370 \\)(5dt_{2g}^1 + \\ 2.419 \\ 2.419 \\ 2.419 \\ 2.417 \\ 2.420 \\ 2.420 \\ 2.420 \\ 2.420 \end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23	90.02 39.85 49.49 39.83 41.85 39.85 62.43	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \end{array}$	32.64 25.18 36.67 31.81 13.53	$3 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$	16.72 20.65 12.78	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$		
16 Γ_{7g} 4 $f^6({}^7F_J$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g}	$\begin{array}{c} 2.370\\)(5dt_{2g}^1+\\ 2.419\\ 2.419\\ 2.419\\ 2.417\\ 2.420\\ 2.420\\ 2.420\\ 2.420\\ 2.419\end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49	90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \end{array}$	32.64 25.18 36.67 31.81 13.53 15.45	$3 \ {}^{8}T_{1g} \\ 2 \ {}^{8}E_{g} \\ 3 \ {}^{8}T_{1g} \\ 4 \ {}^{8}T_{2g} \\ 5 \ {}^{8}T_{1g} \\ 2 \ {}^{8}E_{g} $	16.72 20.65 12.78	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$		
16 Γ_{7g} 4 $f^6({}^7F_J$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g}	$\begin{array}{c} 2.370\\)(5dt_{2g}^1+\\ 2.419\\ 2.419\\ 2.417\\ 2.420\\ 2.420\\ 2.420\\ 2.420\\ 2.419\\ 2.418\end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80	$\begin{array}{c} 39.85\\ 90.02\\ \end{array}\\ \begin{array}{c} 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ \end{array}$	$\begin{array}{c} 3 \ ^{8}T_{2g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{1g} \end{array}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76	$3 \ {}^{8}T_{1g} \\ 2 \ {}^{8}E_{g} \\ 3 \ {}^{8}T_{1g} \\ 4 \ {}^{8}T_{2g} \\ 5 \ {}^{8}T_{1g} \\ 2 \ {}^{8}E_{g} \\ 3 \ {}^{8}T_{2g} \\ 3 \ {}^{8}T_{2g} $	16.72 20.65 12.78	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$		
16 Γ_{7g} 4 $f^6({}^7F_J$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g}	$\begin{array}{c} 2.370\\)(5dt_{2g}^1+\\ 2.419\\ 2.419\\ 2.417\\ 2.420\\ 2.420\\ 2.420\\ 2.420\\ 2.419\\ 2.418\\ 2.419\end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21	$\begin{array}{c} 39.85\\ 90.02\\ \end{array}\\ \begin{array}{c} 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ 44.03\\ \end{array}$	$\begin{array}{c} 3 \ ^{8}T_{2g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{2g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \end{array}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51	$3 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$	16.72 20.65 12.78 17.64	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$		
16 Γ_{7g} 4 $f^6({}^7F_J$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g} 39 Γ_{8g}	$\begin{array}{c} 2.370\\ (5dt_{2g}^1+\\ 2.419\\ 2.419\\ 2.417\\ 2.420\\ 2.420\\ 2.420\\ 2.420\\ 2.419\\ 2.418\\ 2.419\\ 2.418\end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11	$\begin{array}{c} 39.85\\ 90.02\\ \end{array}\\ \begin{array}{c} 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ 44.03\\ 55.87\\ \end{array}$	$\begin{array}{c} 3 \ ^{8}T_{2g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{1g} \\$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48	$3 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$	16.72 20.65 12.78 17.64	$ \begin{array}{r} 4 \ {}^{8}T_{2g} \\ 2 \ {}^{8}E_{g} \\ 2 \ {}^{8}E_{g} \\ 4 \ {}^{8}T_{1g} \end{array} $		
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g}	$\begin{array}{c} 2.370\\ (5dt_{2g}^1+\\ 2.419\\ 2.419\\ 2.417\\ 2.420\\ 2.420\\ 2.420\\ 2.420\\ 2.419\\ 2.418\\ 2.419\\ 2.418\\ 2.419\end{array}$	$\begin{array}{r} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16	$\begin{array}{c} 39.85\\ 90.02\\ \end{array}\\ \begin{array}{c} 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ 44.03\\ 55.87\\ 46.28\\ \end{array}$	$\begin{array}{c} 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\ 4 \ ^{8}T_{1g} \\ 3 \ ^{8}T_{1g} \\ 4 \ ^{8}T_{2g} \\$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05	$3 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $4 \ {}^{8}T_{2g}$	16.72 20.65 12.78 17.64	$ \begin{array}{r} 4 \ ^{8}T_{2g} \\ 2 \ ^{8}E_{g} \\ 2 \ ^{8}E_{g} \\ 4 \ ^{8}T_{1g} \end{array} $		
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.417 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418	$\begin{array}{c} 429\\ - ITE_{a_{1g}}^1\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45	$\begin{array}{c} 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ 44.03\\ 55.87\\ 46.28\\ 47.65\end{array}$	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \end{array}$	$\begin{array}{c} 32.64\\ 25.18\\ 36.67\\ 31.81\\ 13.53\\ 15.45\\ 33.76\\ 31.51\\ 20.48\\ 35.05\\ 45.41\\ \end{array}$	$3 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $3 \ {}^{8}T_{2g}$ $4 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$ $3 \ {}^{8}T_{2g}$	16.72 20.65 12.78 17.64	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$		
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.417 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419	$\begin{array}{c} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59	$\begin{array}{c} 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ 44.03\\ 55.87\\ 46.28\\ 47.65\\ 39.82\end{array}$	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \end{array}$	$\begin{array}{c} 32.64\\ 25.18\\ 36.67\\ 31.81\\ 13.53\\ 15.45\\ 33.76\\ 31.51\\ 20.48\\ 35.05\\ 45.41\\ 27.82\\ \end{array}$	$3 {}^{8}T_{1g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{1g}$ $4 {}^{8}T_{2g}$ $5 {}^{8}T_{1g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{2g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{2g}$ $4 {}^{8}T_{1g}$ $3 {}^{8}T_{2g}$ $4 {}^{8}T_{1g}$ $3 {}^{8}T_{2g}$ $2 {}^{8}E_{g}$	16.72 20.65 12.78 17.64 18.85	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$	11.24	$4 \ {}^{8}T_{1g}$
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g}	2.370 $)(5dt_{2g}^1 + 2.419)$ 2.419 2.417 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418	$\begin{array}{c} 429\\ - ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69	90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ \end{array}$	$\begin{array}{c} 32.64\\ 25.18\\ 36.67\\ 31.81\\ 13.53\\ 15.45\\ 33.76\\ 31.51\\ 20.48\\ 35.05\\ 45.41\\ 27.82\\ 37.92\\ \end{array}$	$3 {}^{8}T_{1g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{1g}$ $4 {}^{8}T_{2g}$ $5 {}^{8}T_{1g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{2g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{2g}$ $4 {}^{8}T_{1g}$ $3 {}^{8}T_{2g}$ $4 {}^{8}T_{1g}$ $3 {}^{8}T_{2g}$ $2 {}^{8}E_{g}$ $3 {}^{8}T_{2g}$ $3 {}^{8}T_{2g}$ $3 {}^{8}T_{2g}$ $3 {}^{8}T_{2g}$ $3 {}^{8}T_{2g}$ $3 {}^{8}T_{2g}$	 16.72 20.65 12.78 17.64 18.85 	$ \begin{array}{r} 4 \ ^{8}T_{2g} \\ 2 \ ^{8}E_{g} \\ 2 \ ^{8}E_{g} \\ 4 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \end{array} $	11.24	4 ⁸ <i>T</i> _{1<i>g</i>}
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 38 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 41 Γ_{8g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.417 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.419 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.420	$\begin{array}{c} 429\\ - ITE_{a_{1g}}^1\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73	90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \end{array}$	$\begin{array}{c} 32.64\\ 25.18\\ 36.67\\ 31.81\\ 13.53\\ 15.45\\ 33.76\\ 31.51\\ 20.48\\ 35.05\\ 45.41\\ 27.82\\ 37.92\\ 25.75\\ \end{array}$	$egin{array}{cccc} & & & & & & & & & & & & & & & & & $	 16.72 20.65 12.78 17.64 18.85 17.31 	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$	11.24 13.86	$4 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)^3$ 34 Γ_{8g}^3 35 Γ_{8g}^3 17 Γ_{6g}^3 17 Γ_{7g}^3 36 Γ_{8g}^3 18 Γ_{7g}^3 18 Γ_{6g}^3 37 Γ_{8g}^3 39 Γ_{8g}^3 40 Γ_{8g}^3 19 Γ_{7g}^2 20 Γ_{7g}^2 19 Γ_{6g}^2 41 Γ_{8g}^2 20 Γ_{6g}^2	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.417 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.419 2.419 2.419 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.419 2.419 2.418 2.418 2.420 2.376	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01	90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \end{array}$	$\begin{array}{c} 32.64\\ 25.18\\ 36.67\\ 31.81\\ 13.53\\ 15.45\\ 33.76\\ 31.51\\ 20.48\\ 35.05\\ 45.41\\ 27.82\\ 37.92\\ 25.75\\ 33.90\\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	 16.72 20.65 12.78 17.64 18.85 17.31 	$ \begin{array}{r} 4 \ ^{8}T_{2g} \\ 2 \ ^{8}E_{g} \\ 2 \ ^{8}E_{g} \\ 4 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \\ \end{array} $	11.24 13.86	$4 \ ^{8}T_{1g}$ $2 \ ^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)^3$ 34 Γ_{8g}^3 35 Γ_{8g}^3 17 Γ_{6g}^3 17 Γ_{7g}^3 36 Γ_{8g}^3 18 Γ_{7g}^3 18 Γ_{6g}^3 37 Γ_{8g}^3 39 Γ_{8g}^3 39 Γ_{8g}^3 40 Γ_{8g}^3 19 Γ_{7g}^2 20 Γ_{7g}^2 19 Γ_{6g}^2 41 Γ_{8g}^2 20 Γ_{6g}^2 21 Γ_{6g}^3	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.420 2.376 2.388	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318 \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \end{array}$	$\begin{array}{c} 32.64\\ 25.18\\ 36.67\\ 31.81\\ 13.53\\ 15.45\\ 33.76\\ 31.51\\ 20.48\\ 35.05\\ 45.41\\ 27.82\\ 37.92\\ 25.75\\ 33.90\\ 25.22\\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	 16.72 20.65 12.78 17.64 18.85 17.31 	$ \begin{array}{r} 4 \ ^{8}T_{2g} \\ 2 \ ^{8}E_{g} \\ 2 \ ^{8}E_{g} \\ 4 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \end{array} $	11.24 13.86	$4 \ ^{8}T_{1g}$ $2 \ ^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)^3$ 34 Γ_{8g}^3 35 Γ_{8g}^3 17 Γ_{6g}^3 17 Γ_{7g}^3 36 Γ_{8g}^3 18 Γ_{7g}^3 18 Γ_{6g}^3 37 Γ_{8g}^3 39 Γ_{8g}^3 39 Γ_{8g}^3 40 Γ_{8g}^3 19 Γ_{7g}^2 20 Γ_{7g}^2 19 Γ_{6g}^2 21 Γ_{6g}^2 21 Γ_{7g}^2	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.420 2.376 2.388 2.419	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ \end{array}$	$\begin{array}{r} 39354\\) \ \mathrm{High-S}\\ 46209\\ 46403\\ 46948\\ 46979\\ 47043\\ 47529\\ 47531\\ 47694\\ 48144\\ 48284\\ 48627\\ 48749\\ 48940\\ 48992\\ 49130\\ 49355\\ 49508\\ 49558\\ \end{array}$	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ \end{array}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40	$egin{array}{c} 3 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{1g} \\ 4 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 5 & {}^8T_{1g} \end{array}$	 16.72 20.65 12.78 17.64 18.85 17.31 	$ \begin{array}{r} 4 \ ^{8}T_{2g} \\ 2 \ ^{8}E_{g} \\ 2 \ ^{8}E_{g} \\ 4 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \\ 5 \ ^{8}T_{1g} \end{array} $	11.24 13.86	$4 \ ^{8}T_{1g}$ 2 $\ ^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)^3$ 34 Γ_{8g}^3 35 Γ_{8g}^3 17 Γ_{6g}^3 17 Γ_{7g}^3 36 Γ_{8g}^3 18 Γ_{7g}^3 18 Γ_{6g}^3 37 Γ_{8g}^3 39 Γ_{8g}^3 39 Γ_{8g}^3 40 Γ_{8g}^3 19 Γ_{7g}^2 20 Γ_{7g}^2 19 Γ_{6g}^2 21 Γ_{6g}^2 21 Γ_{7g}^2 42 Γ_{8g}^3	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.419 2.376 2.388 2.419 2.419 2.419	$\begin{array}{c} 429\\ - ITE_{a_{1g}}^{1} \\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ \end{array}$	$\begin{array}{r} 39354\\) {\rm High-S}\\ 46209\\ 46403\\ 46948\\ 46979\\ 47043\\ 47529\\ 47531\\ 47594\\ 48144\\ 48284\\ 48627\\ 48749\\ 48940\\ 48992\\ 49130\\ 49955\\ 49508\\ 49558\\ 49617\\ \end{array}$	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15	90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30	$egin{array}{c} 3 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{1g} \\ 4 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \end{array}$	 16.72 20.65 12.78 17.64 18.85 17.31 	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$	11.24 13.86	$4 \ ^8T_{1g}$ $2 \ ^8E_g$
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 39 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 41 Γ_{8g} 20 Γ_{6g} 21 Γ_{6g} 21 Γ_{7g} 42 Γ_{8g} 43 Γ_{8g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.420 2.376 2.388 2.419 2.419 2.419 2.420 2.376 2.388 2.419 2.419 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.376 2.388 2.419 2.419 2.419 2.419 2.419 2.420 2.376 2.388 2.419 2.409	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1} \\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ \end{array}$	$\begin{array}{r} 39354\\ 39354\\ 1 \text{ High-S}\\ 46209\\ 46403\\ 46948\\ 46979\\ 47043\\ 47529\\ 47531\\ 47594\\ 48544\\ 48284\\ 48627\\ 48749\\ 48940\\ 48992\\ 49130\\ 49355\\ 49508\\ 49558\\ 49617\\ 49740\\ \end{array}$	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ \end{array}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49	$egin{array}{c} 3 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{1g} \\ 4 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{2g} \\ 4 & {}^8T_{2g} \end{array}$	 16.72 20.65 12.78 17.64 18.85 17.31 10.95 	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$	11.24 13.86 10.57	$4 \ ^{8}T_{1g}$ $2 \ ^{8}E_{g}$ $2 \ ^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 39 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 21 Γ_{6g} 21 Γ_{6g} 21 Γ_{7g} 42 Γ_{8g} 43 Γ_{8g} 22 Γ_{6g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.419 2.420 2.376 2.388 2.419 2.419 2.419 2.419 2.420 2.420 2.376 2.388 2.419 2.419 2.419 2.419 2.420 2.419 2.420 2.419 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.409 2.407	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1} \\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49558 49617 49740 49843	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35	$\begin{array}{c} 39.85\\ 90.02\\ \\ 39.85\\ 49.49\\ 39.83\\ 41.85\\ 39.85\\ 62.43\\ 63.21\\ 59.15\\ 44.03\\ 55.87\\ 46.28\\ 47.65\\ 39.82\\ 39.06\\ 29.06\\ 52.07\\ 40.35\\ 47.34\\ 59.70\\ 47.39\\ 52.76\\ \end{array}$	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \end{array}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08	$egin{array}{c} 3 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{1g} \\ 4 & {}^8T_{2g} \\ 5 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 2 & {}^8E_g \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 3 & {}^8T_{2g} \\ 4 & {}^8T_{1g} \\ 4 &$	16.72 20.65 12.78 17.64 18.85 17.31	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$	11.24 13.86 10.57	$4 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)$ 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 39 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 21 Γ_{6g} 21 Γ_{7g} 42 Γ_{8g} 43 Γ_{8g} 22 Γ_{6g} 22 Γ_{7g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.418 2.418 2.418 2.418 2.418 2.418 2.419 2.418 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.409 2.407 2.421	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1} \\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ 348\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49558 49617 49740 49843 49844	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35 0.17	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39 52.76 48.77	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08 28.51	$egin{array}{c} 3 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 5 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ $	16.72 20.65 12.78 17.64 18.85 17.31 10.95 19.27 10.95	$\begin{array}{c} 4 \ ^8T_{2g} \\ 2 \ ^8E_g \\ 2 \ ^8E_g \\ 4 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 3 \ ^8T_{2g} \\ 5 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \end{array}$	11.24 13.86 10.57	$4 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$
16 Γ_{7g} 4 f^6 (7F_J 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 39 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 21 Γ_{6g} 21 Γ_{7g} 42 Γ_{8g} 43 Γ_{8g} 22 Γ_{6g} 22 Γ_{7g} 44 Γ_{8g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.409 2.407 2.421 2.385	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^1\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 345\\ 338\\ 345\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ 348\\ 318\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49617 49740 49843 49844 49937	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35 0.17 1.00	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39 52.76 48.77 57.68	$\begin{array}{c} 2 & {}^{6}T_{2g} \\ 2 & {}^{6}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08 28.51 25.40	$egin{array}{c} 3 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 5 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\$	16.72 20.65 12.78 17.64 18.85 17.31 10.95 19.27 10.95	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$	11.24 13.86 10.57	$4 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$
16 Γ_{7g} 4 f^6 (7F_J 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 39 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 21 Γ_{6g} 21 Γ_{7g} 42 Γ_{8g} 43 Γ_{8g} 22 Γ_{6g} 22 Γ_{7g} 44 Γ_{8g} 45 Γ_{8g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.417 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.388 2.419 2.409 2.407 2.421 2.385 2.412	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^1\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ 348\\ 318\\ 295\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49617 49740 49843 49844 49937 50150	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35 0.17 1.00 3.28	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39 52.76 48.77 57.68 42.95	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 \\ 4 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08 28.51 25.40 24.08	$egin{array}{c} 3 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 5 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} $	16.72 20.65 12.78 17.64 18.85 17.31 10.95 19.27 10.95 20.55	$\begin{array}{c} 4 \ ^8T_{2g} \\ 2 \ ^8E_g \\ 2 \ ^8E_g \\ 4 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 5 \ ^8T_{1g} \\ 3 \ ^8T_{2g} \\ 5 \ ^8T_{1g} \end{array}$	11.24 13.86 10.57	$4 \ ^8T_{1g}$ 2 $\ ^8E_g$ 2 $\ ^8E_g$
16 Γ_{7g} 4 f^6 (7F_J 34 Γ_{8g} 35 Γ_{8g} 17 Γ_{6g} 17 Γ_{7g} 36 Γ_{8g} 18 Γ_{7g} 18 Γ_{6g} 37 Γ_{8g} 39 Γ_{8g} 39 Γ_{8g} 40 Γ_{8g} 19 Γ_{7g} 20 Γ_{7g} 19 Γ_{6g} 21 Γ_{6g} 21 Γ_{7g} 42 Γ_{8g} 43 Γ_{8g} 22 Γ_{6g} 22 Γ_{7g} 44 Γ_{8g} 45 Γ_{8g} 23 Γ_{7g}	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.417 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.420 2.421 2.385 2.412 2.413	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^1\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ 348\\ 318\\ 295\\ 350\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49617 49740 49843 49844 49937 50150 50162	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35 0.17 1.00 3.28 0.01	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39 52.76 48.77 57.68 42.95 40.48	$\begin{array}{c} 2 & {}^{6}T_{2g} \\ 2 & {}^{6}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08 28.51 25.40 24.08 24.08	$egin{array}{cccccccccccccccccccccccccccccccccccc$	 16.72 20.65 12.78 17.64 18.85 17.31 10.95 19.27 10.95 20.55 	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$	11.24 13.86 10.57	$4 \ {}^{8}T_{1g}$ 2 ${}^{8}E_{g}$ 2 ${}^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)^3$ 34 Γ_{8g}^3 35 Γ_{8g}^3 17 Γ_{6g}^3 17 Γ_{7g}^3 36 Γ_{8g}^3 18 Γ_{7g}^3 18 Γ_{6g}^3 37 Γ_{8g}^3 39 Γ_{8g}^3 39 Γ_{8g}^3 40 Γ_{8g}^3 19 Γ_{7g}^2 20 Γ_{7g}^2 19 Γ_{6g}^2 21 Γ_{6g}^2 21 Γ_{7g}^2 43 Γ_{8g}^2 22 Γ_{7g}^2 44 Γ_{8g}^2 45 Γ_{8g}^2 23 Γ_{7g}^2 23 Γ	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.420 2.420 2.420 2.420 2.421 2.385 2.412 2.413 2.405	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^{1}\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 345\\ 338\\ 345\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ 348\\ 318\\ 295\\ 350\\ 393\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49508 49558 49617 49740 49843 49844 49937 50150 50162 50202	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35 0.17 1.00 3.28 0.01 4.00	90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39 52.76 48.77 57.68 42.95 40.48 45.21	$\begin{array}{c} 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08 28.51 25.40 24.08 24.08 30.11	$egin{array}{cccccccccccccccccccccccccccccccccccc$	 16.72 20.65 12.78 17.64 18.85 17.31 10.95 19.27 10.95 20.55 	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$	11.24 13.86 10.57	$4 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$
16 Γ_{7g} 4 $f^6(^7F_J)^3$ 34 Γ_{8g}^3 35 Γ_{8g}^3 17 Γ_{6g}^3 17 Γ_{7g}^3 36 Γ_{8g}^3 18 Γ_{7g}^3 18 Γ_{6g}^3 37 Γ_{8g}^3 39 Γ_{8g}^3 39 Γ_{8g}^3 40 Γ_{8g}^3 19 Γ_{7g}^2 20 Γ_{7g}^2 19 Γ_{6g}^2 21 Γ_{6g}^2 21 Γ_{7g}^2 42 Γ_{8g}^2 43 Γ_{8g}^2 22 Γ_{7g}^2 44 Γ_{8g}^2 45 Γ_{8g}^2 23 Γ_{7g}^2 23 Γ_{6g}^2 23 Γ_{6g}^2 24 Γ_{8g}^2 25 Γ_{7g}^2 26 Γ_{7g}^2 27 Γ_{7g}^2 27 Γ_{7g}^2 29 Γ_{7g}^2 20 Γ_{7g}^2 20 Γ_{7g}^2 21 Γ_{7g}^2 22 Γ_{7g}^2 23 Γ_{6g}^2 23 Γ_{6g}^2 23 Γ_{6g}^2 23 Γ_{6g}^2 24 Γ_{8g}^2 25 Γ_{7g}^2 25 Γ_{7g}^2 26 Γ_{7g}^2 27 Γ_{7g}^2 27 Γ_{7g}^2 28 Γ_{7g}^2 29 Γ_{7g}^2 29 Γ_{7g}^2 20 Γ	2.370 $)(5dt_{2g}^{1} + 2.419)$ 2.419 2.419 2.420 2.420 2.420 2.420 2.420 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.418 2.419 2.420 2.420 2.420 2.420 2.420 2.420 2.421 2.385 2.412 2.413 2.405 2.413	$\begin{array}{c} 429\\ -ITE_{a_{1g}}^1\\ 401\\ 407\\ 324\\ 372\\ 377\\ 384\\ 376\\ 338\\ 345\\ 338\\ 345\\ 338\\ 353\\ 311\\ 320\\ 283\\ 349\\ 289\\ 318\\ 358\\ 312\\ 297\\ 380\\ 348\\ 318\\ 295\\ 350\\ 393\\ 343\\ \end{array}$	39354) High-S 46209 46403 46948 46979 47043 47529 47531 47694 48144 48284 48627 48749 48940 48992 49130 49355 49508 49558 49558 49578 49508 49558 49617 49740 49843 49844 49937 50150 50162 50202 50216	pin coupling d,e 0.47 0.24 0.19 0.58 0.69 1.23 0.49 0.80 3.21 2.11 4.16 3.45 1.59 0.69 2.73 0.01 0.29 1.03 0.15 0.02 0.35 0.17 1.00 3.28 0.01 4.00 0.11	90.02 90.02 39.85 49.49 39.83 41.85 39.85 62.43 63.21 59.15 44.03 55.87 46.28 47.65 39.82 39.06 29.06 52.07 40.35 47.34 59.70 47.39 52.76 48.77 57.68 42.95 40.48 45.21 37.24	$\begin{array}{c} 2 & {}^{6}T_{2g} \\ 2 & {}^{6}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{1g} \\ 3 & {}$	32.64 25.18 36.67 31.81 13.53 15.45 33.76 31.51 20.48 35.05 45.41 27.82 37.92 25.75 33.90 25.22 33.40 19.30 11.49 21.08 28.51 25.40 24.08 24.08 30.11 25.27	$egin{array}{c} 3 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 5 & {}^{8}T_{1g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 3 & {}^{8}T_{2g} \\ 2 & {}^{8}E_{g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 4 & {}^{8}T_{1g} \\ 4 & {}^{8}T_{2g} \\ 3 & {}^{8}T_{2g} \\$	16.72 20.65 12.78 17.64 18.85 17.31 10.95 19.27 10.95 20.55 18.77	$4 \ {}^{8}T_{2g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $5 \ {}^{8}T_{1g}$ $3 \ {}^{8}T_{2g}$ $5 \ {}^{8}T_{1g}$ $4 \ {}^{8}T_{2g}$	11.24 13.86 10.57 11.85	$4 \ {}^{8}T_{1g}$ $2 \ {}^{8}E_{g}$ $2 \ {}^{8}E_{g}$ $4 \ {}^{8}T_{1g}$

$24 \Gamma_{7g}$	2.400	602	50362	1.30	29.65	$5 \ ^{8}T_{1g}$	24.48	$4 {}^{8}T_{1g}$	17.05	$2^{8}E_{g}$	12.58	$4 {}^{8}T_{2g}$
48 Γ_{8g}	2.407	366	50433	0.40	63.73	$3 \ ^{8}T_{2g}$	32.80	$3 \ ^{8}T_{1g}$				
49 Γ_{8g}	2.397	434	50664	0.67	23.27	$6 \ ^8T_{1g}$	15.18	$5 \ ^8T_{1g}$	14.50	$3 \ ^{8}E_{g}$	11.68	$5 \ ^{8}T_{2g}$
					10.19	$4 \ ^{8}T_{1q}$						
$24 \Gamma_{6a}$	2.391	413	50669	0.20	19.07	$4 {}^{8}T_{2a}$	16.21	$6^{-8}T_{1a}$	14.37	$3 {}^{8}T_{1a}$	10.69	$4^{8}T_{1a}$
50 Γ_{8a}	2.400	500	50774	1.66	29.22	$4 {}^{8}T_{2a}^{-s}$	27.72	$2^{8}E_{a}^{-3}$	10.93	$5 {}^{8}T_{1a}$		-3
$25 \Gamma_{7-}$	2,405	350	50964	0.13	22.06	$3^{8}E_{-}$	21.67	$\frac{1}{6} \frac{2}{8} T_{1}$	20.31	$5 {}^{8}T_{2}$	13,08	$4^{-8}T_{2-}$
$51 \Gamma_{\circ}$	2.401	382	50972	0.20	22.00	$4 \ {}^{8}T_{1}$	21.01	$5 {}^{8}T_{1}$	19.61	$2^{8}E$	12 57	$6 \frac{8}{7}$
$25 \Gamma_{2}$	2.401	304	51032	0.16	40.91	$\frac{1}{1} \frac{1}{2} \frac{1}$	10.87	$2^{8}F$	13.01	$\frac{2}{6} \frac{D_g}{T}$	12.01	0 11g
$25 \ 1 \ 6g$	2.392	094	51052	0.10	40.21	4 12g 5 8T	19.07	$5 L_g$ $\epsilon^8 T$	11.00	$\sqrt{8}T$	11.0.4	5 8 T
$20 \ 1 \ 7g$	2.405	373 395	51261	0.84	40.01	$5 I_{1g}$	12.04	$0 I_{1g}$	15.90	4 12g	11.04	5 12g
$52 T_{8g}$	2.410	335	51415	0.98	29.09	$5 \ T_{1g}$	18.71	$3 \ E_{g}$	15.85	$0 \ T_{1g}$	11.32	$5 \ T_{2g}$
$26 T_{6g}$	2.389	395	51430	0.12	59.10	$5 \ ^{\circ}T_{1g}$	16.88	$2 \ ^{\circ}E_{g}$	12.11	$4 \ ^{\circ}T_{1g}$		
$27 \Gamma_{7g}$	2.398	693	51430	0.61	45.78	$3 \ {}^{\circ}T_{1g}$	38.48	$3 \ {}^{\circ}T_{2g}$		0		0
53 Γ_{8g}	2.396	317	51471	0.28	32.13	$4 {}^{8}T_{2g}$	18.88	$5 \ {}^{8}T_{2g}$	16.15	$2 \ ^{\circ}E_{g}$	14.18	$3 \ ^{\circ}E_{g}$
$54 \ \Gamma_{8g}$	2.405	356	51604	1.55	19.68	$5 \ ^{8}T_{2g}$	17.84	$3 \ ^8E_g$	15.97	$4 {}^{8}T_{2g}$	13.33	$2 {}^{8}E_{g}$
$27 \Gamma_{6g}$	2.396	440	51612	0.01	32.46	$3 \ ^{8}T_{2g}$	14.82	$5 \ ^{8}T_{2g}$	13.32	$3 \ ^{8}T_{1g}$		
55 Γ_{8q}	2.395	428	51672	3.57	49.71	$3 \ ^8T_{2q}$	30.23	$3^{8}T_{1q}$				
$28 \Gamma_{7a}$	2.394	489	51712	0.16	47.66	$3 \ ^{8}T_{1a}$	46.21	$3 \ ^{8}T_{2a}$				
$28 \Gamma_{6a}$	2.392	437	51722	1.05	32.39	$5 {}^{8}T_{2a}^{-3}$	17.56	$3 {}^{8}T_{2a}^{-s}$				
	2 389	437	51919	5.37	29.81	$3 {}^{8}T_{1}$	18 59	$3 \ {}^{8}T_{2}$	10.82	$3^{8}E_{-}$	10 13	$5^{-8}T_{1-}$
$57 \Gamma_{\odot}$	2 300	441	51038	1 41	30.23	$3^{8}T_{1}$	20.51	$3 \frac{8}{T_0}$	17.07	$5 \frac{8}{T_1}$	10.10	• 1 1g
$37 \pm 8g$ $20 \Gamma_{-}$	2.390	441	51330	2.04	20.20	$\sqrt{\frac{8}{T_{-}}}$	10.79	0^{-12g} $0^{-8}F$	11.31	0 1 1g		
29 I 6g	2.400	440 500	52009	2.94	00.00 17.04	4 12g	19.72	2 Lg 5 8 T	16.04	r 8m	15 69	187
$58 \ 1 \ 8g$	2.399	522	52082	3.81	17.24	$4 \ ^{\circ}I_{2g}$	10.02	$5 \ ^{\circ}I_{2g}$	10.04	$5 \ ^{\circ}T_{1g}$	19.03	$4 \ \ 1_{1g}$
					12.11	$2 E_g$				- *		
$59 \ \Gamma_{8g}$	2.397	518	52192	2.22	25.48	$6 \ {}^{\circ}T_{1g}$	12.36	$3 \ ^{\circ}E_{g}$	10.76	$5 \ {}^{\circ}T_{1g}$		
$60 \ \Gamma_{8g}$	2.393	475	52499	0.80	32.95	$3 \ ^{8}E_{g}$	30.70	$5 \ ^{8}T_{2g}$	19.87	$5 \ ^{8}T_{1g}$		
$30 \Gamma_{6g}$	2.391	494	52534	0.37	49.30	$5 \ ^{8}T_{2g}$						
$29 \Gamma_{7g}$	2.377	454	52712	0.02	31.64	$6 \ ^{8}T_{1g}$	15.26	$5 \ ^{8}T_{1g}$				
$30 \Gamma_{7q}$	2.380	469	52782	0.03	17.63	$6 \ ^8T_{1q}$	17.58	$4 \ ^{8}T_{1a}$	16.60	$5 \ ^{8}T_{1a}$	10.67	$4 {}^{8}T_{2a}$
$31 \Gamma_{6a}$	2.394	483	52815	0.39	71.42	$5 \ ^{8}T_{1a}$	13.58	$4 {}^{8}T_{2a}$		5		5
61 Г ₈ а	2.387	466	52819	0.24	45.72	$5 \ ^{8}T_{1a}$	12.80	$4 \ {}^{8}T_{2a}^{2g}$	10.81	$3^{8}E_{a}$	10.51	$4^{-8}T_{1a}$
62 Fo	2 390	456	52994	0.17	41.25	$5 \frac{8}{T_1}$	17.96	$6 \frac{8}{7_1}$	10.01	5 1 9	10.01	1g
$02 \ 1 \ 8g$ $31 \ \Gamma_{-}$	2.330	469	52334	0.17	41.20	$3^{8}F$	14 76	$\sqrt{8}T$	11 81	18T-	10.00	9.8F
511_{7g}	2.000	402	59169	0.00	41.01	$5 D_g$ = 8T	25.00	$\pm 1_{1g}$ $\pm 8T$	10.01	$4^{-1}2g$	10.33	ΣD_g
$03 \ 1 \ 8g$	2.369	401	59109	0.30	41.91	$5 I_{1g}$	20.90	$5 I_{2g}$	12.02	$0 I_{1g}$		
$32 \ \Gamma_{6g}$	2.396	542	53209	0.25	35.96	$0 \ I_{1g}$	22.16	$5 \ 1_{2g}$	17.87	$3 \ E_g$		
$64 \ \Gamma_{8g}$	2.393	508	53305	0.58	43.46	$5 \ ^{\circ}T_{2g}$	42.40	$6 \ ^{\circ}T_{1g}$				
$65 \ \Gamma_{8g}$	2.393	480	53752	0.07	46.27	$5 \ {}^{\circ}T_{2g}$	14.36	$3 \ ^{\circ}E_{g}$				
$32 \Gamma_{7g}$	2.394	435	53885		74.23	$5 \ ^{\circ}T_{2g}$		0				
$33 \Gamma_{6g}$	2.387	446	54020	0.09	28.56	$6 \ ^{8}T_{1g}$	21.91	$3 \ ^8E_g$				
66 Γ_{8g}	2.392	455	54085	0.33	50.13	$6 \ ^{8}T_{1g}$	29.38	$5 \ ^{8}T_{2g}$	11.34	$3 {\ }^{8}E_{g}$		
$67 \Gamma_{8q}$	2.396	577	54338	0.41	45.18	$5 \ ^{8}T_{2q}$	23.09	$3^{-8}E_{q}$				
$33 \Gamma_{7a}$	2.386	496	54401	0.11	55.55	$6 \ ^{8}T_{1a}$	19.53	$3 \ ^{8}E_{a}$				
34 Tea	2.398	662	54510	0.07	42.67	$5 {}^{8}T_{2a}^{-s}$	20.19	$6 {}^{8}T_{1a}$				
68 Γ ₈₋	2 398	671	54520	0.19	32.67	$5 {}^{8}T_{2}$	31.05	$6 \ {}^{8}T_{1}$	$16 \ 71$	$3^{8}E_{-}$		
34 Г-	2,000	607	54527	0.10	42.06	$5 \frac{8}{T_{2}}$	16.80	$3^{8}F$	10.11	5 <i>Lg</i>		
$54 1_{7g}$ 60 Γ	2.332	760	54572	0.10	42.00	$6 \frac{8T}{2g}$	27 41	$\frac{5}{28}$	1/09	5 8T		
$09 \ 1 \ 8g$	2.390	100	54575	0.37	47.01	$0 I_{1g}$	27.41	$5 L_g$	14.02	$5 \ 1_{2g}$		
$35 \ 1_{7g}$	2.398	1031	54764	0.24	42.11	$0 \ ^{\circ}I_{1g}$	15.05	0.8 17				
$70 \ \Gamma_{8g}$	2.399	1033	54978	0.41	48.50	$6 \ ^{\circ}T_{1g}$	15.35	$3 \ E_g$				
$35 \Gamma_{6g}$	2.400	1074	55022	0.20	48.20	$6 \ ^{\circ}T_{1g}$	14.55	$3 \ ^{\circ}E_{g}$				
					$4f^7$ excited st	ates						
1 f7/6 D	۰. ۱ c											
$4J (P_{3})$	(2,5/2,7/2)	400	20449		00.04	1 677						
$2 1_{8u}$	2.380	422	30442		89.24	$1 T_{1u}$						
$2\Gamma_{7u}$	2.386	422	30453		89.74	$1 \ ^{\circ}T_{1u}$						
$3 \Gamma_{8u}$	2.386	422	30826		94.06	$1 \ ^{\circ}T_{1u}$		- <i>C</i> -				
$2 \Gamma_{6u}$	2.386	422	31053		85.07	$1 {}^{o}_{c} T_{1u}$	12.15	$3 \ ^{o}T_{2u}$				
$4 \Gamma_{8u}$	2.386	422	31065		85.15	$1 {}^{o}T_{1u}$		0				
$3 \Gamma_{7u}$	2.386	422	31087		85.28	$1 {}^{b}T_{1u}$	10.76	$2 \ ^{\mathrm{o}}E_u$				
H ~												
$4f^7({}^6I_{7/}$	2,9/2,11/2,13	/2,15/2,	$_{17/2})^{\rm c}$			_		_				
$3 \Gamma_{6u}$	2.385	422	34758		77.14	$1 {}^{6}T_{2u}$	19.36	$1^{6}E_{u}$				

$5 \Gamma_{8u}$	2.385	422	34766	83.92	$1^{6}T_{2u}$	12.38	$1^{6}E_{u}$				
$4 \Gamma_{7u}$	2.385	422	34776	93.85	$1 {}^{6}T_{2u}$						
$6 \Gamma_{8u}$	2.386	422	34798	80.83	$1 {}^{6}T_{2u}$	12.57	$1 {}^6E_u$				
$7 \Gamma_{8u}$	2.386	422	34807	87.86	$1 {}^{6}T_{2u}$						
$4 \Gamma_{6u}$	2.386	422	34808	87.58	$1 {}^{6}T_{2u}$						
$5 \Gamma_{6u}$	2.386	427	35026	84.72	$1 {}^6E_u$	12.34	$2^{6}T_{1u}$				
$8 \Gamma_{8u}$	2.386	422	35033	43.59	$1^{6}E_{u}$	29.81	$2^{6}T_{2u}$	23.21	$1 {}^{6}A_{2u}$		
9 Γ_{8u}	2.386	423	35085	67.87	$1^{6}E_{u}$	14.20	$2^{6}T_{2u}$	10.28	$1 {}^{6}T_{2u}$		
$6 \Gamma_{6u}$	2.385	426	35092	46.77	$2^{6}_{a}T_{2u}$	27.81	$1 {}^{6}A_{2u}$	12.68	$1 {}^{6}E_{u}$		
$10 \Gamma_{8u}$	2.386	422	35172	75.34	$2^{b}_{c}T_{2u}$	19.01	$2 {}^{6}_{c} T_{1u}$				
$5 \Gamma_{7u}$	2.386	412	35182	80.51	$2 {}^{o}T_{2u}$	17.75	$2 {}^{o}T_{1u}$	10.00	1.67		
$(I_{6u} $	2.389	429	35191	69.23	$2 \ ^{\circ}T_{2u}$	11.14	$2 \ ^{\circ}T_{1u}$	10.06	$1 \ ^{\circ}T_{2u}$		
$11 \Gamma_{8u}$	2.386	422	35202	29.51	$2 \ ^{\circ}T_{1u}$	27.29	$2 \ ^{\circ}T_{2u}$	23.73	$1 \ E_u$		
$0 \ 1 \ 7u$ 19 Γ	2.300	410	35210 25912	49.40	$1 L_u$ 0 6T	37.09	$2 1_{2u}$ 2 6T				
$12 \ 18u$ 7 Γ_{-}	2.385	422	35243	41.30 50.70	$2 1_{2u}$ $2^{6}T_{2u}$	30.35	$\frac{2}{16} \frac{1}{4}$				
$13 \Gamma_{0}$	2.386	422	35264	26.70	$1^{6}A_{0}$	22 33	$2^{6}T_{1}$	21 71	$1^{6}A_{1}$	13 61	$1^{-6}E$
$8 \Gamma_c$	2.386	422	35265	48.38	$1 \frac{6}{4}$	28.30	$2^{6}T_{1}$	21.11	1 111 <i>u</i>	10.01	$\perp D_u$
$8 \Gamma_{7}$	2.386	422	35307	58 40	$2^{6}T_{1}$	20.00 27.07	$1^{6}A_{1}$				
$14 \Gamma_{e}$	2.386	422	35315	29.81	$2^{6}T_{2}$	29.36	$1^{6}A_{2}$	2551	$1^{6}A_{1}$		
$15 \Gamma_{8u}$	2.386	422	35376	71.42	$2^{6}T_{1u}$	17.80	$2^{6}T_{2u}$	20101			
$16 \Gamma_{8u}$	2.386	423	35401	52.04	$2^{6}T_{1u}$	32.48	$2^{6}T_{2u}$				
$9 \Gamma_{6u}$	2.386	422	35451	49.56	$2^{6}T_{1u}^{1u}$	33.66	$2 {}^{6}T_{2u}^{2}$	13.82	$1 {}^{6}A_{2u}$		
$17 \Gamma_{8u}$	2.386	422	35496	48.82	$2^{6}T_{1u}$	32.68	$1 {}^{6}A_{1u}$	13.06	$2^{6}T_{2u}$		
9 Γ_{7u}	2.386	422	35510	56.03	$2^{6}T_{1u}$	32.90	$1 {}^{6}A_{1u}$				
$4f^7(^6D_1)$	/2,3/2,5/2,7/2	e) c			<i>c</i> —		<i>c</i> —				
$18 \Gamma_{8u}$	2.385	422	37485	78.62	$3 {}^{o}_{c} T_{2u}$	17.76	$2 \ ^{o}E_{u}$				
$10 \Gamma_{6u}$	2.385	423	37633	93.85	$2 {}^{\circ}E_{u}$		- 6				
$19 \Gamma_{8u}$	2.386	422	37672	51.78	$2 {}^{0}E_{u}$	44.68	$3 \ {}^{o}T_{2u}$				
$11 \Gamma_{6u}$	2.386	422	37925	97.37	$3 \ {}^{o}T_{2u}$		0.6 F				
$20 \Gamma_{8u}$	2.385	422	38099	51.12	$3 \ {}^{o}T_{2u}$	39.73	$2 {}^{\circ}E_u$	10 50	1.677		
$21 \Gamma_{8u}$	2.385	423	38311	65.23	$2 \ E_u$	19.54	$3 \ ^{\circ}T_{2u}$	10.59	$1 \ T_{1u}$		
$10 \Gamma_{7u}$	2.386	422	38393	80.40	$2 \ ^{\circ}E_u$	11.50	$1 \ ^{\circ}T_{1u}$				
$12 \Gamma_{6u}$	2.386	422	38515	80.47	$3 \ ^{\circ}T_{2u}$	11.98	$1 \ ^{\circ}T_{1u}$				
22 Γ_{8u}	2.386	422	38609	79.70	$3 \ ^{\circ}T_{2u}$	10.91	$1 \ ^{\circ}T_{1u}$ $1 \ ^{\circ}T$				
$11 \ 1 \ 7u$	2.380	422	38079	84.08	$3 1_{2u}$	10.50	$1 \ 1_{1u}$				
$4f^{7}(^{6}G_{2}$	/25/27/20/2	11/91	2 (2) ^C								
$23 \Gamma_{8u}$	2.384	422	47769	62.96	$4^{6}T_{2u}$	21.55	$2^{6}A_{2u}$				
$13 \Gamma_{6u}$	2.384	422	47790	64.33	$4 {}^{6}T_{2u}^{2u}$	22.71	$2 {}^{6}A_{2u}^{2u}$				
$24 \Gamma_{8u}$	2.385	422	47926	49.13	$4 {}^{6}T_{2u}$	20.04	$3^{6}E_{u}^{}$	17.18	$3^{6}T_{1u}$		
$12 \Gamma_{7u}$	2.384	422	48119	65.05	$3^{6}T_{1u}$	26.79	$3^{-6}E_u$				
14 Γ_{6u}	2.385	422	48143	46.95	$3^{-6}E_u$	38.82	$5^{6}T_{2u}$				
$15 \Gamma_{6u}$	2.384	422	48226	81.85	$3^{6}T_{1u}$						
$25 \Gamma_{8u}$	2.384	421	48227	59.57	$3^{6}_{1u}T_{1u}$	17.92	$5 {}^{6}T_{2u}$	16.50	$4^{6}T_{2u}$		
$26 \Gamma_{8u}$	2.385	422	48329	42.11	$3^{6}E_{u}$	16.82	$5 {}^{6}T_{2u}$	11.71	$2 {}^{6}A_{1u}$		
$13 \Gamma_{7u}$	2.385	422	48351	28.71	$5 {}^{6}_{c}T_{2u}$	28.03	$3 {}^{6}_{c} T_{1u}$	15.27	$4 {}^{6}_{c} T_{2u}$	15.00	$2 {}^{6}_{c} A_{1u}$
$27 \Gamma_{8u}$	2.385	423	48448	29.89	$4 {}^{o}T_{2u}$	24.77	$3 \ ^{o}E_{u}$	16.53	$5 \ ^{0}T_{2u}$	10.56	$3 \ ^{0}T_{1u}$
$28 \Gamma_{8u}$	2.386	422	48915	80.24	$4 {}^{0}T_{1u}$		264	10.00	- 6 -		
$14 \Gamma_{7u}$	2.387	422	49170	41.78	$4 \ ^{\circ}T_{1u}$	30.90	$2 \ ^{\circ}A_{1u}$	18.98	$5 \ ^{\circ}T_{2u}$	10.15	0.6 T
29 Γ_{8u}	2.386	422	49502	30.61	$2 \ ^{\circ}A_{1u}$	25.55	$4 \ ^{\circ}T_{1u}$	18.01	$5 \ T_{2u}$	12.15	$3 \ ^{\circ}E_u$
10 1 6u 20 F	∠.384 9.204	422 499	49048 40721	08.78	$4 \ 1_{2u}$	13.91 14 64	$5 E_u$ 26E	12.07	2 6 T		
$30 \ 18u$ 15 Γ	∠.384 9.384	42Z 499	49731 40771	00.83 59.44	$\frac{4}{4} \frac{1}{2u}$	14.04 91.97	$3^{+}E_{u}$ $3^{-}6T$	13.97	$3 I_{1u}$		
15 г _{7и} 16 Г-	2.004 2.385	422 199	500.48	02.44 13.17	$\frac{1}{2} \frac{1}{2} \frac{1}$	21.07 33.68	$3^{6}T$	11 14	$1^{6}T$		
$31 \Gamma_{2}$	2.385	422 499	50076	40.17 41.00	$3^{6}T$	55.00 22.15	$3^{6}F$	11.14 21.60	$4^{6}T$		
01 I 8u	2.000	122	00010	11.00	5 1 1u	22.10	$5 L_u$	21.00	• • 1u		
$4f^{7}(^{6}F_{1})$	/2,3/2,5/2.7/2	,9/2.11	/2) ^c								
$17 \Gamma_{6u}$	2.386	422	50640	44.37	$5^{6}T_{2u}$	24.72	$2^{6}A_{2u}$	18.88	$4 {}^{6}T_{1u}$		
$32 \Gamma_{8u}$	2.385	422	51421	23.11	$2^{6}A_{2u}$	21.94	$5^{6}T_{2u}$	15.65	$4 {}^{6}T_{2u}$	15.12	$3^{6}T_{1u}$
33 Γ_{8u}	2.384	422	51754	71.22	$3^{6}T_{1u}$						

$17 \Gamma_{7u}$	2.384	422	51799	43.50	$5 {}^{6}_{6}T_{2}$	u 21.88	$3 {}^{6}T_{1u}$	15.68	$4 {}^{6}_{6}T_{2u}$		- 6 -
$34 \Gamma_{8u}$	2.385	422	51978	24.18	$2 {}^{\circ}A_{\circ}$	2u 21.24	$5 {}^{o}_{c}T_{2u}$	20.26	$4 {}^{o}_{c}T_{2u}$	10.60	$3 \ ^{\mathrm{o}}E_u$
$18 \Gamma_{6u}$	2.385	422	52123	41.74	$2^{\circ}A_{2}$	2u 31.24	$5 {}^{\circ}_{c} T_{2u}$	15.08	$4 {}^{o}T_{2u}$		
$35 \ \Gamma_{8u}$	2.385	422	52384	55.99	$5 {}^{o}_{c}T_{2}$	$_{u}$ 12.07	$3 {}^{\circ}E_u$	11.77	$2 {}^{\circ}A_{2u}$		
$18 \Gamma_{7u}$	2.386	422	52387	39.11	$4 {}^{6}T_{1}$	u 26.12	$2 {}^{6}A_{1u}$	16.23	$3^{6}_{c}T_{1u}$		
$19 \Gamma_{6u}$	2.385	422	52499	51.87	$5^{\circ}_{a}T_{2}$	u 24.18	$3 ^{\circ}E_u$	14.49	$4 {}^{\circ}T_{2u}$		0
$36 \Gamma_{8u}$	2.385	422	52530	28.21	$4 {}^{6}T_{1}$	$_{u}$ 24.85	$5 {}^{6}T_{2u}$	14.83	$3 {}^{6}T_{1u}$	14.02	$2 {}^{6}A_{1u}$
$37 \Gamma_{8u}$	2.386	423	52616	46.37	$4^{6}T_{1}$	u 21.53	$5 {}^{6}T_{2u}$				
19 Γ_{7u}	2.386	422	52744	77.8	$4^{6}T_{1}$	u					
$20 \Gamma_{6u}$	2.387	422	52793	67.34	$4^{6}T_{1}$	u					
$38 \Gamma_{8u}$	2.386	422	52909	47.86	$5^{-6}T_2$	u 31.75	$4 {}^{6}T_{1u}$				
$4f^{7}(^{6}H_{5}$	/2,7/2,9/2	2,11/2,13/2,	$_{15/2})^{c}$								
$20 \Gamma_{7u}$	2.385	423	55493	57.10	$5 {}^{6}T_{1}$	u = 27.00	$4^{6}E_{u}$				
$39 \ \Gamma_{8u}$	2.385	422	55617	45.16	$5 {}^{6}T_{1}$	u = 23.05	$4^{6}E_{u}$	14.81	$6 \ ^{6}T_{2u}$	10.19	$6 \ ^{6}T_{1u}$
$40 \ \Gamma_{8u}$	2.384	423	55790	81.51	$5 {}^{6}T_{1}$	u = 11.96	$4^{6}E_{u}$				
21 Γ_{6u}	2.384	423	55869	64.47	$5 \ ^{6}T_{1}$	u = 11.93	$4^{6}E_{u}$				
41 Γ_{8u}	2.384	423	55871	68.06	$5 {}^{6}T_{1}$	u = 20.53	$4^{6}E_{u}$				
$21 \ \Gamma_{7u}$	2.384	423	55892	46.00	$4^{6}E_{1}$	_ι 41.02	$5 {}^{6}T_{1u}$	11.35	$6 \ ^{6}T_{1u}$		
$42 \Gamma_{8u}$	2.385	422	55909	72.67	$4^{6}E_{3}$	_ι 12.74	$6 {}^{6}T_{1u}$				
43 Γ_{8u}	2.384	423	56039	66.90	$5^{6}T_{1}$	u 20.83	$4^{6}E_{u}$				
$22 \Gamma_{7u}$	2.384	421	56049	64.26	$5^{6}T_{1}$	u 13.82	$4^{6}E_{u}$				
$22 \Gamma_{6u}$	2.384	422	56065	72.80	$4^{6}E_{3}$	_ι 17.27	$5 \ ^{6}T_{1u}$				
23 Γ_{7u}	2.386	424	56116	38.82	$6^{-6}T_2$	u 29.98	$6 {}^{6}T_{1u}$	18.94	$5 {}^{6}T_{1u}$		
44 Γ_{8u}	2.385	423	56211	42.19	$6^{-6}T_1$	u 22.47	$6 {}^{6}T_{2u}$	21.19	$4^{6}E_{u}$		
23 Γ_{6u}	2.386	422	56242	86.06	$6 {}^{6}T_{1}$	и 11	20		u		
45 Γ_{8u}	2.386	423	56335	72.83	$6^{6}T_{1}$	u 12.49	$6^{-6}T_{2u}$				
$24 \Gamma_{7u}$	2.386	423	56435	82.48	$6^{6}T_{1}$	21	20				
24 Ten	2.386	423	56453	83.33	$6^{6}T_{2}$						
$46 \Gamma_{ex}$	2.386	423	56485	49.7	$6^{6}T_{1}$. 36.26	$6^{-6}T_{2m}$				
47 Γ _ο	2.387	423	56707	86.5	$6^{6}T_{2}$	<i>u</i> 00.20	• <i>-</i> 2 <i>u</i>				
48 Γ ₀	2.387	423	56768	49.35	$6^{6}T_{2}$		$6^{-6}T_{1}$				
$25 \Gamma_c$	2.301	423	56774	84.95	$6^{6}T_{c}$	<i>u</i> 01.15	0 114				
20 Γ ₀ <i>u</i> 49 Γ ₀	2.387	423	56837	47.3($6^{6}T_{c}$	u 41 15	$6^{-6}T_{1}$				
$25 \Gamma_{7u}$	2.387	423	56875	50.1^{2}	$6 \ {}^{6}T_{1}$	u 39.91	$6 \ {}^{6}T_{2u}$				
				Eu^{3+} -doped	CaF_2						
$4f^6(^7F_{0}-$	-6)										
$1 A_{1a}$	2.261	495	0	35.10	$1^{-7}T_2$	a 30.28	$1^{7}A_{2a}$	28.94	$1^{7}T_{1a}$		
$1 T_{1a}^{1g}$	2.260	495	345	35.75	$1^{7}A$	$\frac{3}{2a}$ 34.53	$1 {}^{7}T_{2a}$	24.93	$1 {}^{7}T_{1a}$		
$1 T_{2a}$	2.259	497	803	55.37	$1^{7}A$	2a 32.46	$1 {}^{7}T_{2a}^{2g}$		-9		
$1 E_a$	2.261	494	1406	63.62	$1^{7}T_{1}$	a 32.67	$1 {}^{7}T_{2a}^{2g}$				
$2 T_{1a}^{g}$	2.260	496	1971	44.05	$1^{7}T_{1}$	a^{9} 28.35	$1 {}^{7}A_{2a}$	24.96	$1^{7}T_{2a}$		
$2 T_{2a}^{1g}$	2.261	495	2111	63.47	$1^{7}T_{1}$	a 23.97	$1 {}^{7}T_{2a}$		-9		
$1 A_{2a}^{2g}$	2.261	494	2352	50.50	$1^{7}T_{1}$	46.93	$1 {}^{7}T_{2a}^{2g}$				
$2 A_{1a}^{2g}$	2.259	498	2501	53.64	$1^{7}A^{1}$	43.69	$1^{7}T_{1a}^{2g}$				
$3 T_{1a}$	2.261	495	3114	47.2:	$1^{-7}T_{2}$	<u> </u>	$1^{7}T_{1a}$	14.61	$1^{7}A_{2a}$		
$3 T_{2a}$	2.261	494	3361	78.9	$1^{7}T_{1}$	a 16.24	$1^{7}T_{2a}$	1 1101	1 1129		
$\frac{0}{2}E$	2.201	191	3472	79.25	$1^{7}T_{c}$	g 10.21 18.74	$1^{7}T_{1}$				
$\frac{2}{4} \frac{D_g}{T_2}$	2.202 2.261	496	4132	41.46	$1^{7}T_{0}$	34.92	$1^{7}T_{1}$	21.25	$1^{7}A_{0}$		
$\frac{1}{4} \frac{1}{T_1}$	2.201	495	4404	75.30	$1^{7}T_{0}$	g = 54.52 13.52	$1^{7}T_{1}$	21.20	1 112g		
$\frac{1}{3}E$	2.201	435 707	4600	70.03 AQ AS	$1^{7}T$	g 10.02 /18.17	$1 \frac{1}{7}T_{-}$				
$5 D_g$ 5 T.	2.201	494 /0/	4609	49.40 57 Q	$1^{7}T_{2}$	g 10.17 19.52	$1^{7}T_{1}$				
3Δ	2.201	494 405	4002 5594	60 19	$1^{7}T$	g +2.00 92.49	$1^{7}T_{-}$	12 10	$1^{7} A_{2}$		
$6 T_{\cdot}$	2.201	490 /05	5524 5580	54.99	$1^{7}T_{-}$	g ∠0.40 20.90	$1^{7}T_{-}$	10.19	1 A2g		
$5 T_{2}$	2.201	490 405	5602	04.20 /0 0*	172	g J∠.00 20.00	$1^{7}T_{-}$				
5 1 2g 1 F	2.201 9.961	490	5003	40.9	17T	g 39.90 22.96	$1^{7}T$				
ч 12g 6 Т-	2.201 9.961	494	5000	03.25	$1 1_1 \\ 17T$	g 00.00 90.00	$1^{7}T$				
$0 I_{2g}$	2.201 9.961	494	5007	00.8 50.0	$1^{7}T$	g 39.80 46 56	$1 \frac{1}{2g}$ $1 \frac{7}{T}$				
$\angle A_{2g}$	2.201	494	0827	50.03	$1 I_2$	g = 40.00	1 1 _{1g}				

 $4f^6({}^5D_{0-3})$

$4 A_{1g}$	2.260	494	20023	55.09	$1 {}^{5}T_{2g}$	38.95	$1^{5}E_{g}$				
$7 T_{1g}$	2.260	494	20828	55.07	$1 {}^{5}T_{2g}$	39.56	$1 {}^{5}E_{g}$				
$5 E_g$	2.260	494	22414	54.59	$1 {}^{5}E_{g}$	40.93	$1 {}^5T_{2g}$				
$7 T_{2g}$	2.260	494	22566	64.36	$1 {}^5T_{2g}$	31.00	$1 {}^{5}E_{g}$				
$3 A_{2g}$	2.260	493	25074	95.53	$1 {}^{5}E_{g}$		_				
$8 T_{2g}$	2.260	493	25175	52.00	$1 {}^{5}_{2g} T_{2g}$	43.69	$1 {}^5E_g$				
$8 T_{1g}$	2.260	494	25180	87.42	$1 {}^{5}T_{2g}$						
$4f^{6}(^{5}D_{4}$	⁵ Le 10 ⁵	$G_{2-\epsilon}$									
$9 T_{2a}$	2.258	492	27978	36.81	$1^{5}T_{1a}$	29.22	$2^{-5}E_{a}$				
E_a	2.258	493	27981	39.28	$1 {}^{5}T_{1a}$	26.45	$2 {}^{5}E_{a}$	13.01	$1 {}^{5}A_{1a}$		
$4 A_{2q}$	2.259	493	28021	43.58	$1 {}^{5}T_{1q}$	38.58	$2^{5}E_{q}^{5}$		-9		
$10 T_{2q}^{-3}$	2.258	495	28166	48.22	$2 {}^{5}T_{2q}$	12.53	$1 {}^{5}T_{2q}$	11.81	$1 {}^{5}T_{1q}$		
9 T_{1g}	2.257	494	28189	34.82	$2^{5}E_{g}$	23.82	$1 {}^{5}T_{1g}$	22.73	$2 {}^{5}T_{2g}$		
$7 E_g$	2.258	495	28304	38.22	$2 {}^{5}T_{2g}$	13.39	$1 {}^{5}T_{2g}$	11.24	$1 {}^{5}A_{1g}$	10.66	$1 {}^{5}E_{g}$
$5 A_{1g}$	2.258	494	28360	60.12	$2^{-5}E_{g}$	17.62	$2^{-5}T_{2g}$				
$10 \ T_{1g}$	2.259	494	28403	38.55	$1 {}^{5}T_{1g}$	25.57	$2 {}^{5}T_{2g}$		_		_
$11 T_{2g}$	2.259	493	28550	42.34	$1 \ _{2}^{5}T_{1g}$	18.85	$1 {}^{5}A_{1g}$	13.89	$2 {}^{5}T_{2g}$	13.07	$2 {}^5E_g$
$12 \ T_{2g}$	2.260	494	28647	29.75	$3 \ ^{5}E_{g}$	26.11	$2 \ _{2}^{5}T_{1g}$		-		
$5 A_{2g}$	2.260	494	28653	38.00	$3 \ ^{5}E_{g}$	32.86	$2 \ _{2}^{5}T_{1g}$	11.18	$2 \ _{g}^{5}E_{g}$		
$11 T_{1g}$	2.259	492	28852	34.99	$1 {}_{5}^{5}T_{1g}$	15.63	$3 {}^{5}_{5}E_{g}$	14.01	$2 {}^{\circ}T_{2g}$		
$8 E_g$	2.260	493	28856	35.68	$2 {}^{5}_{5}T_{1g}$	23.92	$3 {}^{5}E_{g}$		- 5		- 5
$12 T_{1g}$	2.259	494	28905	21.60	$1 \ {}^{5}T_{1g}$	20.58	$2^{-5}E_{g}$	18.30	$2 \ {}^{5}T_{1g}$	10.43	$2 \ {}^{5}T_{2g}$
$13 \ T_{2g}$	2.260	491	28960	20.18	$2 \ {}^{5}T_{2g}$	17.41	$2 \ {}^{5}T_{1g}$	12.62	$1 {}^{_{3}}A_{1g}$		
$14 T_{2g}$	2.261	495	29028	34.21	$1 {}^{5}T_{2g}$	10.06	$1 {}^{5}E_{g}$				
$6 A_{1g}$	2.260	493	29047	53.91	$1 {}^{5}E_{g}$	37.44	$1 \ {}^{5}T_{2g}$		o 5 m	10.40	o 5m
$13 T_{1g}$	2.261	492	29094	20.63	$1 \ ^{\circ}T_{2g}$	19.47	$1 {}^{\circ}E_{g}$	15.70	$3 \ ^{o}T_{2g}$	13.40	$3 \ ^{\circ}T_{1g}$
$9 E_g$	2.259	493	29096	34.75	$2 \ ^{\circ}E_{g}$	30.61	$1 \ ^{\circ}A_{1g}$	10.00	а 5 <i>т</i> т	10.00	9517
$14 T_{1g}$	2.260	496	29161	22.12	$2 \ ^{\circ}T_{2g}$	18.96	$1 \ T_{1g}$	18.69	$2 \ ^{\circ}T_{1g}$	12.60	$3 \ ^{\circ}E_{g}$
$10 E_g$	2.201	495	29199	31.94	$1 \ ^{\circ}T_{2g}$	26.17	$2 \ ^{\circ}T_{2g}$	23.26	$1 \ E_g$		
$15 T_{2g}$	2.260	495	29263	26.36	$2 \ ^{\circ}T_{1g}$	18.79	$2 \ ^{\circ}A_{1g}$	14.00	$3 \ ^{\circ}T_{2g}$	10.00	1 577
$15 \ T_{1g}$	2.201	494	29209	15.80	$3 \ 1_{1g}$	13.59	$3 \ 1_{2g}$	10.38	$2 \ ^{\circ}I_{1g}$	10.26	$1 \ 1_{2g}$
(A_{1g})	2.201	493	29311	37.09	$4^{-1}2g$ $2^{5}T$	30.08	$4^{+}E_{g}$ $2^{5}T$	14.51	3^{-1}_{2g} $1^{5}T$		
$10 \ I_{2g}$	2.201	494	29324	27.00	$3^{-1}I_{1g}$	10.34	$2^{-1}2g$	11.90	$1^{-1}I_{2g}$ $3^{-5}T$		
${}^{0} A_{2g}$ 17 T	2.200	493	29390	00.88 42.00	$3^{-1}I_{1g}$	23.90	$4^{-}E_{g}$	11.85	$2 I_{1g}$		
16 T	2.201	491	29015	40.99	$3 I_{2g}$ $3 5 T_{2g}$	24.91	$4 \ I_{2g}$				
$10 I_{1g}$	2.201	495	29030	04.01 60.90	$2 I_{1g}$ 2 5 F	15 11	$0.5T_{-}$				
${}^{0}A_{1g}$	2.200	490	29715	34.05	$3 L_g$ $\sqrt{5}F$	10.11	$\frac{2}{4} \frac{12g}{T_{-}}$	17.08	3.5T		
$11 L_g$ $17 T_c$	2.201	407	29700	95 01	$4 L_g$ 3 5T	20.10	4 12g 3 5T	20.02	$3 I_{1g}$ $4 5 T_{-}$	15 90	$\sqrt{5}F$
$17 I_{1g}$ 19 F	2.201	494	2011	20.01	$3 \ ^{5}F$	10.04	$1 {}^{5} A_{*}$	18.57	$^{4}1^{2g}$ $1^{5}T$	10.29	4 L'g
$12 L_g$ 18 T ₂	2.200	495	29031	21.52	$\frac{5}{1} \frac{E_g}{T_c}$	15.63	$2^{5}E$	15.96	$1 \ 1 \ 1_{1g}$ $1 \ 5 \ 4$.		
$13 \ F$	2.209	495	29975	20.02	$2^{5}A_{1}$	10.00 22.00	$\frac{2}{3} \frac{L_g}{T_0}$	10.20	$1 \frac{5}{T_1}$		
$7 4_{\circ}$	2.200	497	30018	36 38	$\frac{2}{1} \frac{A_{1g}}{T_1}$	22.99	$2^{5}E^{12g}$	10.01	1 11g		
$19 T_{0}$	2.200 2.259	492	30074	30.00	$2^{5}T_{0}$	1750	$\frac{2}{1} \frac{D_g}{T_1}$	11 13	$1^{5}A_{1}$		
$18 T_{1-}$	2.259 2.259	493	30098	36 29	$\frac{2}{2} \frac{1}{5} \frac{2g}{T_{2-}}$	12.56	$1 {}^{5}T_{1}$	12 11	$2^{5}T_{1}$	10 50	$2^{-5}E_{-}$
$9 A_{1-}$	2.259 2.259	495	30104	43 00	$\frac{2}{2} \frac{1}{5} \frac{2g}{T_{2-}}$	22.96	$3 {}^{5}E_{-}$	12.11 12.37	$5 {}^{5}E_{-}$	10.00	2 Dg
$\frac{9}{20} \frac{11_{1g}}{T_{2g}}$	2.260 2.260	497	30185	26.91	$\frac{2}{3} \frac{1}{5} \frac{2g}{T_{1g}}$	19.79	$3 \ {}^{5}T_{2a}$	18 45	$4 {}^{5}E_{a}$		
$19 T_{1a}$	2.200 2.261	494	30363	36.68	$4 {}^{5}T_{2a}$	24 76	$3 {}^{5}T_{2a}$	14.23	$4 {}^{5}E_{a}$		
$14 E_{a}$	2.261	494	30380	44.85	$3 {}^{5}T_{2a}$	19.71	$4 {}^{5}E_{a}$	11.20	1 <i>Dy</i>		
$21 T_{2a}$	2.261	493	30521	31.72	$3 {}^{5}T_{1a}$	27.00	$4 {}^{5}T_{2a}$	18.30	$4^{5}E_{a}$		
$20 T_{1a}$	2.260	494	30551	41.63	$3 {}^{5}E_{a}$	37.58	$2 {}^{5}T_{1a}$		9		
22 T_{2a}^{1g}	2.261	495	30655	29.09	$2 {}^{5}A_{1a}^{g}$	25.97	$2 {}^{5}T_{1a}$	15.48	$3 {}^5E_a$		
$21 T_{1a}$	2.261	493	31025	39.70	$3 {}^{5}T_{2a}$	26.33	$3 {}^{5}T_{1a}$	11.17	$4 {}^{5}E_{a}$		
$15 E_a$	2.261	493	31099	40.57	$3 {}^{5}T_{1a}^{29}$	31.23	$4 {}^{5}T_{2a}$		-9		
$10 A_{1a}^{9}$	2.261	494	31149	58.62	$3 {}^{5}T_{2a}$	27.10	$4 {}^{5}E_{a}^{-9}$				
22 T_{1a}^{1g}	2.261	493	31303	49.13	$4 {}^{5}T_{2a}^{-g}$	22.61	$3 {}^{5}T_{2a}$	21.00	$3 {}^{5}T_{1a}$		
$8 A_{2q}$	2.261	494	31313	66.85	$4 {}^{5}E_{q}$	26.75	$3 {}^{5}T_{1a}^{-9}$		-9		
23 T_{2q}	2.261	493	31340	35.76	$4 {}^{5}T_{2q}$	29.94	$3 {}^{5}T_{1q}$	18.95	$4 {}^5E_q$		
9 A_{2g}	2.260	495	31586	43.44	$3 {}^{5}E_{g}$	36.43	$2 {}^{5}T_{1g}$		5		
$24 \ T_{2g}$	2.260	495	31626	33.62	$2 {}^{5}T_{1g}$	27.30	$3 {}^{5}E_{g}$	15.77	$2 \ {}^{5}A_{1g}$		
$16 E_g$	2.260	495	31645	33.34	$2 {}^5T_{1g}$	22.55	$2 \ {}^{5}A_{1g}$	19.52	$3 {}^{5}E_{g}$		

23 T_{1g}	2.261	493	32115	52.	58	$3 {}^5T_{1g}$	24.51	$3 {}^{5}T_{2g}$				
$25 T_{2g}$	2.261	493	32165	38.	90	$3 {}^5T_{2g}$	22.62	$4 {}^{5}T_{2g}$	20.64	$3 {}^5T_{1g}$		
$17 E_g$	2.261	494	32402	33.	48	$4^{5}E_{g}$	26.82	$4 {}^5T_{2g}$	21.15	$3 {}^5T_{1g}$	15.72	$3\ {}^{5}T_{2g}$
$24 T_{1g}$	2.261	494	32429	41.	42	$4 {}^{5}T_{2g}$	32.73	$4 {}^5E_g$	11.02	$3 {}^5T_{2g}$		
$26 \ T_{2g}$	2.261	494	32452	41.	88	$4 {}^{5}T_{2g}$	28.97	$3 {}^5T_{2g}$	18.88	$4 {}^5E_g$		
$11 A_{1g}$	2.262	493	32458	52.	98	$4 {}^{5}T_{2g}$	32.54	$4 {}^{5}E_{g}$				

Supporting Information

^a Absorption oscillator strengths for 1 $\Gamma_{6u,8u,7u} \rightarrow i$ transitions are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.400$ Å; the reference value is $f_{ref}=1.704\times10^{-2}$. Emission oscillator strengths for 1 $\Gamma_{8g}\rightarrow1$ $\Gamma_{6u},1$ $\Gamma_{8u},1$ Γ_{7u} and radiative emission lifetime are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.350$ Å; the reference value is $f_{ref}=2.233\times10^{-3}$.

^b The analyses of the wave functions have been done at $d_{\text{Eu}-\text{F}}=2.400$ Å $(4f^7)$, 2.350 Å $(4f^6(5d^1 + ITE^1_{a_{1g}}))$, 2.250 Å $(4f^6)$. ^c C.f. Table S7.

^d C.f. Table S8.

Joos, Smet, Seijo and Barandiarán

^e Low-spin (S = 5/2) wave functions of the $4f^6({}^7F_J)(5dt_{2g}^1 + ITE_{a_{1g}}^1)$ configurations have not been included in the spin-orbit calculations.

TABLE S10: Spectroscopic constants and analyses of the spin-orbit wave functions of the ground and lowest lying excited states of Eu^{2+} and Eu^{3+} -doped SrF_2 cubic defects. Eu–F bond distances $(d_{\operatorname{Eu}-\operatorname{F},e} \text{ in } \text{Å})$, EuF_8 breathing mode harmonic vibrational frequencies $(\omega_{a_{1g}} \text{ in } \operatorname{cm}^{-1})$, minimum-to-minimum energy differences $(\operatorname{T}_e \text{ in } \operatorname{cm}^{-1})$, and relative absorption and emission oscillator strengths $(f_i^{abs}/f_{ref} \text{ and } f_i^{emi}/f_{ref})$ are given. Calculated radiative emission lifetime for the $4f^6({}^7F_J)5de_g^1 - 1\Gamma_{8g}$ excited state is 0.498 μs . Local distortion around the Eu^{2+} impurity, relative to experimental crystal structure $d_{Sr-F} = 2.510$ Å, is $d_{\operatorname{Eu}-\operatorname{F},e}(1\Gamma_{6u}) - d_{\operatorname{Ca}-\operatorname{F}} = -0.040$; ionic radii mismatch is -0.01 Å³¹. See Fig. 3, S3 and text for details.

State	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e	f_i^{abs}/f_{ref} a	f_i^{emi}/f_{ref} a		W	veights	of terms	larger t	han 10%	Ь	
$4f^{7}(^{8}S_{7})$	(2) ^c												
$1 \Gamma_{6u}$	2.470	370	0	1.00	1.00	97.78	$1 {}^{8}A_{1u}$						
$1 \Gamma_{8u}$	2.470	370	0	0.86	0.86	97.77	$1 {}^{8}A_{1u}$						
$1 \ \Gamma_{7u}$	2.470	370	0	0.03	0.03	97.77	$1 \ ^8A_{1u}$						
				45	$c^{6}(5d + ITE_{c})$	$(a_{1g})^1 ex$	cited sta	tes					
$4f^{6}(^{7}F_{1})$)5de ¹ High	Spin o	coupling	d									
$1 \Gamma_{8a}$	2.451	370	26828	1.00		50.73	$1^{-8}T_{2a}$	33.29	$1^{8}T_{1a}$	10.05	$1^{8}E_{a}$		
$1 \Gamma_{7a}$	2.451	370	27002	0.53		55.50	$1 {}^{8}T_{2a}^{-g}$	35.36	$1 {}^{8}T_{1a}^{1g}$		9		
$2 \Gamma_{8a}$	2.451	371	27118	0.10		69.49	$1 {}^{8}T_{2a}^{-3}$	18.65	$1 {}^{8}E_{a}$				
$2 \Gamma_{7a}$	2.451	369	27523	0.75		45.07	$1 {}^{8}T_{1a}^{2g}$	39.44	$1 {}^{8}T_{2a}^{9}$	11.79	$1^{8}E_{a}$		
$3 \Gamma_{8a}$	2.451	370	27814	1.01		35.29	$1 {}^{8}T_{2a}$	29.06	$1 {}^{8}T_{1a}^{2}$	26.15	$1 {}^{8}E_{a}^{9}$		
$1 \Gamma_{6a}$	2.451	371	27939	0.38		30.40	$1 {}^{8}T_{2a}^{2g}$	27.31	$1 {}^{8}E_{a}^{19}$	22.73	$1 {}^{8}T_{1a}^{9}$	15.16	$2^{-8}T_{1a}$
4 Γ _{8α}	2.451	369	28437	2.01		54.31	$1 {}^{8}T_{1a}^{2g}$	20.24	$1 {}^{8}T_{2a}^{9}$	13.31	$2^{8}T_{1a}^{1g}$		19
$2\Gamma_{6a}$	2.451	370	28515	0.27		33.46	$1 {}^{8}T_{2a}$	20.97	$1^{8}E_{a}$	19.98	$2^{8}T_{1a}$	19.61	$1^{-8}T_{1a}$
$5 \Gamma_{8a}$	2.450	374	28670	0.23		47.41	$1 {}^{8}E_{a}$	30.90	$\frac{1}{2} \frac{g}{8} T_{1a}$	15.87	$1 {}^{8}T_{2a}$		19
$3\Gamma_{7a}$	2.451	369	28745	0.83		42.89	$1 {}^{8}T_{1a}$	28.29	$1 {}^{8}E_{a}$	23.69	$1 {}^{8}T_{2a}$		
6 Γ _{8α}	2.450	370	28944	0.45		35.40	$1^{8}E_{a}$	32.83	$\frac{1}{1} \frac{g}{8} T_{2a}$	12.78	$1 {}^{8}T_{1a}$	11.33	$2^{-8}T_{2a}$
σ 1 8g 7 Γος	2.451	371	29333	0.72		41.26	$2^{8}T_{1a}$	22.86	$1 {}^{8}T_{1a}$	17.94	$1 {}^{8}T_{2a}$	16.34	$\frac{2}{2} \frac{4}{8} \frac{2g}{T_{2g}}$
$3 \Gamma_{6a}$	2 451	367	29343	0.70		46 69	$\frac{1}{1} \frac{8}{7}$	20.47	$2^{8}T_{1a}$	18 55	$2^{8}T_{2a}$	10101	- + 29
8 Γ	2.451	370	29858	1 70		47 14	$1 {}^{8}T_{1a}$	26.11	$2^{8}T_{1a}$	1479	$\frac{1}{1} \frac{8}{7_{2a}}$		
9 Γ ₈₋	2,101 2,450	369	29974	0.54		24.00	$1^{8}E_{-}$	23.47	$\frac{1}{1} \frac{8}{7}$	19.35	$1 {}^{8}T_{1}$	17 83	$2^{8}T_{1}$
0 1 8g	2.100	000	20011	0.01		14.81	$2^{8}T_{0}$	2011	1 1 2g	10.00	1 1 1 <i>g</i>	11.00	2 1 1g
$4 \Gamma_{\pi}$	2,450	368	30017	0.76		37.84	$\frac{2}{1} \frac{1}{8} \frac{2g}{T_1}$	24.01	$1^{8}T_{0}$	20.17	$1^{-8}E$		
$4 \Gamma_{e}$	2.100	373	30038	0.31		31 70	$2^{8}T_{1}$	25.22	$1 {}^{8}T_{2}$	22.35	$2 {}^{8}T_{2}$	15.36	$1^{8}T_{1}$
тг _{од} 5 Г ₇	2.451	371	30127	0.82		34.85	$\frac{2}{1} \frac{1}{8} T_{0}$	20.22 27.01	$2^{8}T_{1}$	26.83	$\frac{2}{1} \frac{1}{8} \frac{2g}{T_1}$	10.00	1 1 1g
$5\Gamma_{a}$	2.451	379	30395	0.02		47.46	$2^{8}T_{2}$	27.01	$\frac{2}{18} \frac{11g}{T_{0}}$	13.20	$2^{8}T_{1}$		
$10 \Gamma_{\odot}$	2.450	371	30/11/	0.08		56.07	$\frac{2}{2} \frac{12g}{8T_0}$	21.55	$1 \frac{1}{8}E$	14 36	$\frac{2}{1} \frac{1}{8} T_{2}$		
$10 \ 18g$ $11 \ \Gamma_{\circ}$	2.450	367	30688	0.05		39.03	$\frac{2}{1} \frac{1}{8} T_{2}$	26.47	$1 \frac{D_g}{1 \frac{8}{T}}$	20.06	$1 \frac{1}{8} \frac{1}{E}$	1/18	$2^{8}T$
11 1 8g 6 Га	2.451	368	30680	0.55		36 30	$1 \frac{1}{2g}$ $1 \frac{8}{T_2}$	20.47	$2^{8}T_{2}$	18.20	$1 \frac{D_g}{18T_c}$	19.08	2^{-1}
0 1 6g 12 Γ.	2.451	200 201	21077	0.55		00.09 01.00	$1^{-1} \frac{1}{2g}$ $9^{-8}T$	24.47	$\frac{2}{18}$	20.05	$1 \ ^{1} T_{1}g$ $1 \ ^{8}T_{2}$	12.90	2^{-1}
13 1 8g 6 Г	2.450	279	21147	0.51		21.92 55.07	$2 I_{1g}$ $2 ^{8}T$	16 09	$1 L_g$ 3 8T	20.90	$1 \ 12g$ $1 \ 8T$	20.75	Z 12g
$0 \pm 7g$ 14 Γ	2.431	372 271	01147 01000	0.01		11 92	$2 I_{1g}$ $2 ^{8}T$	10.90	$\frac{2}{18T}$	15.00	$1 1_{2g}$ 3 8T		
14 1 8g	2.451	266	21020	1.59		41.00	$2 I_{1g}$ 2 8T	27.20	$1 \ 1 \ 1 \ 1 \ g$ $1 \ 8 \ F$	15.09	2 1 _{2g}		
	2.400	300	31039	2.01		12.09	$\frac{2}{18T}$	14.40	$1 E_g$ 1 8 T				
10 1 8g	2.401	300	31000	0.21 1.79		07.40	$1 I_{1g}$ 1 8T	23.73	$1 \ 12g$ $1 \ 8T$				
(1 _{6g} 16 Г	2.451	300	31882	1.73		(1.87	$1 \ ^{\circ}T_{1g}$ $0 \ ^{8}T$	22.50	$1 \ ^{\circ}I_{2g}$ $0 \ ^{8}T$	10.94	1877		
10 1 8g	2.450	308	32000	0.77		09.23 FC FF	$2^{-1}2g$	18.93	$2 \ ^{\circ}I_{1g}$	10.34	$1 \ 1_{1g}$		
8 I _{6g}	2.450	307	32137	0.11		20.22 42.64	$2 \ ^{\circ}T_{2g}$	27.99	$2 \ ^{\circ}I_{1g}$	10.90	180		
$18 1_{8g}$	2.401	374	32371	1.30		43.04	$2 T_{1g}$	21.34	$1^{-1}I_{1g}$	19.30	$1^{\circ}E_g$ $1^{\circ}E_g$	10.09	1.800
$9 T_{6g}$	2.451	373	32430	0.05		03.80 C0.10	$2 \ ^{\circ}T_{1g}$	17.03	$2 \ ^{\circ}I_{2g}$	14.28	$1 \ E_g$	10.93	$1 \ 1_{2g}$
$19 \Gamma_{8g}$	2.451	378	32721	0.17		08.10	$2 \ ^{\circ}T_{1g}$	12.15	$1 \ E_g$				
$9 \Gamma_{7g}$	2.451	378	32869	0.00		76.07	$2 \ ^{\circ}T_{1g}$						
$20 \Gamma_{8g}$	2.450	362	33686	0.02		87.94	$2 \ ^{\circ}T_{2g}$	1 = 0.0	o 8m				
$21 \Gamma_{8g}$	2.450	365	33854	0.01		79.78	$2 \ ^{\circ}T_{2g}$	17.93	$2 \ ^{\circ}T_{1g}$				
$10 \Gamma_{7g}$	2.450	366	33887			80.82	$2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	17.32	$2 \ \ T_{1g}$				
$4f^6(^7F_J$	$)5de_g^1$ Low-	Spin c	oupling	d									
$12 \Gamma_{8g}$	2.452	370	30901	0.11		85.87	$1 {}^{6}T_{1g}$						
$8 \Gamma_{7g}$	2.451	367	32158	0.02		85.15	$1 \ ^{6}T_{1g}$	11.55	$1 \ {}^{6}T_{2g}$				
$17 \Gamma_{8a}$	2.451	367	32252	0.06		88.33	$1 {}^{6}T_{1a}$		5				

$10 \ \Gamma_{6g}$	2.450	368	33832	0.03	54.30	$1 {}^{6}_{a}T_{1g}$	31.21	$1 {}^{6}_{a}T_{2g}$	12.44	$2 {}^{6}_{a}T_{1g}$		
$22 \Gamma_{8g}$	2.450	371	33961	0.05	58.37	$1 {}^{o}_{c} T_{1g}$	29.62	$1 {}^{o}_{c}T_{2g}$	10.08	$2 \ ^{o}T_{1g}$		
$11 \ \Gamma_{7g}$	2.450	370	34259	0.03	77.91	$1 {}^{o}_{c} T_{1g}$	11.15	$1 {}^{o}_{c}T_{2g}$		C		
$11 \ \Gamma_{6g}$	2.447	357	34534	0.01	57.84	$1 {}^{o}T_{2g}$	24.77	$1 \ ^{\circ}E_{g}$	13.90	$1 {}^{o}T_{1g}$		0
$23 \Gamma_{8g}$	2.448	356	34767	0.02	24.97	$1 {}^{\circ}E_g$	24.79	$1 {}^{o}_{c} T_{1g}$	22.25	$1 {}^{o}_{c}T_{2g}$	21.24	$2 {}^{6}T_{1g}$
$12 \Gamma_{7g}$	2.448	361	34870	0.01	48.86	$2^{\circ}T_{1g}$	22.09	$1 \ ^{\circ}E_{g}$	20.11	$1 {}^{o}_{a}T_{2g}$		
$24 \Gamma_{8g}$	2.448	358	35399	0.01	31.41	$2^{6}T_{1g}$	27.99	$1 {}^{6}T_{2g}$	26.34	$1 {}^{\circ}E_g$		
$13 \Gamma_{7g}$	2.450	368	35513		39.40	$1 {}^{6}T_{2g}$	34.02	$2^{6}T_{1g}$	18.70	$1 {}^{6}T_{1g}$		
$12 \Gamma_{6g}$	2.450	364	35519	0.01	63.14	$2^{6}T_{1g}$	15.72	$1 {}^{6}T_{1g}$	10.57	$1 {}^{6}T_{2g}$		
$25 \Gamma_{8g}$	2.448	362	36109	0.03	43.09	$2^{6}T_{1g}$	21.93	$1^{6}E_{g}$	20.42	$1 {}^{6}T_{2g}$	11.12	$2^{6}T_{2g}$
$26 \Gamma_{8g}$	2.449	355	36219	0.01	52.99	$1^{6}T_{2g}$	14.67	$2^{6}T_{1g}$	14.14	$1^{6}E_{g}$	11.94	$1 {}^{6}T_{1g}$
$27 \Gamma_{8g}$	2.448	355	36935	0.03	32.35	$1^{6}E_{g}$	30.17	$1 {}^{6}T_{2g}$	24.65	$2^{6}T_{1g}$		
$13 \Gamma_{6g}$	2.448	363	36971	0.02	44.55	$1 {}^{6}T_{2g}$	33.82	$1^{6}E_{g}$	12.07	$1 {}^{6}T_{1g}$		
$14 \Gamma_{7g}$	2.449	362	37123		64.14	$2^{6}T_{1g}$	13.19	$1 {}^{6}T_{2g}$	11.34	$1^{-6}E_{g}$		
$28 \Gamma_{8q}$	2.449	374	37266	0.01	82.32	$2^{6}T_{2q}$	10.01	$2^{6}T_{1q}$				
$14 \Gamma_{6q}$	2.448	362	37481	0.04	52.17	$1 {}^{6}T_{2q}$	29.96	$1 {}^{6}E_{q}$				
$29 \Gamma_{8q}$	2.448	351	37667	0.06	68.12	$1 {}^{6}T_{2a}$	20.72	$2 {}^{6}T_{1a}$				
$15 \Gamma_{7a}$	2.447	365	38213		50.54	$1^{6}E_{a}^{5}$	39.33	$2^{6}T_{1a}$				
$30 \Gamma_{8a}$	2.448	364	38568	0.06	36.43	$2^{6}T_{1a}$	35.51	$1 {}^{6}E_{a}^{-3}$	25.00	$1^{6}T_{2a}$		
$31 \Gamma_{8a}$	2.448	367	38720	0.04	36.34	$2^{6}T_{1a}$	28.66	$2^{6}T_{2a}^{j}$	24.75	$1 {}^{6}E_{a}^{-3}$		
$15 \Gamma_{6a}$	2.449	376	38746		84.66	$2^{6}T_{2a}^{1g}$	10.90	$2^{6}T_{1a}^{2g}$		9		
32 T _{8a}	2.450	372	38763		54.76	$2^{6}T_{2a}^{-g}$	40.04	$2^{6}T_{1a}^{1g}$				
16 Γ _{6α}	2.448	376	40510	0.01	90.84	$2^{6}T_{2a}$		19				
<u>13 Год</u>	2.448	373	40526	0101	90.22	$2^{6}T_{2a}$						
16 Г ₇	2.148	371	40535		89.83	$2^{6}T_{0}^{2}$						
10 1 /g	2.110	011	10000		00.00	2 1 2g						
$4f^{6}(^{7}F_{7})$	$(5dt_{2}^{1})$	$+ ITE^{1}$	High-S	Spin coupling ^{d,e}								
34 Eo	2502	504	44056		46.30	$3^{8}T_{1}$	25.83	$2^{8}F$	10.33	$3^{8}T_{2}$		
34 I 8g 35 Го	2.502	460	44000	0.24	40.50 35.64	$\frac{3 8 T_{1}}{3 8 T_{2}}$	25.05	$\frac{2}{3} \frac{D_g}{T_c}$	22.00	$0^{9}F$		
33 I 8g 17 F	2.502	409	44240	0.24	62.04	$\frac{3}{28}$	1969	$3 I_{1g}$ 4 8 T	19 20	$2 L_g$ 9 8 F		
$17 \Gamma_{7g}$	2.502	494 690	44740	0.38	50.24	$\frac{5}{28T}$	10.00	$4 I_{1g}$ $9 8 \Gamma$	10.64	$\frac{2}{2} \frac{E_g}{2}$		
	2.501	020	44700	0.21 0.71	19.34	$3 I_{1g}$ 3 8 T	19.02	$2 L_g$ 3 8 F	10.04	$3 1_{2g}$ $3 8_T$		
30 I 8g	2.302	400	44823	0.71	42.38	$3^{-1}2g$ $3^{-8}T$	32.71	$2^{\circ}E_g$ $3^{\circ}E$	18.44	$3^{-1}I_{1g}$		
18 I 7g	2.302	409	45300	1.20	40.42	$3^{-1}2g$	29.09	$2^{+}E_{g}$	18.80	$4 \ 1_{1g}$		
18 I 6g	2.502	507	45358	0.47	51.12	$3^{-1}I_{1g}$	33.12	$2^{-}E_{g}$				
$37 \Gamma_{8g}$	2.502	514	45468	0.78	46.01	$3 \ ^{\circ}I_{2g}$	34.49	$3 \ ^{\circ}I_{1g}$	01 70	4.87	15 50	0.8 17
$38 \Gamma_{8g}$	2.502	540	45919	3.22	30.02	$3 \ ^{\circ}T_{2g}$	29.83	$3 \ ^{\circ}T_{1g}$	21.73	$4 \ ^{\circ}T_{1g}$	15.52	$2 \ ^{\circ}E_g$
$39 \Gamma_{8g}$	2.502	499	46076	1.99	49.78	$3 \ ^{\circ}T_{1g}$	16.96	$3 \ ^{\circ}T_{2g}$	13.67	$4 \ ^{\circ}T_{1g}$	13.64	$2 \ ^{\circ}E_{g}$
$40 \ \Gamma_{8g}$	2.502	511	46401	3.42	30.20	$3 \ ^{\circ}T_{2g}$	21.67	$4 \ ^{\circ}T_{1g}$	21.01	$3 \ ^{\circ}T_{1g}$		
$19 \Gamma_{7g}$	2.502	546	46507	3.64	47.41	$4 {}^{\circ}T_{1g}$	32.28	$3 {}^{\circ}T_{1g}$	11.55	2 $^{\circ}E_{g}$		
$19 \Gamma_{6g}$	2.489	290	46689	0.03	39.30	$4 \ ^{\circ}T_{2g}$	36.48	$5 \ ^{\circ}T_{1g}$				
$20 \Gamma_{7g}$	2.501	529	46734	1.49	59.27	$3 {}^{\circ}T_{1g}$	25.89	$3 \ {}^{\circ}T_{2g}$				
41 Γ_{8g}	2.496	304	46873	0.94	31.91	$4 \ {}^{\circ}T_{2g}$	27.69	$5 \ {}^{\circ}T_{1g}$		e		
$20 \Gamma_{6g}$	2.498	357	47181	0.69	53.99	$3 \ ^{\circ}T_{2g}$	21.73	$3 \ ^{\circ}T_{1g}$	19.61	$4 \ ^{\circ}T_{1g}$		
$21 \Gamma_{7g}$	2.490	317	47312	0.02	44.19	$4 {}^{\circ}T_{2g}$		<u> </u>		<u> </u>		°
$42 \Gamma_{8g}$	2.493	302	47316	2.22	25.58	$2 \overset{\circ}{} \overset{E_g}{E_g}$	24.29	$4 \ {}^{o}T_{1g}$	13.41	$5 \ {}^{\circ}T_{1g}$	13.39	$3 \ {}^{\circ}T_{2g}$
_					11.97	$3 {}^{\circ}T_{1g}$		o		<u>ه</u>		۰
$21 \ \Gamma_{6g}$	2.500	490	47446	0.30	23.18	$3 {\ }^{8}T_{2g}$	14.91	$3 \ ^{8}T_{1g}$	13.57	$6 \ ^{8}T_{1g}$	11.50	$4 \ {}^{8}T_{1g}$
					10.06	$3 {^{8}E_{g}}$		0		0		0
$22 \Gamma_{7g}$	2.501	365	47534	1.01	27.13	$3 {}^{8}T_{1g}$	25.72	$4 {}^{8}T_{1g}$	16.95	$2 {}^{8}E_{g}$	14.34	$3 \ ^{8}T_{2g}$
$43 \Gamma_{8g}$	2.489	300	47567	0.70	42.84	$5 {}^{8}T_{1g}$	26.33	$4 {}^{8}T_{2g}$				
$44 \ \Gamma_{8g}$	2.491	299	47857	0.18	19.29	$4 {}^{8}T_{1g}$	13.34	$6 {}^{8}T_{1g}$	12.96	$3 {}^{8}T_{1g}$	11.35	$3 \ ^8E_g$
$22 \Gamma_{6g}$	2.498	320	47894	0.35	40.07	$3 \ ^8T_{2g}$	19.56	$3 \ {}^{8}E_{g}$	10.31	$6 \ ^{8}T_{1g}$		
$45 \Gamma_{8g}$	2.498	313	47944	0.13	27.81	$5 \ ^{8}T_{1g}$	15.59	$4 {}^{8}T_{2g}$				
23 Γ_{7g}	2.491	314	47992	0.07	24.29	$5 \ ^{8}T_{1g}$	14.04	$4 {}^{8}T_{2g}$	11.78	$3^{\ 8}E_{g}$	11.01	$5 \ ^{8}T_{2g}$
46 Γ_{8g}	2.499	342	48025	1.64	22.28	$2^{-8}E_{g}$	21.24	$3 \ ^8T_{2g}$	14.92	$5 \ ^{8}T_{1g}$	11.56	$4 {}^{8}T_{1g}$
$23 \Gamma_{6g}$	2.488	307	48222	0.34	40.41	$4 \ ^{8}T_{2g}$	33.64	$5 \ ^8T_{1g}$		-		-
47 Γ_{8g}	2.500	372	48273	4.35	30.24	$4 \ ^{8}T_{1g}$	23.48	$2^{8}E_{g}$	20.24	$3 \ ^8T_{1g}$		
48 Γ _{8α}	2.494	310	48408	1.87	23.98	$3 \ ^{8}E_{q}$	21.79	$4 \ {}^{8}T_{1a}$	15.25	$6 \ ^8T_{1a}$	13.27	$5 \ ^{8}T_{2a}$
$24 \Gamma_{7q}$	2.470	370	48510	0.15	24.20	$4 \ {}^{8}T_{2a}$	24.20	$5 \ ^{8}T_{1a}$	13.72	$5 \ ^{8}T_{2a}$	11.70	$3 \ {}^{8}E_{a}$
$24 \Gamma_{6a}$	2.464	391	48696	3.37	46.82	$4 \ {}^{8}T_{1a}^{-9}$	18.86	$2 \ ^{8}E_{a}^{19}$	15.75	$3 \ {}^{8}T_{1a}^{-9}$		э
$25 \Gamma_{7a}$	2.470	367	48804	1.31	36.91	$4 \ ^{8}T_{1o}^{-3}$	14.00	$3 \ ^{8}T_{2\sigma}^{3}$	11.13	$6 \ ^{8}T_{1o}^{-s}$	10.72	$4 {}^{8}T_{2a}$
49 Γ _{8α}	2.470	355	48834	0.54	32.60	$3 \ ^{8}T_{2a}^{19}$	16.89	$2 \ {}^{8}E_{a}^{-s}$	12.86	$5 \ ^{8}T_{2a}^{2a}$		-9
~ 3						-3		3		- 3		

						0		0		0		
$50 \ \Gamma_{8g}$	2.479	319	48993	0.55	19.97	$5 \ ^{8}T_{2g}$	17.92	$3 \ ^{\circ}E_{g}$	16.16	$3 \ ^{8}T_{2g}$		
$25 \Gamma_{6a}$	2.471	349	49010	0.17	22.80	$4^{8}T_{2a}$	20.29	$5 \ ^{8}T_{1a}$	18.77	$5 \ ^{8}T_{2a}$		
51 F	9.470	210	40001	9.95	94.14	$\frac{1}{48T}$	17 55	28F	12 97	$2^{8}T$	19 59	$2^{8}T$
5118g	2.479	910	49091	2.20	24.14	4 11g	11.00	$5 L_g$	10.07	$5 \ 12g$	12.02	J_{1g}
					11.33	$2 \ ^{\circ}E_{g}$						
$26 \Gamma_{6q}$	2.483	335	49179	0.11	22.92	$5 \ ^{8}T_{2a}$	16.08	$5 \ ^{8}T_{1a}$				
52 E.	2 486	306	49246	0.10	40.80	$4 \ {}^{8}T_{2}$	25.11	$5 {}^{8}T_{1}$				
02 I 89	2.100	205	40204	1.00	21.00	c 87	14 51	1 8 T				
$20 \ 1 \ 7g$	2.494	305	49294	1.20	31.13	0 I_{1g}	14.01	4^{-1}_{1g}		0		
$53 \Gamma_{8g}$	2.478	323	49409	0.05	43.62	$5 \ ^{8}T_{1g}$	37.04	$4 \ {}^{8}T_{2g}$	10.73	$6 \ ^{8}T_{1g}$		
$27 \Gamma_{6a}$	2.489	363	49554	0.16	42.52	$3^{8}T_{2a}$	20.70	$2^{-8}E_{a}$	11.48	$3^{8}T_{1a}$		
54 E	2 403	214	40576	0.71	91.00	$2^{8}T_{2}$	10.08	$\frac{2}{3} \frac{9}{T}$	17 70	98F	13 01	$1^{8}T$
0418g	2.495	514	49070	0.71	21.99	5 12g	19.00	$5 I_{1g}$	11.10	2 L'g	10.91	4 1 1g
$55 \Gamma_{8g}$	2.489	354	49643	0.26	18.38	$6 \ T_{1g}$	18.31	$5 \ T_{2g}$	13.28	$3 \ E_g$		
$27 \Gamma_{7q}$	2.471	331	49821	0.13	22.62	$3 {}^{8}T_{1a}$	12.52	$4 {}^{8}T_{1a}$	10.89	$5 \ ^{8}T_{2a}$		
56 F	$2\ 474$	350	49930	1 76	30.89	$3^{8}E^{1}$	21.75	$5^{8}T_{0}$	$18\ 47$	$4 \ ^{8}T_{1}$	10.59	$4^{-8}T_{2}$
50 1 8g	9.475	262	40000	4.0.4	47.02	48T	21.10	5 I 2g	10.11	1 1 1g	10.00	1 1 29
571_{8g}	2.475	303	49992	4.94	47.05	$4 I_{1g}$						
$28 \Gamma_{6g}$	2.475	335	50026	0.26	46.06	$5 \ ^{\circ}T_{2g}$						
$28 \Gamma_{7a}$	2.462	346	50187	0.13	29.98	$3^{8}E_{a}$	14.76	$3 {}^{8}T_{1a}$	10.78	$3^{-8}T_{2a}$	10.37	$2^{-8}E_{a}$
58 E.	2 474	40.9	50202	5.92	13.20	$4^{8}T_{-}$	11 18	$6^{8}T$		29		
$00 \pm 8g$	2.474	403	50202	0.52	45.23	$+ 1_{1g}$	10.00	$0 I_{1g}$				
$29 T_{6g}$	2.476	415	50202	3.68	67.91	$4 \ 1_{1g}$	12.96	$3 \ 1_{2g}$				
59 Γ_{8q}	2.471	410	50408	4.77	35.24	$4 {}^{8}T_{1a}$	14.99	$5 {}^{8}T_{2a}$	12.28	$6 {}^{8}T_{1a}$	10.38	$4 {}^{8}T_{2a}$
29 Fz-	2,466	392	50446	0.07	39.25	$5 \ ^{8}T_{1}$	20.64	$4 {}^{8}T_{2}$		5		5
	2.100	419	50110	0.06	49.25	1 8 T	00.01	= 2g				
$00\ 1\ 8g$	2.470	413	50496	0.26	42.30	4^{-1}_{2g}	20.08	3 I_{1g}				
$30 \Gamma_{6g}$	2.471	400	50581	0.13	53.84	$5 \ ^{\circ}T_{1g}$	31.26	$4 \ ^{\circ}T_{2g}$				
$61 \Gamma_{8a}$	2.458	460	50718	0.06	40.64	$4^{8}T_{2a}$	27.35	$5 {}^{8}T_{2a}$	23.21	$5 {}^{8}T_{1a}$		
30 T-	9 403	453	50854	0.04	5471	5 8T.		29		19		
$50 \pm 7g$	2.495	400	50854	0.04	04.71	$5 I_{2g}$	04.01	- 8-	1 = 00	a 8m		
$31\Gamma_{6g}$	2.462	438	51068	0.15	26.85	$3 \ ^{\circ}E_{g}$	24.31	$5 \ ^{\circ}T_{2g}$	17.83	$6 \ ^{\circ}T_{1g}$		
$62 \Gamma_{8q}$	2.459	438	51118	0.42	33.58	$5 \ ^{8}T_{2q}$	33.38	$6 {}^{8}T_{1q}$				
32 Le-	2 466	458	51232	0.35	27.51	$6^{8}T_{1}$	11 92	$3^{8}E_{-}$				
62 I 0g	2.100	410	51202	0.90	21.01	$5^{8}T$	12.95	28E				
$03 \ 1 \ 8g$	2.402	410	01540	0.24	35.02	$5 I_{2g}$	15.20	$\mathcal{S} \mathcal{L}_g$				°
$31 \Gamma_{7g}$	2.484	358	51431	0.23	24.97	$6 \ ^{\circ}T_{1g}$	21.43	$5 \ ^{\circ}T_{1g}$	19.29	$3 \ ^{\circ}E_{g}$	10.32	$4 \ {}^{\circ}T_{2g}$
$64 \Gamma_{8a}$	2.470	414	51529	0.33	43.48	$5 {}^{8}T_{2a}$	28.36	$6 {}^{8}T_{1a}$	11.90	$5 {}^{8}T_{1a}$		
65 E	2 477	462	51676	0.06	40.14	$4^{8}T_{2}^{29}$	22.86	$5 \frac{8}{T_1}$	14.04	$5 \frac{8}{7}$		
	2.411	402	51070	0.00	40.14	4 12g	22.00		11.04	5 12g	11.00	c. 877
$32 T_{7g}$	2.467	411	51937	0.03	34.82	$4 \ 12_{2g}$	28.18	$5 \ T_{1g}$	11.97	$5 \ T_{2g}$	11.86	$6 \ T_{1g}$
$33 \Gamma_{6g}$	2.462	436	52018	0.01	43.12	$4 {}^{8}T_{2g}$	16.08	$6 {}^{8}T_{1g}$	12.84	$5 \ ^{8}T_{1g}$		
66 F.	2.468	439	52089	0.01	36.48	$5 \ ^{8}T_{1}$	33.13	$6 {}^{8}T_{1}$	27.20	$4^{8}T_{2a}$		
22 F	2.160	196	59191	0.01	21.01	$5^{8}T$	98.61	$6 \frac{8}{T}$	26.19	$\frac{1}{\sqrt{8T}}$		
$33 \ 1 \ 7g$	2.402	400	02121	0.01	51.91	$5 I_{1g}$	20.01	$0 I_{1g}$	20.12	$4 I_{2g}$		
$67 \ \Gamma_{8g}$	2.465	500	52261	0.07	40.86	$5 \ {}^{\circ}T_{2g}$	17.69	$3 \ ^{\circ}E_{g}$	10.98	$6 \ ^{\circ}T_{1g}$		
$34 \Gamma_{6q}$	2.470	489	52499	0.05	39.88	$5 \ ^{8}T_{2a}$	23.20	$6 {}^{8}T_{1q}$				
68 To	2 470	49A	52509	0.19	3/1/19	$6 {}^{8}T_{1}^{-3}$	29.95	$5 \frac{8}{T_0}$	15 31	$3^{-8}E$		
0018g	2.410	1067	52505	0.15	40.10		14.01	28E	10.01	$J L_g$		
341_{7g}	2.450	1067	52544	0.01	42.12	$5 \ 1_{2g}$	14.21	$3 \ E_g$		0		
$69 \ \Gamma_{8g}$	2.453	756	52933	0.29	49.19	$6 \ ^{8}T_{1g}$	24.61	$3 \ ^{\circ}E_{g}$	13.51	$5 \ ^{8}T_{2g}$		
$35 \Gamma_{7a}$	2.457	544	53291	0.10	46.47	$6^{8}T_{1a}$						
70 E	2 460	525	53468	0.94	50.13	$6 \frac{8T}{1}$	14 58	$2^{8}F$				
10 I 8g	2.400	525	53408	0.24	00.10		14.00	$5 L_g$				
$35 T_{6g}$	2.462	514	53482	0.12	49.73	$6 \ T_{1g}$	14.01	$3 \ ^{\circ}E_{g}$				
					$4f^7$ excited st	ates						
					-							
$4f^{7}(^{6}P_{0})$	$(a + (a + (a)))^{c}$											
-j (+ 3/ 9 E	2,5/2,7/2)	960	20577		00.00	1 677						
2 1 8u	2.469	369	30577		89.30	$1 \ I_{1u}$						
$2 \Gamma_{7u}$	2.469	369	30585		89.71	$1 {}^{o}T_{1u}$						
3 Ген	2.469	369	30962		94.09	$1^{6}T_{1u}$						
9 - 0 <i>u</i> 9 F	9.460	260	21104		85.07	1 6 T	19 14	$2^{6}T$				
$2 1_{6u}$	2.409	309	51194		00.07	$1 I_{1u}$	12.14	$5 \ 1_{2u}$				
$4 \Gamma_{8u}$	2.469	369	31205		85.15	$1 \ {}^{0}T_{1u}$						
$3 \Gamma_{7u}$	2.469	369	31222		85.28	$1 {}^{6}T_{1u}$	10.77	$2^{6}E_{u}$				
$4f^{7}(^{6}I_{7})$	9 9 / 9 11 / 9 19	19 15 /9	$(17/2)^{c}$									
у (±// З Г-	2,3/2,11/2,13/ 9 168	2,10/2,	3/028		76 60	$1^{6}T_{-}$	20.28	$1^{6}F$				
5 I 6u	2.400	009	04000		70.00	1 12u	20.20					
$5 \Gamma_{8u}$	2.468	369	34945		83.29	$1 \ \]T_{2u}$	13.36	$1 \ ^{\circ}E_{u}$				
$4 \Gamma_{7u}$	2.468	369	34957		93.96	$1 {}^{6}T_{2u}$						
6 Г.	2.468	370	34977		79 77	$1^{6}T_{2.}^{}$	13 87	$1^{-6}E_{m}$				
4 Γ	2.100	270	24000		07.60	$\frac{1}{1} \frac{5}{7}$	10.01	- <i>L</i> u				
4 1 6u	2.408	370	34989		87.62	$1 1_{2u}$						
$7 \Gamma_{8u}$	2.468	370	34992		86.85	$1 \ ^{\circ}T_{2u}$						
$5 \Gamma_{7n}$	2.468	370	35191		84.88	$1^{6}E_{u}$	12.40	$2^{6}T_{1n}$				
								10				

8 Γ ₈₄	2.468	370	35205	42.57	$1^{6}E_{u}$	29.43	$2^{6}T_{2u}$	23.88	$1^{6}A_{2u}$		
0 Г.	9 168	370	35953	65.07	$1^{6}F$	1/21	$9^{6}T_{-}$	11 10	$1 {}^{6}T$		
5 1 8 u	2.400	010	05200	10.01	$\Delta 6\pi$	14.01	$\frac{2}{164}$	11.10	1 12u		
$5 \Gamma_{6u}$	2.468	369	35261	49.64	$2 \ ^{\circ}T_{2u}$	26.00	$1 ^{\circ}A_{2u}$				
$10 \Gamma_{8u}$	2.469	369	35310	72.77	$2^{6}T_{2u}$	23.19	$2^{6}T_{1u}$				
$6 \Gamma_{7u}$	2.469	369	35315	74.83	$2^{-6}T_{2u}$	23.02	$2^{-6}T_{1u}$				
6 F	9.460	260	25217	79.55	$\frac{2}{9} \frac{2}{6}$	10.42	$\frac{1}{9} \frac{1}{6}$				
$0 \ 1 \ 6 u$	2.409	309	55517	12.55	2 12u	12.45	$2 I_{1u}$.	- 6 -		. 6 .
$11 \Gamma_{8u}$	2.469	369	35339	37.42	$2 \ ^{0}T_{1u}$	22.25	$2 \ ^{o}T_{2u}$	16.47	$1 {}^{o}A_{1u}$	15.86	$1 {}^{\circ}E_u$
$12 \Gamma_{8u}$	2.469	369	35356	37.63	$2^{6}T_{2u}$	36.79	$2^{6}T_{1u}$	11.34	$1^{6}E_{u}$		
$7 \Gamma_c$	2 469	369	35362	50.11	$1^{-6}E$	30.90	$2^{6}T_{0}$				
7 F	2.100	260	25200	51.60	16A	27 49	2 + 2u 0.6T				
$1 \ 1 \ 7u$	2.409	309	33382	51.00	$1 A_{1u}$	37.42	$2 I_{1u}$		- 6		- 6
$13 \ \Gamma_{8u}$	2.469	370	35405	26.57	$1 \ A_{1u}$	17.32	$1 \ ^{\circ}E_u$	16.60	$2 \ ^{\circ}T_{2u}$	14.93	$2 \ ^{\circ}T_{1u}$
				14.86	$1 {}^{6}A_{2u}$						
8 <i>Г</i> ен	2.469	370	35414	48.77	$1^{6}A_{2u}$	25.38	$2^{-6}T_{1u}$	12.30	$1^{-6}E_{u}$		
8 Γ -	2 169	370	35449	66 68	$2^{6}T_{1}^{-2}$	16 51	$1^{6}4$		u		
14Γ	2.405	260	25 456	24.40	1 6 A	94.06	a 6 T	17.00	164	15.05	a 677
$14 \ 1_{8u}$	2.469	369	35450	34.49	$1 \overset{\circ}{} A_{2u}$	24.00	$2 I_{2u}$	17.08	$1 \ A_{1u}$	15.05	$2 \ ^{*}I_{1u}$
$15 \Gamma_{8u}$	2.469	369	35499	65.34	$2 {}^{o}T_{1u}$	20.75	$2 {}^{o}T_{2u}$	10.18	$1 {}^{6}A_{2u}$		
$16 \Gamma_{8u}$	2.469	369	35543	47.58	$2^{6}T_{1u}$	36.48	$2^{6}T_{2u}$				
9 Γ ₆₄	2.469	370	35590	45.95	$2^{-6}T_{1}$	36.19	$2^{-6}T_{2m}$	15.29	$1^{-6}A_{2m}$		
17Γ	2.100	260	25624	10 66	$2^{6}T$	20 02	$\frac{-2u}{16A}$	15 41	96T		
1718u	2.409	309	55024	49.00	$2 I_{1u}$	20.95	$1 A_{1u}$	10.41	$2 I_{2u}$		
$9 \Gamma_{7u}$	2.469	369	35633	56.70	$2 \ ^{0}T_{1u}$	30.46	$1 {}^{o}A_{1u}$	10.94	$2 \ {}^{0}T_{2u}$		
$4f^{7}(^{6}D_{1})$	10 2 /0 5 /0 7 /	റ്റ									
18 T.	2,3/2,3/2,1/	280	37670	77 79	$3^{6}T_{-}$	18 70	$9^{6}F$				
$10 \ 18u$	2.400	309	97019	00.00	$3 1_{2u}$	10.79	$z L_u$				
$10 \Gamma_{6u}$	2.468	370	37811	93.23	$2 \ ^{\circ}E_{u}$		0				
$19 \Gamma_{8u}$	2.469	369	37829	51.18	$2^{-6}E_u$	45.39	$3^{-6}T_{2u}$				
$11 \Gamma_{6u}$	2.469	369	38062	97.04	$3^{-6}T_{2u}$						
$20 \Gamma_{0}$	2 168	360	38276	51.08	$3^{6}T_{0}^{-2u}$	40.14	$2^{6}F$				
$20 \ 1 \ 8 u$	2.400	070	30.400	01.00	0 12u	40.14	$2 D_u$	10.07	1.67		
211_{8u}	2.408	370	38489	04.00	$Z L_u$	20.00	$3 I_{2u}$	10.07	$1 \ 1_{1u}$		
$10 \ \Gamma_{7u}$	2.469	370	38557	80.77	$2 {}^{o}E_u$	11.61	$1 {}^{o}T_{1u}$				
$12 \Gamma_{6u}$	2.469	369	38667	80.48	$3^{6}T_{2u}$	12.16	$1^{6}T_{1u}$				
22 Lo	2 469	369	38737	79.18	$3^{6}T_{0}$	11 13	$1^{6}T_{1}^{1}$				
11Γ	2.100	260	29709	04 06	26T	10 50	1 6T				
11 1 7u	2.409	209	20190	04.00	$5 \ 12u$	10.59	$1 I_{1u}$				
- 0											
$4f'({}^{\circ}G_3)$	/2,5/2,7/2,9/2	2,11/2,1	$_{3/2})^{c}$								
$23 \Gamma_{8u}$	2.466	369	48083	60.50	$4^{6}T_{2u}$	21.28	$2^{6}A_{2u}$				
13 F	2 466	369	48106	59 69	$\int \frac{6}{T_0}$	21.71	$2^{6}4^{-1}$				
1016u	2.400	200	40101	40.00	-12u	21.11	2 112u	00.00	a 677		
$24 \ 1 \ 8u$	2.407	309	48191	40.09	$4 I_{2u}$	23.19	$\mathcal{S} \mathcal{L}_u$	20.98	$3 I_{1u}$		
$14 \Gamma_{6u}$	2.467	370	48350	43.03	$3 ^{\circ}E_u$	36.43	$5 {}^{0}T_{2u}$	10.70	$4 {}^{0}T_{2u}$		
$12 \Gamma_{7u}$	2.467	369	48371	62.84	$3^{6}T_{1u}$	28.22	$3^{-6}E_u$				
$15 \Gamma_{6u}$	2.467	369	48468	81.00	$3^{-6}T_{1}$	10.45	$5^{-6}T_{2m}$				
25 F.	9 467	368	48473	54.06	$3^{6}T$	91.61	$5^{6}T_{-}$	19.63	$4^{6}T$		
2018u	2.407	308	40475	04.90	$3 I_{1u}$	21.01	$5 1_{2u}$	12.00	4 12u		
$26 \Gamma_{8u}$	2.468	370	48511	39.03	$3 \ ^{\circ}E_u$	18.21	$5 \ ^{\circ}T_{2u}$	11.12	$2 {}^{\circ}A_{1u}$		
$13 \Gamma_{7u}$	2.467	369	48553	28.90	5 ${}^{b}T_{2u}$	27.93	$3 {}^{b}T_{1u}$	16.01	$2 {}^{6}A_{1u}$	14.60	$4 {}^{6}T_{2u}$
$27 \Gamma_{8u}$	2.467	369	48689	37.40	$4^{6}T_{2u}$	20.31	$3^{6}E_{u}$	11.14	$5^{6}T_{2u}$	10.43	$3^{6}T_{1u}$
28 Го	2 469	369	49042	79.28	$4 {}^{6}T_{1}$	10.21	$3^{6}T_{1}$		20		10
14Γ	2.100	260	40955	41.94	1 1 u	20.65	0 1 1u	10 17	= 6T		
$14 \ 1_{7u}$	2.470	309	49200	41.34	4^{-1}_{1u}	30.00	$Z A_{1u}$	19.17	$\frac{1}{2u}$		- 6 -
$29 \Gamma_{8u}$	2.469	370	49618	27.90	$2 {}^{o}A_{1u}$	25.62	$4 \ {}^{0}T_{1u}$	18.35	$5 \ {}^{0}T_{2u}$	12.65	$3 \ ^{\circ}E_u$
$16 \Gamma_{6u}$	2.466	369	49946	67.52	$4 {}^{6}T_{2u}$	14.54	$3^{6}E_{u}$				
30 Г _{ен}	2,467	369	50015	56 51	$4^{6}T_{2u}$	15,05	$3^{-6}E_{u}$	13.89	$3^{-6}T_{1}$		
$15 \Gamma_{-}$	2.161	360	50064	51 40	$1^{6}T_{-}^{12u}$	20.87	$3^{6}T$	10100	5 1 1 <i>u</i>		
10 1 7u	2,400	009	50004 F0002	01.40	-12u	20.01	u = 1u	11.00	4.67		
$16 \Gamma_{7u}$	2.468	369	50236	39.44	$3 \ ^{\circ}E_u$	34.75	$3 \ ^{\circ}T_{1u}$	11.92	$4 \ ^{\circ}T_{1u}$		
$31 \ \Gamma_{8u}$	2.468	369	50270	41.76	$3 {}^{b}T_{1u}$	21.48	$3 \ ^{\mathrm{o}}E_u$	20.42	$4 {}^{b}T_{1u}$		
$4f^{7}(^{6}F_{-}$			(c) C								
-J (+ 1/ 17 T	10010=10=10	0/0 11	/• 1		c	00.07	0.64		6.5		
1116u	2,3/2,5/2,7/2	2,9/2,11	/2) 50811	1161	5 07			- <u>9</u> () / 1	1 0/1		
$32 \Gamma_{8u}$	/2,3/2,5/2,7/2 2.468	2,9/2,11 369	50811	44.61	$5 {}^{\circ}T_{2u}$	22.67	$2 A_{2u}$	20.41	$4 \ ^{\circ}T_{1u}$	4 8 10	4.67
	2.3/2.5/2.7/2 2.468 2.467	369 369 369	50811 51645	$\begin{array}{c} 44.61 \\ 23.31 \end{array}$	$5 {}^{6}T_{2u}$ $5 {}^{6}T_{2u}$	$\frac{22.67}{20.69}$	$2 {}^{\circ}A_{2u}$ $2 {}^{6}A_{2u}$	$\begin{array}{c} 20.41 \\ 15.73 \end{array}$	$4 {}^{6}T_{1u}$ $3 {}^{6}T_{1u}$	15.48	$4 {}^{6}T_{2u}$
$33 \Gamma_{8u}$	2.468 2.467 2.466	2,9/2,11 369 369 369 369	50811 51645 52036	$\begin{array}{c} 44.61 \\ 23.31 \\ 71.52 \end{array}$	$5 {}^{6}T_{2u} \\ 5 {}^{6}T_{2u} \\ 3 {}^{6}T_{1u}$	22.67 20.69 10.67	$ \begin{array}{c} 2 & ^{6}A_{2u} \\ 2 & ^{6}A_{2u} \\ 4 & ^{6}T_{1u} \end{array} $	$\begin{array}{c} 20.41 \\ 15.73 \end{array}$	$4 {}^{o}T_{1u}$ $3 {}^{o}T_{1u}$	15.48	$4 \ ^6T_{2u}$
33 Γ_{8u} 17 Γ_{7u}	2,3/2,5/2,7/2 2.468 2.467 2.466 2.467	2,9/2,11 369 369 369 369 369 369	50811 51645 52036 52060	$\begin{array}{r} 44.61 \\ 23.31 \\ 71.52 \\ 42.62 \end{array}$	$5 {}^{6}T_{2u} \\ 5 {}^{6}T_{2u} \\ 3 {}^{6}T_{1u} \\ 5 {}^{6}T_{2u}$	$22.67 \\ 20.69 \\ 10.67 \\ 22.50$	$ \begin{array}{c} 2 & ^{6}A_{2u} \\ 2 & ^{6}A_{2u} \\ 4 & ^{6}T_{1u} \\ 3 & ^{6}T_{1u} \end{array} $	20.41 15.73 16.16	$4 {}^{6}T_{1u}$ $3 {}^{6}T_{1u}$ $4 {}^{6}T_{2u}$	15.48	$4 \ ^6T_{2u}$
33 Γ_{8u} 17 Γ_{7u} 34 Γ_{2}	2,3/2,5/2,7/2 2.468 2.467 2.466 2.466 2.467 2.467	2,9/2,11 369 369 369 369 369 369	50811 51645 52036 52060 52219	$\begin{array}{r} 44.61 \\ 23.31 \\ 71.52 \\ 42.62 \\ 23.44 \end{array}$	$5 \ {}^{6}T_{2u} \\ 5 \ {}^{6}T_{2u} \\ 3 \ {}^{6}T_{1u} \\ 5 \ {}^{6}T_{2u} \\ 2 \ {}^{6}A_{2} $	$22.67 \\ 20.69 \\ 10.67 \\ 22.50 \\ 21.23 $	$ \begin{array}{c} 2 & ^{6}A_{2u} \\ 2 & ^{6}A_{2u} \\ 4 & ^{6}T_{1u} \\ 3 & ^{6}T_{1u} \\ 4 & ^{6}T_{2} \end{array} $	$20.41 \\ 15.73 \\ 16.16 \\ 21.13 \\ 13$	$ \begin{array}{c} 4 & {}^{6}T_{1u} \\ 3 & {}^{6}T_{1u} \\ 4 & {}^{6}T_{2u} \\ 5 & {}^{6}T_{2} \end{array} $	15.48	$4 \ {}^{6}T_{2u}$
33 Γ_{8u} 17 Γ_{7u} 34 Γ_{8u}	$^{(2,3/2,5/2,7/2)}$ 2.468 2.467 2.466 2.467 2.467 2.467 2.467	2,9/2,11 369 369 369 369 369 369	50811 51645 52036 52060 52219 52260	$\begin{array}{c} 44.61 \\ 23.31 \\ 71.52 \\ 42.62 \\ 23.44 \\ 42.47 \end{array}$	$5 {}^{6}T_{2u} \\ 5 {}^{6}T_{2u} \\ 3 {}^{6}T_{1u} \\ 5 {}^{6}T_{2u} \\ 2 {}^{6}A_{2u} \\ 2 {}^{6}A \\ 4 {}^{6}A \\ 2 {$	$22.67 \\ 20.69 \\ 10.67 \\ 22.50 \\ 21.23 \\ 20.02 $	$ \begin{array}{c} 2 & ^{6}A_{2u} \\ 2 & ^{6}A_{2u} \\ 4 & ^{6}T_{1u} \\ 3 & ^{6}T_{1u} \\ 4 & ^{6}T_{2u} \\ 5 & ^{6}T \end{array} $	$20.41 \\ 15.73 \\ 16.16 \\ 21.13 \\ 15.50 \\ $	$ \begin{array}{c} 4 & {}^{6}T_{1u} \\ 3 & {}^{6}T_{1u} \\ 4 & {}^{6}T_{2u} \\ 5 & {}^{6}T_{2u} \\ 4 & {}^{6}T\end{array} $	15.48 10.51	$4 \ {}^{6}T_{2u}$ $3 \ {}^{6}E_{u}$
$\begin{array}{c} 33 \ \Gamma_{8u} \\ 17 \ \Gamma_{7u} \\ 34 \ \Gamma_{8u} \\ 18 \ \Gamma_{6u} \end{array}$	2,3/2,5/2,7/2 2.468 2.467 2.466 2.467 2.467 2.467 2.467	2,9/2,11 369 369 369 369 369 369 369	50811 51645 52036 52060 52219 52360 5295	$\begin{array}{r} 44.61 \\ 23.31 \\ 71.52 \\ 42.62 \\ 23.44 \\ 42.45 \end{array}$	$5 {}^{6}T_{2u} \\ 5 {}^{6}T_{2u} \\ 3 {}^{6}T_{1u} \\ 5 {}^{6}T_{2u} \\ 2 {}^{6}A_{2u} \\ 2 {}^{6}A_{2u} \\ 2 {}^{6}A_{2u} \\ . {}^{6}=$	$22.67 \\ 20.69 \\ 10.67 \\ 22.50 \\ 21.23 \\ 30.03 $	$ \begin{array}{c} 2 & ^{6}A_{2u} \\ 2 & ^{6}A_{2u} \\ 4 & ^{6}T_{1u} \\ 3 & ^{6}T_{1u} \\ 4 & ^{6}T_{2u} \\ 5 & ^{6}T_{2u} \\ \end{array} $	$20.41 \\ 15.73 \\ 16.16 \\ 21.13 \\ 15.59 \\ 1.50 \\ 1.$	$ \begin{array}{c} 4 & {}^{6}T_{1u} \\ 3 & {}^{6}T_{1u} \\ 4 & {}^{6}T_{2u} \\ 5 & {}^{6}T_{2u} \\ 4 & {}^{6}T_{2u} \\ 4 & {}^{6}T_{2u} \\ \end{array} $	15.48 10.51	$4 \ {}^{6}T_{2u}$ $3 \ {}^{6}E_{u}$
$\begin{array}{c} 33 \ \Gamma_{8u} \\ 17 \ \Gamma_{7u} \\ 34 \ \Gamma_{8u} \\ 18 \ \Gamma_{6u} \\ 18 \ \Gamma_{7u} \end{array}$	2.3/2.5/2.7/2 2.468 2.467 2.466 2.467 2.467 2.467 2.467 2.467 2.469	2,9/2,11, 369 369 369 369 369 369 369 369 369 369	50811 51645 52036 52060 52219 52360 52547	$\begin{array}{r} 44.61\\ 23.31\\ 71.52\\ 42.62\\ 23.44\\ 42.45\\ 39.91 \end{array}$	$5 {}^{6}T_{2u} \\ 5 {}^{6}T_{2u} \\ 3 {}^{6}T_{1u} \\ 5 {}^{6}T_{2u} \\ 2 {}^{6}A_{2u} \\ 2 {}^{6}A_{2u} \\ 4 {}^{6}T_{1u} \\ $	$22.67 \\ 20.69 \\ 10.67 \\ 22.50 \\ 21.23 \\ 30.03 \\ 25.21$	$\begin{array}{c} 2 \ ^{\circ}A_{2u} \\ 2 \ ^{6}A_{2u} \\ 4 \ ^{6}T_{1u} \\ 3 \ ^{6}T_{1u} \\ 4 \ ^{6}T_{2u} \\ 5 \ ^{6}T_{2u} \\ 2 \ ^{6}A_{1u} \end{array}$	$\begin{array}{c} 20.41 \\ 15.73 \\ \hline \\ 16.16 \\ 21.13 \\ 15.59 \\ 15.75 \end{array}$	$\begin{array}{c} 4 \ ^{6}T_{1u} \\ 3 \ ^{6}T_{1u} \\ 4 \ ^{6}T_{2u} \\ 5 \ ^{6}T_{2u} \\ 4 \ ^{6}T_{2u} \\ 3 \ ^{6}T_{1u} \end{array}$	15.48 10.51	$4 \ {}^{6}T_{2u}$ $3 \ {}^{6}E_{u}$
$\begin{array}{c} 33 \ \Gamma_{8u} \\ 17 \ \Gamma_{7u} \\ 34 \ \Gamma_{8u} \\ 18 \ \Gamma_{6u} \\ 18 \ \Gamma_{7u} \\ 35 \ \Gamma_{8u} \end{array}$	2.3/2.5/2.7/2 2.468 2.467 2.466 2.467 2.467 2.467 2.467 2.469 2.468	2,9/2,11, 369 369 369 369 369 369 369 369 369 369 369 369 369	50811 51645 52036 52060 52219 52360 52547 52570	$\begin{array}{r} 44.61\\ 23.31\\ 71.52\\ 42.62\\ 23.44\\ 42.45\\ 39.91\\ 56.91 \end{array}$	$\begin{array}{c} 5 \ ^{6}T_{2u} \\ 5 \ ^{6}T_{2u} \\ 3 \ ^{6}T_{1u} \\ 5 \ ^{6}T_{2u} \\ 2 \ ^{6}A_{2u} \\ 2 \ ^{6}A_{2u} \\ 4 \ ^{6}T_{1u} \\ 5 \ ^{6}T_{2u} \end{array}$	$\begin{array}{c} 22.67\\ 20.69\\ 10.67\\ 22.50\\ 21.23\\ 30.03\\ 25.21\\ 12.60\\ \end{array}$	$\begin{array}{c} 2 & {}^{6}A_{2u} \\ 2 & {}^{6}A_{2u} \\ 4 & {}^{6}T_{1u} \\ 3 & {}^{6}T_{1u} \\ 4 & {}^{6}T_{2u} \\ 5 & {}^{6}T_{2u} \\ 2 & {}^{6}A_{1u} \\ 2 & {}^{6}A_{2u} \end{array}$	$\begin{array}{c} 20.41 \\ 15.73 \\ \hline \\ 16.16 \\ 21.13 \\ 15.59 \\ 15.75 \\ 12.35 \\ \end{array}$	$\begin{array}{c} 4 & {}^{6}T_{1u} \\ 3 & {}^{6}T_{1u} \\ 4 & {}^{6}T_{2u} \\ 5 & {}^{6}T_{2u} \\ 4 & {}^{6}T_{2u} \\ 3 & {}^{6}T_{1u} \\ 3 & {}^{6}E_{u} \end{array}$	15.48 10.51	$4 \ ^{6}T_{2u}$ $3 \ ^{6}E_{u}$

$\begin{array}{c} 36 \ \Gamma_{8u} \\ 19 \ \Gamma_{6u} \\ 37 \ \Gamma_{8u} \\ 19 \ \Gamma_{7u} \\ 20 \ \Gamma_{6u} \\ 38 \ \Gamma_{8u} \end{array}$	$\begin{array}{c} 2.469 \\ 2.467 \\ 2.469 \\ 2.469 \\ 2.470 \\ 2.469 \end{array}$	369 369 371 370 369 369	52686 52708 52748 52867 52885 53052		34.60 51.31 43.86 76.14 66.23 49.51	$5 \ {}^{6}T_{2u} \\ 5 \ {}^{6}T_{2u} \\ 4 \ {}^{6}T_{1u} \\ 4 \ {}^{6}T_{1u} \\ 4 \ {}^{6}T_{1u} \\ 5 \ {}^{6}T_{2u} \\ 5 \ {}^{6}T_{2u} \\ \end{array}$	$29.39 \\ 23.73 \\ 12.17 \\ 10.02 \\ 29.97$	$\begin{array}{c} 4 \ {}^{6}T_{1u} \\ 3 \ {}^{6}E_{u} \\ 2 \ {}^{6}A_{1u} \\ \end{array} \\ 5 \ {}^{6}T_{2u} \\ 4 \ {}^{6}T_{1u} \end{array}$	$10.54 \\ 15.59$	${3 \ }^{6}T_{1u} \ {4 \ }^{6}T_{2u}$		
$4f^7(^6H_5$ 20 Γ_{7a}	$^{/2,7/2,9/2,11}_{2.467}$	$^{/2,13/2}_{370}$	$_{(15/2)}^{c}$		56.35	5 ${}^{6}T_{1}$	27.78	$4^{-6}E_{\rm ev}$				
$39 \Gamma_{8u}$	2.467	369	55864		41.52	$5 {}^{6}T_{1u}$	22.97	$4^{6}E_{u}^{-a}$	16.15	$6 {}^{6}T_{2u}$	13.13	$6 {}^{6}T_{1u}$
$40 \Gamma_{8u}$	2.467	369	56075		80.52	$5 \ ^{6}T_{1u}$	11.90	$4 {}^{6}E_{u}$				
41 Γ_{8u}	2.467	369	56139		66.73	$5 \ ^{6}T_{1u}$	15.24	$4^{6}E_{u}$				
21 Γ_{6u}	2.467	369	56146		59.31	$5 \ ^{6}T_{1u}$	14.53	$4^{6}E_{u}$	11.44	$6 \ ^{6}T_{2u}$		
$21 \ \Gamma_{7u}$	2.467	369	56154		44.16	$4^{6}E_{u}$	39.99	$5 {}^{6}T_{1u}$	14.46	$6 \ ^{6}T_{1u}$		
42 Γ_{8u}	2.467	370	56161		73.73	$4^{6}E_{u}$	13.55	$6 {}^{6}T_{1u}$				
$22 \Gamma_{7u}$	2.468	367	56301		36.42	$6 {}^{6}_{c}T_{2u}$	35.41	$6 {}^{6}_{c}T_{1u}$	13.29	$4^{6}E_{u}$		
43 Γ_{8u}	2.467	369	56324		70.94	$5 {}^{o}_{c}T_{1u}$	14.42	$4 \overset{o}{} E_u$				
$22 \Gamma_{6u}$	2.467	369	56343		64.74	$4 {}^{\circ}E_{u}$	22.88	$5 \ ^{0}T_{1u}$				
$23 \Gamma_{7u}$	2.466	372	56356		79.51	$5 \ ^{o}T_{1u}$						
$23 \Gamma_{6u}$	2.468	369	56437		85.21	$6 \ ^{\circ}T_{1u}$	05.05	465	10.10	e 677		
$44 \Gamma_{8u}$	2.407	369	56442		42.83	$6 \ ^{\circ}T_{1u}$	25.37	$4 \ ^{\circ}E_u$	19.12	$0 \ 1_{2u}$		
$45 \Gamma_{8u}$	2.408	370	50513 56690		07.81 80.44	$6 T_{1u}$	10.99	$0 I_{2u}$	10.09	$4^{-}E_{u}$		
$24 \Gamma_{7u}$	2.407	370	56636		81 71	${}^{0}_{6} {}^{1}_{1u}$						
241_{6u} $46\Gamma_{0}$	2.409	370	56645		51 77	$6 {}^{6}T_{1}$	32.07	$6^{6}T_{2}$				
$40 \Gamma_{8u}$ 47 Γ_{0}	2.405	370	56837		84 24	$6 {}^{6}T_{0}$	52.01	0 - 12u				
$48 \Gamma_{8u}$	2.469	370	56896		52.48	$6 {}^{6}T_{2u}$	33.88	$6^{-6}T_{1u}$				
$25 \Gamma_{6u}$	2.469	370	56902		84.22	$6 {}^{6}T_{2u}$	00.00	0 ±1u				
49 Γ_{8u}	2.470	370	56940		52.35	$6 {}^{6}T_{2u}^{2u}$	35.45	$6 {}^{6}T_{1u}$				
$25 \Gamma_{7u}$	2.470	370	56972		47.80	$6 \ ^{6}T_{1u}$	41.88	$6 \ ^{6}T_{2u}$				
				Eu^{3+} -c	loped S	rFa						
$4f^{6}(^{7}F_{0},$	-6)				r							
$4f^6(^7F_{0-1})$	$^{-6})$ 2.313	445	0		36.42	$1^{7}T_{2a}$	31.64	$1 {}^{7}T_{1a}$	26.18	$1 {}^{7}A_{2a}$		
$4f^{6}(^{7}F_{0}, 1) = 1$	$^{-6})\ 2.313\ 2.313$	$\begin{array}{c} 445\\ 445\end{array}$	$0 \\ 359$		36.42 36.24	$1 \frac{7}{1} \frac{7}{7} T_{2g}$ $1 \frac{7}{7} T_{2g}$	$\frac{31.64}{30.33}$	$1 \ ^{7}T_{1g}$ $1 \ ^{7}A_{2g}$	$26.18\\28.55$	$1 {}^{7}A_{2g}$ $1 {}^{7}T_{1g}$		
$4f^{6}(^{7}F_{0} - 1) A_{1g} \\ 1 T_{1g} \\ 1 T_{2g} \\ 1 T_{2g}$	$^{-6})\ 2.313\ 2.313\ 2.313\ 2.313$	$\begin{array}{c} 445\\ 445\\ 443 \end{array}$	$\begin{array}{c} 0\\ 359\\ 873 \end{array}$		36.42 36.24 49.66	$1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}A_{2g}$	$31.64 \\ 30.33 \\ 35.60$	$1 \ {}^{7}T_{1g}$ $1 \ {}^{7}A_{2g}$ $1 \ {}^{7}T_{2g}$	$26.18 \\ 28.55 \\ 11.22$	$1 {}^{7}A_{2g}$ $1 {}^{7}T_{1g}$ $1 {}^{7}T_{1g}$		
$4f^{6}(^{7}F_{0}, 1) \\ 1 A_{1g} \\ 1 T_{1g} \\ 1 T_{2g} \\ 1 E_{g} \\ 1 E_{g}$	$egin{array}{c} -6 \ 2.313 \ 2.313 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ \end{array}$	$445 \\ 445 \\ 443 \\ 447$	$0 \\ 359 \\ 873 \\ 1327$		36.42 36.24 49.66 63.49	$ \begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \end{array} $	$31.64 \\ 30.33 \\ 35.60 \\ 32.80$	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} $	$26.18 \\ 28.55 \\ 11.22$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$4f^{6}(^{7}F_{0}.\\1\ A_{1g}\\1\ T_{1g}\\1\ T_{2g}\\1\ E_{g}\\2\ T_{1g}$	$egin{array}{c} -6 \ 2.313 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.313 \ \end{array}$	$445 \\ 445 \\ 443 \\ 447 \\ 445$	$0 \\ 359 \\ 873 \\ 1327 \\ 1974$		36.42 36.24 49.66 63.49 41.13	$\begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \end{array}$	31.64 30.33 35.60 32.80 28.23	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}A_{2g}$	26.18 28.55 11.22 28.07	$ \begin{array}{c} 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \end{array} $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1 \ A_{1g}\\ 1 \ T_{1g}\\ 1 \ T_{2g}\\ 1 \ E_{g}\\ 2 \ T_{1g}\\ 2 \ T_{2g}\\ \end{array}$	$egin{array}{c} -6 \ 2.313 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \$	$445 \\ 445 \\ 443 \\ 447 \\ 445 \\ 447$	0 359 873 1327 1974 2065		36.4236.2449.6663.4941.1361.66	$\begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \end{array}$	31.64 30.33 35.60 32.80 28.23 24.20	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T$	$26.18 \\ 28.55 \\ 11.22 \\ 28.07 \\ 11.50$	$1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}A_{2g}$		
$4f^{6}(^{7}F_{0}, 1) \\ 1 A_{1g} \\ 1 T_{1g} \\ 1 T_{2g} \\ 1 E_{g} \\ 2 T_{1g} \\ 2 T_{2g} \\ 1 A_{2g} \\ 1 A_{2g}$	$egin{array}{c} -6 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.313 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \$	445 445 443 447 445 447 447	0 359 873 1327 1974 2065 2274		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36 \end{array}$	$\begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \end{array}$	31.64 30.33 35.60 32.80 28.23 24.20 47.09	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T$	$26.18 \\ 28.55 \\ 11.22 \\ 28.07 \\ 11.50$	$1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}A_{2g}$		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 2\ A_{1g}\\ \end{array}$	$\begin{pmatrix} -6 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.312 \\ 2.312 \\ 1.512$	445 443 447 445 447 447 447	0 359 873 1327 1974 2065 2274 2581		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ \end{array}$	$\begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}A_{2g} \end{array}$	31.64 30.33 35.60 32.80 28.23 24.20 47.09 42.06	$1 \ ^{7}T_{1g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ $	26.18 28.55 11.22 28.07 11.50	$ \begin{array}{c} 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ \end{array} $		
$4f^{6}(^{7}F_{0.}$ $1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 E_{g}$ $2 T_{1g}$ $2 T_{2g}$ $1 A_{2g}$ $2 A_{1g}$ $3 T_{1g}$	$\begin{pmatrix} -6 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.312 \\ 2.312 \\ 2.313 \\ 2.312 \\ 2.313 \end{pmatrix}$	$\begin{array}{r} 445 \\ 445 \\ 443 \\ 447 \\ 445 \\ 447 \\ 447 \\ 443 \\ 446 \\ 447 \end{array}$	$0\\359\\873\\1327\\1974\\2065\\2274\\2581\\3082\\2022$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ \end{array}$	$1 \begin{array}{c} 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{1g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ T_{2g} \\$	31.64 30.33 35.60 32.80 28.23 24.20 47.09 42.06 35.23	$1 \ ^{7}T_{1g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ $	26.18 28.55 11.22 28.07 11.50 17.03	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}A_{2g} \\$		
$4f^{6}(^{7}F_{0.}$ $1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 E_{g}$ $2 T_{1g}$ $2 T_{2g}$ $1 A_{2g}$ $2 A_{1g}$ $3 T_{1g}$ $3 T_{2g}$ $2 E_{2g}$	$\begin{pmatrix} -6 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.312 \\ 2.312 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \end{pmatrix}$	$\begin{array}{r} 445\\ 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 447\\ 447\\ 447\\ 443\\ 446\\ 447\\ 447\\ 447\\ 447\\ 447\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 2302\end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 70.25\end{array}$	$1 \begin{array}{c} 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{1g} \\ 1 \\ 7 \\ T_{2g} \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ T_{2g} \\ T_{2$	31.64 30.33 35.60 32.80 28.23 24.20 47.09 42.06 35.23 16.92	$1 \ ^{7}T_{1g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 7 \ T_{2g} \ T_{2g} \\ 7 \ T_{2g} \ T_{2g} \ T_{2g} \\ 7 \ T_{2g} \ T_{2g$	26.18 28.55 11.22 28.07 11.50 17.03	$1 \ ^{7}A_{2g}$ $1 \ ^{7}T_{1g}$ $1 \ ^{7}T_{1g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}A_{2g}$ $1 \ ^{7}A_{2g}$		
$4f^{6}(^{7}F_{0}, 1A_{1g}, 1T_{1g}, 1T_{2g}, 1T_{2g}, 1E_{g}, 2T_{1g}, 2T_{2g}, 1A_{2g}, 2A_{1g}, 3T_{1g}, 3T_{2g}, 2E_{g}, 4T_{2g}, 4T_{2g}, 2E_{g}, 4T_{2g}, 4T_$	$\begin{pmatrix} -6 \end{pmatrix} \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.312 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.312 \\ 2.314 \\ 2.312 \\ 2.3$	$\begin{array}{r} 445\\ 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 447\\ 447\\ 446\end{array}$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121 \end{array}$		36.42 36.24 49.66 63.49 41.13 61.66 50.36 55.76 45.64 78.32 79.35 27.15	$1 \begin{array}{c} 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{1g} \\ 1 \\ 7 \\ T_{2g} \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ T_{2g$	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 26.62	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T$	26.18 28.55 11.22 28.07 11.50 17.03	$ \begin{array}{c} 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}A_{2g} \end{array} $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 3\ T_{1g}\\ 3\ T_{2g}\\ 2\ E_{g}\\ 4\ T_{2g}\\ 4\ T_{2g}$	$\begin{pmatrix} -6 \end{pmatrix} \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.312 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.313 \\ 2.314 \\ 2.313 \\ 2.3$	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 445\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\end{array}$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353 \end{array}$		36.42 36.24 49.66 63.49 41.13 61.66 50.36 55.76 45.64 78.32 79.35 37.15 72.25	$1 \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T$	26.18 28.55 11.22 28.07 11.50 17.03 23.87	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 3\ T_{1g}\\ 3\ T_{2g}\\ 2\ E_{g}\\ 4\ T_{2g}\\ 4\ T_{1g}\\ 3\ F\end{array}$	$^{-6})$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.313 2.314 2.314 2.313 2.314 2.314 2.313 2.314 2.	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 445\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 446\end{array}$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525 \end{array}$		36.42 36.24 49.66 63.49 41.13 61.66 50.36 55.76 45.64 78.32 79.35 37.15 72.25 49.42	$1 \begin{array}{c} 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{1g} \\ 1 \\ 7 \\ T_{2g} \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ 1 \\ 7 \\ T_{2g} \\ $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23	$1 \ ^{7}T_{1g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ $	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 3\ T_{1g}\\ 3\ T_{2g}\\ 2\ E_{g}\\ 4\ T_{2g}\\ 4\ T_{2g}\\ 4\ T_{1g}\\ 3\ E_{g}\\ 5\ T_{1g}\end{array}$	$egin{array}{c} -6 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.312 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.314 \ 2.314 \ 2.313 \ 2.314 \ 2.314 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.314 \ 2.314 \ 2.313 \ 2.314 \$	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 445\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 446\end{array}$	0 359 873 1327 1974 2065 2274 2581 3082 3293 3393 4121 4353 4525 4527		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24 \end{array}$	$1 \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20	$1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}A_{2g} \\ 1 \ {}^{7}T_{2g} \\ 1 \ {}^{7}T_{1g} \\ 1 \ {}^{7}T$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 3\ T_{1g}\\ 3\ T_{2g}\\ 2\ E_{g}\\ 4\ T_{2g}\\ 4\ T_{2g}\\ 4\ T_{1g}\\ 3\ E_{g}\\ 5\ T_{1g}\\ 3\ A_{1g}\\ \end{array}$	$egin{array}{c} -6 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.313 \ 2.314 \ 2.312 \ 2.313 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.313 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.314 \ 2.313 \ 2.314 \$	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490 \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ \end{array}$	$1 \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37	$1 \ ^{7}T_{1g}$ $1 \ ^{7}A_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{1g}$ $1 \ ^{7}T_{1g}$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$4f^{6}(^{7}F_{0.}$ $1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 E_{g}$ $2 T_{1g}$ $2 T_{2g}$ $1 A_{2g}$ $2 A_{1g}$ $3 T_{2g}$ $2 E_{g}$ $4 T_{2g}$ $4 T_{2g}$ $4 T_{1g}$ $3 E_{g}$ $5 T_{1g}$ $3 A_{1g}$ $6 T_{1g}$	$^{-6})$ 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.314 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.313 2.313 2.314 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.312 2.312 2.	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 46\\ $	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 55.24\\ 59.20\\ 53.90\\ \end{array}$	$1 \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51	$1 \ ^{7}T_{1g}$ $1 \ ^{7}A_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{1g}$ $1 \ ^{7}T_{1g}$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$4f^6({}^7F_{0-1} A_{1g} 1 T_{1g} 1 T_{2g} 1 T_{2g} 1 E_g 2 T_{1g} 2 T_{2g} 1 A_{2g} 2 A_{1g} 3 T_{1g} 3 T_{2g} 2 A_{1g} 3 T_{2g} 4 T_{2g} 4 T_{1g} 3 E_g 5 T_{1g} 3 A_{1g} 6 T_{1g} 5 T_{2g} 5 T_{2g}$	$^{-6})$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.313 2.313 2.313	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ \end{array}$	$ \begin{array}{c} 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35	$1 \ ^{7}T_{1g}$ $1 \ ^{7}A_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{2g}$ $1 \ ^{7}T_{1g}$ $1 \ ^{7}T_{2g}$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$4f^6({}^7F_{0-1}$ $1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 E_g$ $2 T_{1g}$ $2 T_{2g}$ $1 A_{2g}$ $2 A_{1g}$ $3 T_{2g}$ $2 E_g$ $4 T_{2g}$ $4 T_{1g}$ $3 E_g$ $5 T_{1g}$ $3 A_{1g}$ $6 T_{1g}$ $5 T_{2g}$ $4 E_g$	$^{-6})$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.313 2.313 2.314	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ 5734 \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51 \end{array}$	$ \begin{array}{c} 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \end{array} $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15	$1 \ ^{7}T_{1g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ $	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$4f^{6}(^{7}F_{0.}$ $1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 E_{g}$ $2 T_{1g}$ $2 T_{2g}$ $1 A_{2g}$ $2 A_{1g}$ $3 T_{2g}$ $2 E_{g}$ $4 T_{2g}$ $4 T_{2g}$ $4 T_{1g}$ $3 E_{g}$ $5 T_{1g}$ $3 A_{1g}$ $6 T_{1g}$ $5 T_{2g}$ $4 E_{g}$ $6 T_{2g}$	$^{-6)}$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.314	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447\\ 446\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ 5734\\ 5741 \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99 \end{array}$	$ \begin{array}{c} 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63	$1 \ ^{7}T_{1g} \\ 1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ $	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 3\ T_{1g}\\ 3\ T_{2g}\\ 2\ E_{g}\\ 4\ T_{2g}\\ 4\ T_{1g}\\ 3\ E_{g}\\ 5\ T_{1g}\\ 3\ A_{1g}\\ 6\ T_{1g}\\ 5\ T_{2g}\\ 4\ E_{g}\\ 6\ T_{2g}\\ 2\ A_{2g}\\ \end{array}$	$^{-6)}$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.314 2.313 2.314 2.313 2.314 2.314 2.314 2.313 2.314 2.313 2.314 2.	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447\\ 446\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ 5734\\ 5741\\ 5753\\ \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99\\ 49.93\\ \end{array}$	$ \begin{array}{c} 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63 46.69	$1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}A_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{2g} \ \ ^{7}T$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$4f^{6}(^{7}F_{0.}$ $1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 E_{g}$ $2 T_{1g}$ $2 T_{2g}$ $1 A_{2g}$ $2 A_{1g}$ $3 T_{2g}$ $2 E_{g}$ $4 T_{2g}$ $4 T_{1g}$ $3 E_{g}$ $5 T_{1g}$ $3 A_{1g}$ $6 T_{1g}$ $5 T_{2g}$ $4 E_{g}$ $6 T_{2g}$ $2 A_{2g}$ $4 f^{6}(^{5}D_{0})$	$^{-6)}$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.312 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ 5734\\ 5741\\ 5753\\ \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99\\ 49.93\\ \end{array}$	$ \begin{array}{c} 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{1g} \\ 1 & {}^7T_{2g} $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63 46.69	$1 \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}A_{2g} \\ 1 \ \ ^{7}T_{2g} \\ 1 \ \ ^{7}T_{1g} \ \ ^{7}T_{1g} \\ 1 \ \ ^{7}T_{1g} \ \ ^{7}T_{$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1 \ A_{1g}\\ 1 \ T_{1g}\\ 1 \ T_{2g}\\ 1 \ E_{g}\\ 2 \ T_{1g}\\ 2 \ T_{2g}\\ 1 \ A_{2g}\\ 2 \ A_{1g}\\ 3 \ T_{1g}\\ 3 \ T_{2g}\\ 4 \ T_{1g}\\ 3 \ E_{g}\\ 5 \ T_{1g}\\ 3 \ A_{1g}\\ 6 \ T_{1g}\\ 5 \ T_{2g}\\ 4 \ E_{g}\\ 6 \ T_{2g}\\ 2 \ A_{2g}\\ 4 \ f^{6}(^{5}D_{0})\\ 4 \ A_{1g}\end{array}$	$^{-6)}$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ 5734\\ 5741\\ 5753\\ \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99\\ 49.93\\ \\ 55.32\\ \end{array}$	$ \begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {$	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63 46.69 38.81	$ \begin{array}{c} 1 & {}^{7}T_{1g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1 \ A_{1g}\\ 1 \ T_{1g}\\ 1 \ T_{2g}\\ 1 \ E_{g}\\ 2 \ T_{1g}\\ 2 \ T_{2g}\\ 1 \ A_{2g}\\ 2 \ A_{1g}\\ 3 \ T_{1g}\\ 3 \ T_{2g}\\ 2 \ E_{g}\\ 4 \ T_{2g}\\ 4 \ T_{2g}\\ 4 \ T_{2g}\\ 4 \ T_{2g}\\ 5 \ T_{1g}\\ 3 \ A_{1g}\\ 6 \ T_{1g}\\ 5 \ T_{2g}\\ 4 \ E_{g}\\ 6 \ T_{2g}\\ 2 \ A_{2g}\\ \end{array}$	$^{-6})$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.314 2.313 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.314 2.313 2.312 2.313 2.312 2.312 2.312 2.312 2.312 2.312 2.312 2.	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 445\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447\\ 447$	$\begin{array}{c} 0\\ 359\\ 873\\ 1327\\ 1974\\ 2065\\ 2274\\ 2581\\ 3082\\ 3293\\ 3393\\ 4121\\ 4353\\ 4525\\ 4527\\ 5490\\ 5536\\ 5555\\ 5734\\ 5741\\ 5753\\ 20028\\ 20835\\ \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99\\ 49.93\\ \\ 55.32\\ 55.33\\ \end{array}$	$1 \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63 46.69 38.81 39.38	$ \begin{array}{c} 1 & {}^{7}T_{1g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1 \ A_{1g}\\ 1 \ T_{1g}\\ 1 \ T_{2g}\\ 1 \ E_{g}\\ 2 \ T_{1g}\\ 2 \ T_{2g}\\ 1 \ A_{2g}\\ 2 \ A_{1g}\\ 3 \ T_{1g}\\ 3 \ T_{2g}\\ 2 \ E_{g}\\ 4 \ T_{2g}\\ 5 \ T_{2g}\\ 4 \ E_{g}\\ 6 \ T_{2g}\\ 2 \ A_{2g}\\ 4 \ f^{6}(^{5}D_{0})\\ 4 \ A_{1g}\\ 7 \ T_{1g}\\ 5 \ E_{g}\\ \end{array}$	$^{-6})$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 446\\ 447\\ 447\\ 447$	$egin{array}{c} 0 \\ 359 \\ 873 \\ 1327 \\ 1974 \\ 2065 \\ 2274 \\ 2581 \\ 3082 \\ 3293 \\ 3393 \\ 4121 \\ 4353 \\ 4525 \\ 4527 \\ 5490 \\ 5536 \\ 5555 \\ 5734 \\ 5741 \\ 5753 \\ 20028 \\ 20835 \\ 22439 \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99\\ 49.93\\ 55.32\\ 55.33\\ 54.68\\ \end{array}$	$ \begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{5}T_{2g} \\ 1 & {}^{5}E_{2g} \end{array} $	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63 46.69 38.81 39.38 40.89	$1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		
$\begin{array}{c} 4f^{6}(^{7}F_{0},\\ 1\ A_{1g}\\ 1\ T_{1g}\\ 1\ T_{2g}\\ 1\ E_{g}\\ 2\ T_{1g}\\ 2\ T_{2g}\\ 1\ A_{2g}\\ 2\ A_{1g}\\ 3\ T_{1g}\\ 3\ T_{2g}\\ 2\ E_{g}\\ 4\ T_{2g}\\ 4\ T_{2g}\\ 4\ T_{1g}\\ 3\ E_{g}\\ 5\ T_{1g}\\ 3\ A_{1g}\\ 6\ T_{1g}\\ 5\ T_{2g}\\ 4\ E_{g}\\ 6\ T_{2g}\\ 2\ A_{2g}\\ \end{array}$	$^{-6})$ 2.313 2.313 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.313 2.314 2.314 2.314 2.314 2.314 2.3143) 2.313 2.312 2.313 2.312 2.313	$\begin{array}{r} 445\\ 443\\ 447\\ 445\\ 447\\ 447\\ 443\\ 446\\ 447\\ 446\\ 447\\ 447\\ 446\\ 447\\ 447$	$egin{array}{c} 0 \\ 359 \\ 873 \\ 1327 \\ 1974 \\ 2065 \\ 2274 \\ 2581 \\ 3082 \\ 3293 \\ 3393 \\ 4121 \\ 4353 \\ 4525 \\ 4527 \\ 5490 \\ 5536 \\ 5555 \\ 5734 \\ 5741 \\ 5753 \\ 20028 \\ 20835 \\ 22439 \\ 22570 \\ \end{array}$		$\begin{array}{c} 36.42\\ 36.24\\ 49.66\\ 63.49\\ 41.13\\ 61.66\\ 50.36\\ 55.76\\ 45.64\\ 78.32\\ 79.35\\ 37.15\\ 72.25\\ 49.42\\ 55.24\\ 59.20\\ 53.90\\ 47.01\\ 63.51\\ 56.99\\ 49.93\\ 55.32\\ 55.33\\ 54.68\\ 64.91\\ \end{array}$	$ \begin{array}{c} 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {$	31.64 30.33 35.60 28.23 24.20 47.09 42.06 35.23 16.92 18.61 36.62 15.33 48.23 42.20 22.37 31.51 40.35 33.15 39.63 46.69 38.81 39.38 40.89 30.53	$ \begin{array}{c} 1 & {}^{7}T_{1g} \\ 1 & {}^{7}A_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{7}T_{1g} \\ 1 & {}^{7}T_{2g} \\ 1 & {}^{5}E_{g} \end{array} $	26.18 28.55 11.22 28.07 11.50 17.03 23.87 10.04 15.17 11.32	$1 \ ^{7}A_{2g} \\ 1 \ ^{7}T_{1g} \\ 1 \ ^{7}T_{2g} \\ 1 \ ^{7}A_{2g} \\ 1 \ $		

$\begin{array}{c} 8 \ T_{2g} \\ 8 \ T_{1g} \end{array}$	$\begin{array}{c} 2.312\\ 2.312\end{array}$	$\begin{array}{c} 448\\ 447\end{array}$	$25195 \\ 25204$	$\begin{array}{c} 51.40\\ 87.26\end{array}$	$1 {}^{5}T_{2g} \\ 1 {}^{5}T_{2g}$	44.32	$1 {}^5E_g$				
$4f^{6}(^{5}D_{4}$	$,^{5}L_{6-10},^{5}G$	(2-6)									
9 T_{2q}	2.310	448	28095	38.32	$1 {}^{5}T_{1q}$	28.24	$2^{5}E_{q}$				
$6 E_g$	2.310	448	28096	38.42	$1 {}^{5}T_{1g}$	23.43	$2 {}^{5}E_{g}$	14.46	$1 {}^{5}A_{1g}$		
$4 A_{2q}$	2.310	448	28121	42.36	$1 {}^{5}T_{1q}$	36.21	$2 {}^{5}E_{q}$		5		
$10 \ T_{2g}$	2.310	448	28311	52.37	$2^{-5}T_{2g}$	12.59	$1 {}^{5}T_{2g}$				
9 T_{1g}	2.310	447	28323	34.05	$2^{-5}E_{g}$	25.08	$1 {}^{5}T_{1g}$	22.24	$2^{5}T_{2g}$		
$7 E_g$	2.310	448	28439	39.85	$2^{-5}T_{2g}$	13.57	$1 {}^5T_{2g}$	11.00	$1 {}^{5}E_{g}$		
$5 A_{1g}$	2.310	447	28480	59.05	$2^{-5}E_{g}$	16.65	$2^{5}T_{2g}$				
$10 \ T_{1g}$	2.311	447	28490	37.29	$1 {}^{5}T_{1g}$	24.15	$2^{5}T_{2g}$				
$11 \ T_{2g}$	2.311	447	28633	31.89	$1 {}^5T_{1g}$	16.68	$2 {}^{5}T_{2g}$	16.39	$1 {}^{5}A_{1g}$	15.95	$2 {}^5E_g$
$5 A_{2g}$	2.312	448	28670	36.27	$3 \ {}^5E_g$	32.56	$2 {}^{5}T_{1g}$	12.52	$2 {}^5E_g$		
$12 T_{2g}$	2.311	449	28692	27.18	$3 \ {}^5E_g$	24.33	$2 {}^{5}T_{1g}$	15.58	$1 {}^{5}T_{1g}$		
$8 E_g$	2.312	447	28875	35.89	$2 {}^{5}T_{1g}$	20.48	$3 {}^{5}E_{g}$		_		
$11 T_{1g}$	2.311	445	28925	22.30	$3 {}^{5}E_{g}$	21.76	$1 {}^{5}T_{1g}$	18.10	$2 {}^{5}T_{1g}$		_
$13 T_{2g}$	2.313	445	28960	20.22	$3 {}^{5}_{2g} T_{2g}$	12.90	$3 \ {}^{5}T_{1g}$	11.66	$4 {}^{5}T_{2g}$	11.43	$1 {}^{5}T_{2g}$
				10.99	$2 {}^{5}T_{1g}$		_		_		_
$12 T_{1g}$	2.311	446	28988	25.60	$1 \ _{2}^{5}T_{1g}$	20.87	$2 \ E_g$	13.28	$2 \ ^{5}T_{2g}$	12.19	$2 {}^{5}T_{1g}$
$14 T_{2g}$	2.313	449	29027	23.69	$1 {}^{5}_{E}T_{2g}$	20.77	$2 \frac{5}{5}T_{1g}$	15.83	$2 \ _{E}^{5} T_{2g}$		F
$13 T_{1g}$	2.313	449	29061	18.81	$3 \ _{2}^{5}T_{2g}$	18.04	$1 {}^{\circ}T_{2g}$	16.97	$1 \ {}^{\mathrm{o}}E_g$	16.94	$3 {}^{5}T_{1g}$
				13.15	$4 {}^{\circ}_{E}T_{2g}$		F				
$6 A_{1g}$	2.312	446	29071	55.04	$1 E_g$	37.70	$1 {}^{5}_{2g}$				
9 E_g	2.311	447	29156	32.88	$2 E_g$	29.06	$1 {}^{5}A_{1g}$		F		
$10 E_g$	2.313	450	29194	32.07	$1 {}^{5}T_{2g}$	28.04	$2 {}^{5}T_{2g}$	23.33	$1 {}^{5}E_{g}$		
$14 T_{1g}$	2.312	446	29202	35.24	$2 {}^{5}T_{2g}$	15.96	$1 {}^{5}T_{1g}$				
$7 A_{1g}$	2.314	449	29208	44.64	$4 \ {}^{5}T_{2g}$	34.23	$4 {}^{\circ}E_{g}$. 5	10.00	. 5 -
$15 \ T_{1g}$	2.313	451	29244	15.43	$1 \ {}^{5}T_{1g}$	12.52	$3 {}^{o}E_{g}$	11.80	$1 \ {}^{s}T_{2g}$	10.90	$1 \ ^{3}E_{g}$
15 00	0.010	110	20265	10.68	$2 {}^{\circ}T_{1g}$	10.55	$3 \ ^{\circ}T_{1g}$				
$15 T_{2g}$	2.313	446	29265	23.37	$2 {}^{\circ}A_{1g}$	22.73	$2 \ ^{\circ}T_{1g}$	11.07	1.577	10.01	o 577
$16 T_{2g}$	2.313	450	29292	21.89	$3 \ ^{\circ}T_{1g}$	21.14	$2 \ ^{\circ}T_{2g}$	11.37	$1 \ ^{\circ}T_{2g}$	10.01	$3 \ ^{o}T_{2g}$
$0 A_{2g}$	2.313	447	29385	55.50 46 14	$3 T_{1g}$	25.95	$4 \ E_{g}$	11.67	$2 \ T_{1g}$		
$1(I_{2g})$	2.313	448	29518	40.14	$3^{-1}2g$	20.40	$4^{-1}2g$	10.00	157		
$10 \ I_{1g}$ $11 \ E$	2.313	447	29610	24.97	$\frac{2}{1} \frac{1}{1g}$	11.03	$4^{+}E_{g}$	15.09	$4^{-1}1_{2g}$		
$11 L_g$ 17 T	2.314	447	29009	34.27	4 Lg 2 5 T	20.10 17.16	$4 I_{2g}$ 4 5T	14.79	$3 I_{1g}$ 2 5T	12 20	0.5T
	2.313 9.219	40	29719	29.04	$3 I_{1g}$ 2 5 E	10.10	$4 \ 12g$ $3 \ 5T$	14.72	$5 \ 12g$	19.90	$2 I_{1g}$
$0 A_{1g}$ 10 F	2.312	449	29745	30.47	$3 L_g$ 3 5 F	21.02	2^{-12g} $2^{5}A$	19.08	151		
$12 E_g$ 18 T.	2.313	440	29040	91.06	$\frac{5}{1} \frac{E_g}{T}$	21.02	$2 A_{1g}$ 2 F	11.50	$1 A_{1g}$ 2 5T		
$13 \ F$	2.312	440	30024	21.30 27.38	$\frac{1}{3} \frac{1}{5} T_{2}$	20.58	$\frac{2}{2} \frac{D_g}{4}$	18.85	$\frac{2}{1} \frac{1}{5}T_{-}$		
$7 A_{\circ}$	2.312	447	300024	27.50	$1 \frac{5}{T}$	20.00	2^{-1}	10.00	1 11g		
$10 T_{0}$	2.311	447	30116	16.97	$3 \frac{5}{7}$	16.06	$\frac{2}{4} \frac{E_g}{5E}$	16.04	$2^{5}T_{0}$	15 65	$1^{5} 4_{1}$
$13 T_{2g}$ 18 T_{1z}	2.313	444	30137	31.98	$2 {}^{5}T_{2}$	12.80	$1 \frac{5}{1} \frac{5}{1}$	10.04	2 12g	10.00	1 111g
$9 A_{1a}$	2.311	448	30167	46.34	$\frac{2}{2} \frac{5}{7}$	12.00 18.70	$3 {}^{5}E_{a}$	13.50	$5^{-5}E_{\pi}$		
$20 T_{2a}$	2.311	451	30207	19.95	$\frac{2}{2} \frac{5}{7_{2a}}$	19.15	$1 {}^{5}T_{1a}$	15.34	$3 {}^{5}T_{1a}$	10.85	$2^{5}E_{a}$
$19 T_{1a}$	2.313	452	30279	33.24	$\frac{2}{4} \frac{5}{7_{2a}}$	22.11	$\frac{1}{3} \frac{5}{7}$	10.01	5 1 I g	10.00	- - <i>y</i>
$14 E_a$	2.313	448	30355	36.18	$3 {}^{5}T_{2a}$	16.62	$4 {}^{5}E_{a}$				
$21 T_{2a}$	2.313	448	30440	30.44	$4 {}^{5}T_{2a}$	27.41	$3 {}^{5}T_{1a}$	18.02	$4^{5}E_{a}$		
$20 T_{1a}^{-9}$	2.312	449	30569	42.10	$3 {}^{5}E_{a}$	37.01	$2 {}^{5}T_{1a}$		9		
$22 T_{2a}^{1g}$	2.313	450	30642	28.37	$2 {}^{5}A_{1a}^{9}$	25.82	$2 {}^{5}T_{1a}$	15.92	$3 {}^5E_a$		
$21 T_{1a}^{-9}$	2.313	448	30989	36.92	$3 {}^{5}T_{2a}$	26.25	$3 {}^{5}T_{1a}$	14.03	$4 {}^{5}E_{a}^{5}$		
$15 E_a$	2.313	449	31036	39.86	$3 {}^{5}T_{1a}$	27.01	$4 {}^{5}T_{2q}$		3		
$10 A_{1a}^{3}$	2.313	448	31088	60.70	$3 {}^{5}T_{2a}$	23.96	$4 {}^{5}E_{q}^{-3}$				
22 T_{1a}^{-3}	2.314	448	31209	49.22	$4 {}^{5}T_{2a}^{-3}$	25.49	$3 {}^{5}T_{2a}^{"}$	18.74	$3 {}^5T_{1a}$		
23 T_{2a}^{-3}	2.313	448	31256	38.66	$4 {}^{5}T_{2a}^{-3}$	28.19	$3 {}^{5}T_{1a}^{-3}$	19.58	$4 {}^{5}E_{a}^{-3}$		
$8 A_{2a}^{-s}$	2.313	448	31263	66.19	$4 {}^{5}E_{a}^{-3}$	28.38	$3 {}^{5}T_{1a}$		3		
9 A_{2g}	2.312	449	31614	44.09	$3 {}^{5}E_{g}$	37.11	$2 {}^{5}T_{1g}$				
$24 T_{2g}$	2.312	450	31643	34.28	$2 {}^{5}T_{1g}$	28.30	$3 {}^{5}E_{g}$	14.47	$2^{5}A_{1g}$		
$16 E_g$	2.312	450	31659	34.10	$2 \ {}^{5}T_{1g}$	21.10	$2 {}^{5}A_{1g}$	20.49	$3 \ {}^5E_g$		
$23 T_{1g}$	2.313	448	32085	51.94	$3 \ {}^5T_{1g}$	27.78	$3 {}^5T_{2g}$		-		
$25 T_{2g}$	2.313	449	32093	44.82	$3 \ {}^5T_{2g}$	23.52	$3 \ {}^5T_{1g}$	12.71	$4 {}^5T_{2g}$		

Joos, Sm	et, Seijo	and Ba	randiarán						Suppor	ting In	formation
$ \begin{array}{c} 11 \ A_{1g} \\ 24 \ T_{1g} \\ 17 \ E_g \\ 26 \ T_{2g} \end{array} $	$2.315 \\ 2.313 \\ 2.313 \\ 2.313 \\ 2.313$	$449 \\ 449 \\ 448 \\ 448 \\ 448$	32335 32341 32345 32380	$\begin{array}{c} 46.68\\ 36.97\\ 33.19\\ 47.08\end{array}$	$\begin{array}{c} 4 \ {}^{5}T_{2g} \\ 4 \ {}^{5}T_{2g} \\ 4 \ {}^{5}E_{g} \\ 4 \ {}^{5}T_{2g} \end{array}$	$35.65 \\ 34.92 \\ 29.05 \\ 22.77$	$\begin{array}{c} 4 \ {}^{5}E_{g} \\ 4 \ {}^{5}E_{g} \\ 4 \ {}^{5}T_{2g} \\ 3 \ {}^{5}T_{2g} \end{array}$	$10.72 \\ 13.59 \\ 23.01 \\ 19.43$	$3 {}^{5}T_{2g}$ $3 {}^{5}T_{1g}$ $3 {}^{5}T_{1g}$ $4 {}^{5}E_{g}$	$\begin{array}{c} 10.21\\ 12.12 \end{array}$	${3 \ }^{5}T_{2g} \ {3 \ }^{5}T_{2g}$

^a Absorption oscillator strengths for 1 $\Gamma_{6u,8u,7u} \rightarrow i$ transitions are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.450$ Å; the reference value is $f_{ref}=1.690\times10^{-2}$. Emission oscillator strengths for 1 $\Gamma_{8g}\rightarrow1$ Γ_{6u} ,1 Γ_{8u} ,1 Γ_{7u} and radiative emission lifetime are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.450$ Å; the reference value is $f_{ref}=2.231\times10^{-3}$. ^b The analysis of the wave function has been done at $d_{\mathrm{Eu}-\mathrm{F}}=2.450$ Å ($4f^7$), 2.450 Å ($4f^6(5d^1+ITE^1_{a_{1g}})$), 2.300 Å ($4f^6$).

^c C.f. Table S8

 $8 \Gamma_{7g}$ 2.533

33327

323

0.02

TABLE S11: Spectroscopic constants and analyses of the spin-orbit wave functions of the ground and lowest lying excited states of Eu²⁺ and Eu³⁺ -doped BaF₂ cubic defects. Eu-F bond distances ($d_{\text{Eu}-\text{F},e}$ in Å), EuF₈ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), minimum-to-minimum energy differences (T_e in cm⁻¹), and relative absorption and emission oscillator strengths (f_i^{abs}/f_{ref} and f_i^{emi}/f_{ref}) are given. Calculated radiative emission lifetime for the $4f^6({}^7F_J)5de_g^1 - 1\Gamma_{8g}$ excited state is 0.451 μ s. Local distortion around the Eu²⁺ impurity, relative to experimental crystal structure d_{Ba-F} = 2.685 Å, is $d_{\text{Eu}-\text{F},e}(1\Gamma_{6u}) - d_{\text{Ba}-\text{F}} = -0.127$; ionic radii mismatch is +0.17 Å³¹. See Fig. 3, S3 and text for details.

State	$d_{\mathrm{Eu-F},e}$	$\omega_{a_{1g}}$	T_e	f_i^{abs}/f_{ref} a	f_i^{emi}/f_{ref} a		W	veights	of terms	larger t	han 10%	Ь	
$4f^{7}(^{8}S_{7})$	(2) c												
$1 \Gamma_{6u}$	2.558	321	0.000		1.00	97.79	$1^{8}A_{1u}$						
$1 \Gamma_{8u}$	2.558	321	0.026		0.86	97.79	$1^{8}A_{1u}$						
$1 \Gamma_{7u}$	2.558	321	0.069		0.03	97.79	$1^{8}A_{1u}$						
1 1 <i>Ju</i>	2.000	021	01000		0.00	01110	1 1114						
				4j	$f^6(5d + ITE)$	$a_{1g})^1 ex$	cited sta	tes					
$4f^{6}(^{7}F_{J}$	$)5de_g^1$ High-	Spin o	oupling	d									
$1 \Gamma_{8g}$	2.535	328	28044	1.00		49.84	$1 {}^{8}T_{2g}$	35.40	$1 {\ }^{8}T_{1g}$				
$1 \Gamma_{7g}$	2.535	328	28216	0.52		54.74	$1 \ ^{8}T_{2g}$	37.06	$1 \ ^{8}T_{1g}$				
$2 \Gamma_{8g}$	2.535	328	28369	0.10		70.12	$1 {}^{8}T_{2g}$	16.91	$1^{-8}E_{g}$				
$2 \Gamma_{7g}$	2.535	328	28747	0.77		48.37	$1 \ ^{8}T_{1g}$	37.99	$1 \ ^{8}T_{2g}$				
$3 \Gamma_{8q}$	2.535	328	29066	1.06		35.81	$1 \ ^{8}T_{2q}$	32.01	$1 \ ^{8}T_{1q}$	22.86	$1^{-8}E_{q}$		
$1 \Gamma_{6a}$	2.535	328	29198	0.37		32.70	$1 {}^{8}T_{2q}$	24.78	$1 \ {}^{8}T_{1q}$	22.58	$1 \ {}^{8}E_{g}$	16.02	$2^{-8}T_{1q}$
$4 \Gamma_{8a}$	2.535	328	29660	1.80		50.95	$1 {}^{8}T_{1a}$	23.20	$1 {}^{8}T_{2a}$	13.59	$2^{8}T_{1a}$		5
$2 \Gamma_{6a}$	2.535	328	29776	0.31		30.74	$1 {}^{8}T_{2a}$	21.95	$1 {}^{8}E_{a}^{-3}$	21.40	$1 {}^{8}T_{1a}$	20.03	$2^{-8}T_{1a}$
$5 \Gamma_{8a}$	2.535	328	29952	0.22		45.02	$1^{8}E_{a}^{5}$	34.65	$2^{8}T_{1a}$	14.65	$1 {}^{8}T_{2a}$		5
$3 \Gamma_{7a}$	2.535	329	30009	0.74		39.16	$1 {}^{8}T_{1a}$	27.82	$1 {}^{8}E_{a}$	27.80	$1 {}^{8}T_{2a}^{-s}$		
$6 \Gamma_{8a}$	2.534	329	30238	0.48		34.40	$1 {}^{8}E_{a}^{19}$	31.67	$1 {}^{8}T_{2a}^{9}$	13.89	$1 {}^{8}T_{1a}^{2g}$	11.28	$2^{-8}T_{2a}$
7 Γ _{8α}	2.534	327	30561	0.71		41.88	$2^{8}T_{1a}^{9}$	23.03	$1 {}^{8}T_{1a}^{2g}$	18.01	$1 {}^{8}T_{2a}^{19}$	15.44	$2 {}^{8}T_{2a}^{2g}$
$3 \Gamma_{6a}$	2.534	328	30578	0.63		44.79	$1 {}^{8}T_{1a}$	21.53	$2^{8}T_{1a}$	18.33	$2^{8}T_{2a}$		29
8 Γ	2 535	328	31093	1 60		45 56	$1 {}^{8}T_{1a}$	25.02	$2^{8}T_{1a}$	17.26	$1 {}^{8}T_{2a}$		
9 Γ.,	2.534	328	31249	0.52		23.12	$1^{8}E_{a}$	21.58	$\frac{1}{1} \frac{8}{7}$	19.73	$1 {}^{8}T_{1a}$	19.35	$2^{-8}T_{1a}$
0 - 8y		020	01210	0.01		15 43	$2^{8}T_{2}$		± ± 29	10.10	± ±19	10.00	- - 1 <i>y</i>
$4 \Gamma_{\pi}$	2 535	328	31272	1 16		55 17	$\frac{2}{1} \frac{2}{8} \frac{2}{T_1}$	18 42	$1^{8}T_{2}$	13 31	$1^{-8}E$		
$4 \Gamma_c$	2.530	328	31286	0.30		33.65	$2^{8}T_{1}$	25.63	$1 \frac{1}{8}T_{0}$	21.00	$2^{8}T_{0}$	14 78	$1^{-8}T_{1}$
-10g 5Γσ	2.534	328	31375	0.34		37.92	$\frac{2}{1} \frac{1}{8} T_{0}$	20.00	$2^{8}T_{1}$	19.74	$\frac{2}{1} \frac{1}{8} \frac{2g}{E}$	10.38	$2^{8}T_{0}$
$5\Gamma_{q}$	2.554 2.534	328	31655	0.34		42.63	$2^{8}T_{2}$	30.02	$\frac{2}{1} \frac{1}{8} T_{2}$	14.74 14.54	$2^{8}T_{1}$	10.50	2 12g
$10 \Gamma_{\odot}$	2.554	328	31702	0.15		56.90	$\frac{2}{2} \frac{12g}{7}$	21 00	$1 \frac{1}{2g}$ $1 \frac{8}{F}$	19.60	$\frac{2}{18} \frac{1}{7}$		
10 Г 8g 11 Г.	2.554	320	31040	0.03		28.36	$\frac{2}{18T}$	21.30	$1 \frac{D_g}{1 \frac{8T}{}}$	20.05	$1^{6}T$	15 74	$1^{8}F$
11 I 8g	2.000	320	51940	0.74		20.30	$1 \ 12g$ $3 \ 8T$	21.10	1 1 _{1g}	20.05	1 1 _{1g}	10.74	$1 L_g$
6 Г.	9 524	290	210.47	0.51		21 79	$\frac{2}{18T}$	<u>୭</u> <u>୦</u> ୦୭	9 8 T.	16.96	1 8 T	11 97	9.8T
$0 \ 1 \ 6g$ 12 Γ	2.004	020 207	01947 20266	0.31		26.80	$1 \ 12g$ $1 \ 8E$	00.20 01.65	$\frac{2}{18T}$	10.00	$1 I_{1g}$ 2 8T	11.07	$2 I_{1g}$ $2 ^{8}T$
	2.004	ə∠≀ 200	ə∠ə00 29200	0.45		20.80	$1 L_g$ 0.8T	21.00	$1 I_{2g}$ 0 8T	20.22	$\frac{2}{18\pi}$	10.00	$2 \ 1_{2g}$
$0 \ 1 \ 7g$	2.334	328	32392	0.01		07.19	$2^{-1}I_{1g}$	10.01	$\frac{2}{18\pi}$	13.01	$1^{-1}I_{2g}$		
14 I 8g	2.534	328	32031	1.40		42.23	$2 \ ^{\circ}I_{1g}$	27.52	$1 \ ^{\circ}I_{1g}$	14.10	$2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
15 I 8g	2.534	328	33097	3.20		67.64	$1 \ ^{\circ}T_{1g}$	24.19	$1 \ ^{\circ}T_{2g}$				
$7\Gamma_{6g}$	2.534	329	33109	1.72		71.72	$1 \ T_{1g}$	22.29	$1 \ ^{\circ}T_{2g}$				
$7 \Gamma_{7g}$	2.533	328	33119	0 50		72.99	$2 \ ^{\circ}T_{2g}$	15.57	$1 \ ^{\circ}E_g$	10.01	1 8 17		
$16 \Gamma_{8g}$	2.533	328	33267	0.59		61.65	$2 \ ^{\circ}T_{2g}$	17.12	$2 \ ^{\circ}T_{1g}$	10.31	$1 \ ^{\circ}E_{g}$		
$8 \Gamma_{6g}$	2.534	328	33394	0.07		59.12	$2 \ ^{\circ}T_{2g}$	25.14	$2 \ ^{\circ}T_{1g}$				
$18 \Gamma_{8g}$	2.535	328	33632	1.32		42.78	$2 {}^{\circ}T_{1g}$	21.24	$1 \overset{\circ}{\underset{\circ}{E}_{g}}$	20.69	$1 {}^{\circ}T_{1g}$		۰
$9 \Gamma_{6g}$	2.534	328	33691	0.06		52.37	$2 \ ^{\circ}_{0}T_{1g}$	16.25	$1 \ C_g$	16.24	$2 \ ^{\circ}T_{2g}$	11.58	$1 \ ^{\circ}T_{2g}$
$19 \Gamma_{8g}$	2.534	326	33978	0.16		66.84	$2 \ ^{\circ}_{\circ} T_{1g}$	13.49	$1 \ ^{\circ}E_g$				
$9 \Gamma_{7g}$	2.534	326	34118			74.63	$2 {}^{\circ}T_{1g}$						
$20 \ \Gamma_{8g}$	2.533	327	34955	0.02		87.51	$2 {}^{8}T_{2g}$		0				
$21 \ \Gamma_{8g}$	2.533	327	35114	0.01		78.75	$2 {}^{8}T_{2g}$	16.41	$2 {}^{8}T_{1g}$				
$10 \ \Gamma_{7g}$	2.533	327	35149			81.71	$2 {}^{8}T_{2g}$	16.44	$2 {}^{8}T_{1g}$				
$4f^{6}(^{7}F_{I}$	$)5de_a^1$ Low-	Spin c	oupling	d									
12 Г.	2534	323	32066	0.36		67.94	$1^{6}T_{1}$						

17 Γ _{8α}	2.534	323	33416	0.07	87.95	$1^{6}T_{1a}$						
10 Γ _{6α}	2.531	323	35050	0.04	56.42	$1 {}^{6}T_{1a}$	30.15	$1^{6}T_{2a}$	11.28	$2^{6}T_{1a}$		
22 Г.,	2.531	323	35174	0.07	58.76	$1^{6}T_{1_{2}}^{1_{9}}$	27.41	$1 {}^{6}T_{2a}^{2g}$		19		
$11 \Gamma_{7-}$	2533	322	35457	0.04	78.77	$1^{6}T_{1}$	10 79	$1^{6}T_{2}$				
$11 \Gamma_{6a}$	2.530	304	35760	0.01	58.53	$1^{6}T_{2a}$	23 21	$1^{6}E_{2}$	13.04	$1^{6}T_{1a}$		
11 Г 0 <i>у</i> 23 Ге-	2.531	324	35994	0.02	24.75	$1^{6}T_{2}$	23.41	$1^{6}T_{1-}$	22.47	$1^{6}E_{-}$	21.55	$2^{6}T_{1}$
<u>20 Г ад</u> 12 Га	2.531	324	36127	0.01	45 45	$2^{6}T_{1}$	20.11 24.51	$1^{6}T_{0}$	19 20	$1^{6}E$	21.00	2 11g
$\frac{12}{24} \Gamma_{0}$	2.531	323	36652	0.02	32 75	$2^{6}T_{1}$	28.62	$1^{6}T_{2}$	23 45	$1^{6}E$		
$2 \pm 1.8g$ 19 Γ_{\circ}	2.000	3020	36737	0.02	62.10	$2^{6}T$	14 54	$1^{6}T$	11 /0	$1 \frac{D_g}{1 \frac{6}{T_a}}$		
$12 \Gamma_{6g}$ 13 Γ_{-}	2.000	393	36746	0.01	38.67	2^{-1}	25.02	$1 {}^{1} {}^{1} {}^{1} {}^{g}$	15.84	$1^{6}T$		
15 Г ₇ д 95 Г.	2.001	2020	27260	0.05	46.61	2^{-1}	10.00	$1 \frac{1}{2g}$ $1 \frac{6}{T}$	19.04	$1 6 \Gamma$	10.92	$9^{6}T_{-}$
20 I 8g 96 F	2.001	225	27444	0.03	40.01	$\frac{2}{16T}$	17.99	$1 \ 12g$ $1 \ 6E$	10.75	$1 L_g$ 0.6T	10.85	$\frac{2}{16T}$
$20 \pm 8g$ 97Γ	2.001	020 205	07444 90101	0.02	21.20	$1 \ 12g$ $1 \ 6E$	20.60	$1 \ L_g$ $1 \ 6 T$	10.95	$2 I_{1g}$ 2 6T	10.85	$I I_{1g}$
271_{8g}	2.030	320	38181	0.05	31.30	$1^{\circ}E_g$ $1^{\circ}T$	29.00	$1 \ 1 \ 2g$ 1 6 E	24.83	$\frac{2}{16\pi}$		
13 I _{6g}	2.530	322	38215	0.03	46.04	$1 \ 1_{2g}$	30.21	$1 \ E_g$	12.06	$1 \ ^{\circ}I_{1g}$		
$14 \ \Gamma_{7g}$	2.531	322	38366		64.08	$2 \ ^{\circ}T_{1g}$	13.58	$1 \ ^{o}T_{2g}$	10.50	$1 {}^{\circ}E_g$		
$28 \Gamma_{8g}$	2.531	321	38550	0.02	80.26	$2 {}^{o}T_{2g}$	10.11	$2 {}^{o}T_{1g}$				
$14 \Gamma_{6g}$	2.530	322	38728	0.06	48.40	$1 {}^{o}T_{2g}$	33.12	$1 {}^{o}E_{g}$				
$29 \ \Gamma_{8g}$	2.531	323	38890	0.09	67.08	$1 {}^{o}T_{2g}$	21.18	$2 {}^{o}T_{1g}$				
$15 \ \Gamma_{7g}$	2.530	311	39490	0.01	52.44	$1 {}^{\circ}E_g$	36.80	$2^{6}T_{1g}$				
$30 \ \Gamma_{8g}$	2.530	323	39823	0.09	36.71	$2^{-6}T_{1g}$	36.15	$1^{-6}E_{g}$	23.76	$1 {}^{6}T_{2g}$		
$31 \ \Gamma_{8g}$	2.531	322	39959	0.06	61.62	$2^{-6}T_{1g}$	23.00	$1^{-6}E_{g}$	11.26	$1 {}^{6}T_{2g}$		
$15 \Gamma_{6g}$	2.531	322	40038		83.36	$2^{6}T_{2g}$	10.89	$2^{6}T_{1g}$				
$32 \ \Gamma_{8g}$	2.531	323	40041	0.01	82.19	$2^{6}T_{2g}$	10.29	$2^{6}T_{1g}$				
$16 \Gamma_{6q}$	2.530	518	41803	0.01	89.49	$2^{6}T_{2q}$						
$16 \Gamma_{7q}$	2.530	344	41807		88.74	$2^{6}T_{2a}$						
$33 \Gamma_{8q}$	2.531	297	41839	0.01	89.06	$2^{6}T_{2a}^{-g}$						
5						5						
$4f^{6}(^{7}F_{J}$	$(5dt_{2a}^{1} +$	$-ITE_{a_1}^1$) High-S	pin coupling ^{d,e}								
34 T _{8a}	2.575	835	42590	0.53	41.77	$3^{-8}T_{1a}$	26.04	$2^{-8}E_{a}$	22.72	$3^{-8}T_{2a}$		
35 Г _{ва}	2.575	473	42750	0.22	39.83	$3 {}^{8}T_{2a}$	29.57	$\frac{1}{3} \frac{-g}{8T_{1a}}$	23.08	$2^{8}E_{a}$		
$17 \Gamma_{7a}$	2.585	403	43066	0.58	65.14	$3 {}^{8}T_{2a}$	13.67	$4^{8}T_{1a}$	11.60	$2^{8}E_{2}$		
36 Γ _{°-}	2.584	418	43160	0.71	39.35	$3 {}^{8}T_{2}$	3357	$2^{8}E_{-}$	19.55	$\frac{2}{3} \frac{2}{8} T_{1}$		
17 Γ ₆₋	2 583	403	43182	0.22	53 53	$3 {}^{8}T_{1}$	23 37	$\frac{2}{2} \frac{E_g}{E_{-}}$	11.37	$3 {}^{8}T_{2}$		
11 Г ₀ у 18 Г-	2.500	184	43550	1.14	40.10	$3 \frac{8}{T_0}$	20.01	$2^{8}E$	18.96	$4^{8}T_{1}$		
10 Г /g 18 Г.	2.000	401	43666	0.38	40.10	$3^{8}T_{2}$	30.76	$\frac{2}{2} \frac{L_g}{8E}$	10.20	т 11g		
$10 \ 16g$ $37 \ \Gamma_{-}$	2.001	218	43000	0.58	45.68	$3 \frac{8}{T}$	29 /1	$\frac{2}{3} \frac{D_g}{T}$				
97 Г 8g	2.000	1046	43902	2.07	40.00	$\frac{5}{28T}$	07.92	$\frac{5 I_{1g}}{2 8 T}$	<u> </u>	1 8T	12 0 4	98E
$38 \pm 8g$	2.020	1040	44349	5.07 1.45	01.02 42.09	$3 I_{1g}$ 3 8 T	21.00	$3 1_{2g}$ 3 8T	16.69	$4 I_{1g}$ 3 8 E	10.94	$4 \frac{E_g}{8\pi}$
$39 \ 1 \ 8g$	2.393	274	44540	1.45	43.98	$3^{-1}I_{1g}$	20.78	$3^{-1}2g$	10.03	$2^{-}E_{g}$	12.00	$4 \ 1_{1g}$
$40 \ 1 \ 8g$	2.599	252	44844	4.00	33.29	$3 \ 1_{2g}$	29.59	$4 \ ^{\circ}I_{1g}$	24.95	$3 \ ^{\circ}I_{1g}$		
19 Γ_{7g}	2.586	371	44883	3.71	57.63	$4 \ T_{1g}$	21.42	$3 \ T_{1g}$	12.04	$2 \ E_g$		
19 Γ_{6g}	2.587	380	45085	0.71	53.75	$3 \ T_{2g}$	22.44	$3 \ T_{1g}$	18.82	$4 \ ^{\circ}T_{1g}$		
$20 \ \Gamma_{7g}$	2.584	402	45137	1.12	61.97	$3 \ ^{\circ}T_{1g}$	26.02	$3 \ ^{\circ}T_{2g}$				
41 Γ_{8g}	2.625	939	45234	2.60	32.13	$2 \ {}^{\circ}E_{g}$	26.74	$4 {}^{\circ}T_{1g}$	18.42	$3 \ {}^{\circ}T_{2g}$	17.20	$3 \ {}^{\circ}T_{1g}$
$20 \Gamma_{6g}$	2.588	355	45535	0.13	24.29	$5 \ ^{\circ}_{0}T_{1g}$	15.01	$4 \ ^{\circ}T_{2g}$	14.93	$3 \ C_g$	13.91	$3 \ ^{\circ}T_{2g}$
$42 \Gamma_{8g}$	2.625	905	45659	0.18	24.17	$5 \ {}^{8}T_{1g}$	17.94	$4 {}^{\circ}T_{2g}$	16.21	$3 \ ^{\circ}E_{g}$	14.29	$4 {}^{8}T_{1g}$
$21 \ \Gamma_{7g}$	2.590	330	45734	1.20	32.24	$3 {}^{8}T_{1g}$	23.84	$4 {}^{8}T_{1g}$	13.15	$2 {}^{8}E_{g}$	12.75	$3 \ ^{8}T_{2g}$
					10.94	$4 {}^{8}T_{2g}$		0		0		
$21 \ \Gamma_{6g}$	2.586	401	45735	0.40	46.60	$3 \ ^{8}T_{2g}$	14.70	$3 \ ^{8}T_{1g}$	14.52	$3 \ ^8E_g$		
$22 \Gamma_{7g}$	2.586	403	45810	0.20	22.05	$3^{8}E_{g}$	22.03	$4 {}^{8}T_{2g}$	19.75	$5 {}^{8}T_{1g}$	10.14	$3 {}^{8}T_{2g}$
$43 \Gamma_{8g}$	2.602	265	45963	0.84	32.18	$2^{-8}E_{g}$	26.86	$3 \ ^{8}T_{2g}$	11.25	$4 {}^{8}T_{1g}$	10.80	$3 {\ }^{8}T_{1g}$
$22 \Gamma_{6g}$	2.591	326	46276	4.03	54.77	$4 {}^{8}T_{1g}$	15.64	$2^{8}E_{g}$	15.29	$3 \ ^8T_{1g}$		
44 Γ_{8g}	2.604	253	46296	3.73	25.72	$3 \ ^8T_{1g}$	25.14	$4 \ ^{8}T_{1g}$	18.37	$2^{-8}E_{g}$	14.21	$5 \ ^8T_{1g}$
45 Γ_{8a}	2.593	311	46298	1.89	24.76	$3 \ ^{8}E_{a}$	21.20	$4 \ {}^{8}T_{2a}$	18.17	$5 \ ^{8}T_{1a}$	16.58	$4 \ {}^{8}T_{1a}$
46 Γ_{8a}	2.594	301	46371	0.79	19.49	$4 \ {}^{8}T_{2a}$	18.11	$3 \ ^{8}T_{2a}$	17.12	$3^{8}E_{a}$	13.94	$2^{-8}E_{a}$
23 Γ_{7a}^{2g}	2.593	312	46372	1.06	34.96	$4 {}^{8}T_{1a}^{-9}$	13.88	$3 {}^{8}T_{2a}^{-3}$	13.68	$4 {}^{8}T_{2a}^{3}$	12.30	$5 \ ^{8}T_{1a}$
23 Г _{ба}	2.595	314	46574	0.28	42.24	$4 {}^{8}T_{2a}$		2g		29		19
47 Γ ₈ -	2.592	313	46630	0.60	29.18	$3 \ {}^{8}T_{2a}^{2g}$	14.65	$4^{-8}T_{2a}$	14.16	$2^{-8}E_{\pi}$	12.31	$3^{-8}T_{1a}$
- 09	. –				10.15	$3 {}^{8}E_{2}$		- 29	. = -	<i>y</i>		- 19
48 Γ _{°-}	2.592	313	46770	2.05	25.86	$4^{8}T_{1}$	16.31	$3^{-8}T_{2-}$	16.07	$3^{-8}E_{-}$	15.21	$3^{-8}T_{1}$
10 1 og	2.002	310	10.10		10.89	$2^{8}E_{2}$	10101	5 1 2g	10101	5 L y	10181	5 1 1g
24 Fze	2.595	316	47069	1.28	3454	$\frac{2}{5} \frac{2g}{8T_{1c}}$	17 92	$4^{-8}T_{1c}$				
$24 \Gamma_c$	2.594	307	47363	1.20	40.88	$5 \frac{1}{8} T_{2}$	39 11	$6^{8}T_{1}^{1g}$				
og		501	1.000		10.00	2g		✓ ±1g				
$25 \Gamma_{7a}$	2.594	313	47373	0.19	21.72	$5^{-8}T_{1a}$	14.76	$3^{-8}T_{1a}$	10.65	$4^{8}T_{2a}$		
---	-------------------	------------	---------------------	------	-------------------	--	----------------	------------------------	-----------	-----------------------------	-------	----------------
49 Γ _{8α}	2.595	314	47385	0.25	21.65	$5 \ ^{8}T_{1a}$	19.35	$3 {}^{8}E_{a}^{-3}$	13.63	$4 {}^{8}T_{2a}^{-s}$		
50 Γ _{8α}	2.593	313	47451	0.70	21.83	$3 {}^{8}T_{1a}$	20.69	$3 {}^{8}T_{2a}^{9}$	15.39	$2 {}^{8}E_{a}^{-g}$	13.41	$4^{-8}T_{1a}$
0g					11.80	$5 \ {}^{8}T_{1a}$		29		9		19
51 Гел	2593	311	47516	1 27	31.04	$4 \ {}^{8}T_{2a}$	26.34	$3^{-8}E_{\pi}$	$15 \ 79$	$4^{8}T_{1a}$		
25 Γe-	2 588	279	47521	0.12	23.91	$3 {}^{8}T_{2}$	14.56	$4 {}^{8}T_{2}$	14 10	$2^{8}E_{-}$	10 14	$5^{-8}T_{1-}$
$52 \Gamma_{0g}$	2.500	210	47636	2 70	20.01	$4^{8}T_{-}$	13 01	$3^{8}T$	11.10	$\frac{2}{3} \frac{Lg}{8E}$	10.14	0 11g
$\frac{02}{26} \frac{1}{6} \frac{8g}{\Gamma_{-}}$	2.503	313	47640	0.08	01.51	$\frac{1}{2} \frac{1}{8}$	20.80	38_{F}^{38}	15.90	$3 \frac{8}{T_{-}}$	14.95	9.8F
20 1 7g 96 F	2.090	515	47040	0.03	20.04	$3 I_{1g}$	20.09	$\frac{5}{28T}$	10.29	$5 \ 12g$	14.20	$z L_g$
20 1 6g	2.070	000	47000	0.07	21.70	4 12g	14.44	$5 1_{2g}$				
$33 \pm 8g$	2.383	271	47848	0.55	31.32	$3^{-1}2g$	28.10	$0^{-1}I_{1g}$	10.95	9.8m		
$54 \ 1 \ 8g$	2.588	292	47980	6.27	49.71	$4^{-1}1g$	13.80	$5^{-1}1g$	10.35	$3^{-1}1g$		
$27 T_{6g}$	2.565	351	48245	3.55	73.50	$4 \ T_{1g}$	12.95	$3 \circ T_{2g}$				
55 Γ_{8g}	2.569	326	48284	4.76	48.86	$4 {}^{\circ}T_{1g}$	19.28	$4 {}^{\circ}T_{2g}$				
$27 \Gamma_{7g}$	2.558	336	48456	0.02	47.62	$5 \ {}^{\circ}T_{2g}$	10.74	$6 \ {}^{\circ}T_{1g}$				
56 Γ_{8g}	2.565	302	48545	0.85	52.88	$6 {}^{8}T_{1g}$	33.94	$5 {}^{8}T_{2g}$				
$28 \Gamma_{6g}$	2.586	266	48712	0.26	26.52	$5 {}^{8}T_{1g}$	24.21	$3 {\ }^{8}E_{g}$	22.73	$4 {}^{8}T_{2g}$		
57 Γ_{8g}	2.564	288	48809	0.88	43.27	$4 {}^{8}T_{2g}$	36.77	$5 \ ^{8}T_{1g}$				
$28 \Gamma_{7q}$	2.583	245	49062	0.04	63.23	$4 \ ^8T_{2q}$						
29 Γ _{6a}	2.558	320	49105	0.42	32.47	$5 \ ^{8}T_{1q}$	16.56	$3^{8}E_{q}$				
$58 \Gamma_{8a}$	2.547	351	49138	0.28	42.10	$4^{8}T_{2a}^{-s}$	14.23	$3^{8}E_{a}^{3}$				
59 Γ _{8α}	2.546	329	49254	0.20	50.63	$6 \ {}^{8}T_{1a}^{2g}$	25.55	$5 \ {}^{8}T_{2a}^{g}$				
$30 \Gamma_{c}$	2 550	303	/930/	0.08	50.30	$5 \frac{8}{T_0}$	25.00	$6 \frac{8}{T_1}$				
50 Г 6 <i>g</i> 60 Га	2.500	350	10303	0.00	50.00	$5^{8}T_{-}$	20.45	$4 \frac{8}{T_{2}}$	11.04	$3^{8}F$		
$20 \Gamma 8g$	2.545	454	40477	0.55	55.74	$5^{5} I_{1g}$ $5^{8}T$	29.41 20.75	28F	11.34	$5 L_g$		
$30 \pm 7g$	2.555	404	49477	0.19	55.74	$5 I_{1g}$	20.75	3 Eg 5 877				
$02 \ 1 \ 8g$	2.575	965	50122	0.13	53.69	$0 \ 1_{1g}$	32.25	$5 \ 1_{2g}$				
$31 \ \Gamma_{7g}$	2.560	331	50207	0.01	42.42	$4 \ ^{\circ}T_{2g}$	17.30	$3 \ ^{\circ}E_{g}$				
$29 \Gamma_{7g}$	2.546	334	49317	0.03	42.86	$5 \ {}^{\circ}T_{2g}$	38.60	$6 {}^{\circ}T_{1g}$				
$61 \ \Gamma_{8g}$	2.525	984	49989	0.09	45.00	$4 \ ^{\circ}T_{2g}$	23.25	$3 \ ^{\circ}E_{g}$				
$31 \Gamma_{6g}$	2.541	371	50076	0.05	38.52	$6 {}^{8}T_{1g}$	17.59	$5 {}^{8}T_{2g}$				
$63 \Gamma_{8g}$	2.546	301	50282	0.10	61.13	$5 \ ^{8}T_{2g}$	36.60	$6 {}^{8}T_{1g}$				
$32 \Gamma_{6g}$	2.525	906	50413	0.09	40.06	$4 {}^{8}T_{2g}$	24.51	$5 \ ^{8}T_{1g}$				
$64 \ \Gamma_{8g}$	2.546	299	50431	0.26	33.40	$5 \ ^{8}T_{1g}$	30.39	$4^{8}T_{2g}$	16.44	$3^{8}E_{g}$		
$65 \Gamma_{8q}$	2.538	434	50590	0.36	48.11	$5 \ ^{8}T_{1q}$	25.52	$3^{8}E_{a}$	15.65	$4 \ {}^{8}T_{2q}$		
$32 \Gamma_{7a}$	2.575	1253	50799	0.11	43.53	$5 \ ^{8}T_{1a}$		5		5		
33 Γ_{6a}	2.521	1281	50894	0.10	48.10	$5 \ ^{8}T_{1a}$	14.27	$3^{8}E_{a}$				
33 Γ _{7α}	2.531	469	51124	0.05	46.76	$6 \ {}^{8}T_{1a}$	19.23	$5 \ {}^{8}T_{2a}^{g}$				
66 Гел	2540	335	51191	0.25	48.95	$5 {}^{8}T_{1a}$	15 35	$3^{8}E_{2}$				
67 Го	2 536	489	51249	0.07	52.25	$5 \frac{8}{T_0}$	26 72	$6 \frac{8}{T_1}$				
68 Γ ₂	2.530	519	51380	0.01	60.65	$5^{8}T_{2}$	38 70	$6 {}^{8}T_{-}$				
94Γ	2.540	597	51295	0.10	60.00	$6 \frac{8}{T}$	94 15	58T				
541_{6g}	2.542	527	51300	0.10	02.23	68T	04.10 20 CE	5 12g = $8T$				
$34 \ 1 \ 7g$	2.517	521	52120	0.04	44.44		30.00	$0 1_{2g}$				
$69 T_{8g}$	2.519	532	52194	0.06	49.94	$5 \circ T_{2g}$	30.69	$0 \ ^{\circ}T_{1g}$				
$35 \Gamma_{7g}$	2.523	916	52400	0.05	53.93	$6 \ ^{\circ}T_{1g}$	45.91	$5 \ ^{\circ}T_{2g}$				
$35 \ \Gamma_{6g}$	2.525	696	52483	0.02	54.38	$5 {}^{\circ}T_{2g}$	21.25	$6 {}^{\circ}T_{1g}$				
$70 \ \Gamma_{8g}$	2.525	792	52496	0.13	63.59	$6 \ ^{8}T_{1g}$	36.31	$5 \ ^{8}T_{2g}$				
					$4f^7$ excited st	ates						
$4f^{7}(^{6}P_{2})$	$(2.5/2.7/2)^{c}$											
2 Γ	2.556	321	30809		89.37	$1^{6}T_{1}$						
$2 \Gamma_{7}$	2.556	320	30815		89.68	$1^{6}T_{1}$						
$\frac{1}{3}\Gamma_{0}$	2.556	321	31194		94 10	$1^{6}T_{1}^{1}$						
$9 \Gamma_{\circ}$	2.556	300	31/08		94.10 QK 14	$1^{6}T$	19.00	$3^{6}T$				
4Γ	2.000	0⊿0 200	01420 91496		00.14	$1 \frac{1}{1} $	12.09	$5 \ 12u$				
418u 2Γ	2.000 9.556	ა∠∪ ვი1	01400 21440		80.19 85.00	$1 \frac{1}{1} $	10 70	96E				
3 1 7u	2.330	321	31449		85.20	$1 \ 1_{1u}$	10.79	$Z^{-}E_{u}$				
$4f^7({}^6I_{7/}$	2,9/2,11/2,13	/2,15/2	$_{,17/2})^{\rm c}$									
$3 \Gamma_{6u}$	2.555	321	35200		75.84	$1 {}^{6}T_{2u}$	21.32	$1 {}^{6}E_{u}$				
$5 \Gamma_{8u}$	2.555	321	35207		81.55	$1^{6}T_{2u}$	15.16	$1 {}^{6}E_{u}$				
$4 \Gamma_{7u}$	2.555	321	35219		93.60	$1^{6}T_{2u}$						
$6 \Gamma_{8u}$	2.555	321	35227		80.56	$1 {}^{6}T_{2u}$	12.84	$1^{6}E_{u}$				
$4 \Gamma_{6n}$	2.555	321	35238		88.00	$1 {}^{6}T_{2,u}$		u				
0 <i>u</i>					00.00	2u						

7 Γ ₈₄	2.555	321	35239	90.00	$1^{6}T_{2u}$						
$5 \Gamma_{7u}$	2.555	322	35438	83.34	$1^{6} E_{u}^{-1}$	13.74	$2^{-6}T_{1u}$				
8 Ген	2 555	321	35456	49 53	$1^{6}E_{}$	25 17	$2^{6}T_{2}$	20.16	$1^{-6}A_{2}$		
9 Γ ₀	2.555	321	35500	61 53	$1^{6}E^{1}$	14 74	$2^{6}T_{0}^{2}$	12 28	$1 {}^{6}T_{0}$		
$5 \Gamma_{8u}$	2.556	320	35515	52 30	$2^{6}T_{2}$	18 56	$\frac{2}{16} \frac{12u}{40}$	10.53	$2^{6}T_{1}$	10.08	$1^{6}F$
$5 \pm 6u$ 10 Γ	2.550	320 290	25524	67 10	2^{-12u} $3^{6}T$	10.00	$1 A_{2u}$ 3 6T	10.55	2 1 I u	10.08	1 Lu
$10 \ 1 \ 8u$	2.337	320 290	00004 055.05	07.19	2 12u 0.6T	20.00	$2 I_{1u}$				
$0 \ 1 \ 7u$	2.337	320	30030	00.71	$2^{-1}2u$	29.30	$2 \ 1_{1u}$				
$6 \Gamma_{6u}$	2.556	321	35541	69.71	$2 \ ^{\circ}T_{2u}$	12.94	$2 \ ^{\circ}T_{1u}$		a 6 m		
$11 \Gamma_{8u}$	2.557	321	35560	43.46	$2 {}^{o}T_{1u}$	33.19	$1 {}^{o}A_{1u}$	14.65	$2 {}^{\circ}T_{2u}$		
$12 \Gamma_{8u}$	2.557	320	35592	47.53	$2 {}^{o}_{c} T_{1u}$	32.75	$2 {}^{o}_{c} T_{2u}$	11.11	$1 {}^{o}_{c} E_{u}$		
$7 \Gamma_{7u}$	2.557	321	35594	55.79	$1 {}^{o}A_{1u}$	25.47	$2 {}^{0}T_{1u}$	13.17	$2^{0}T_{2u}$		
$7 \Gamma_{6u}$	2.556	321	35603	35.44	$1 {}^{\mathbf{b}}E_u$	34.28	$2 {}^{6}T_{2u}$	17.18	$2 {}^{6}T_{1u}$		
$13 \Gamma_{8u}$	2.556	321	35643	26.51	$2^{6}T_{2u}$	21.32	$1^{-6}E_{u}$	19.98	$1 {}^{6}A_{1u}$	11.30	$1 {}^{6}T_{2u}$
				10.47	$2^{6}T_{1u}$	10.10	$1 {}^{6}A_{2u}$				
$8 \Gamma_{6u}$	2.556	321	35650	46.03	$1^{6}A_{2u}$	25.28	$1^{6}E_{u}$	15.30	$2^{6}T_{1u}$	12.96	$1^{6}T_{2u}$
8 Γ ₇ μ	2.556	321	35664	72.30	$2^{6}T_{1u}$		-				
14 Γ ₈₄	2.556	321	35685	30.24	$1^{6}A_{2u}$	26.55	$2^{-6}T_{1u}$	17.77	$2^{-6}T_{2u}$	10.46	$1^{6}A_{1u}$
$15 \Gamma_{\circ}$	2 557	321	35713	47.09	$2^{6}T_{1}$	26.04	$2^{6}T_{0}$	20.59	$1^{6}A_{0}$	10110	
$16 \Gamma_{0}$	2.556	391	35779	18 58	$2^{6}T_{2}$	37 30	$2^{6}T_{2u}$	20.00	1 212 <i>u</i>		
0Γ	2,550	201	25015	40.00	2^{-12u} 2^{6T}	201.09	$2^{-1}u$ $2^{6}T$	16.64	161		
91_{6u}	2.550	021 201	25010	41.00	$2 I_{1u}$	00.90 06 15	$\frac{2}{16} \frac{12u}{16}$	10.04	A_{2u}		
1118u	2.337	321	33842	48.33	$2 I_{1u}$	20.10	$1 A_{1u}$	18.00	$2^{-1}2u$		
9 Γ_{7u}	2.557	321	35846	56.08	$2 \ ^{\circ}T_{1u}$	29.68	$1 \ ^{\circ}A_{1u}$	12.22	$2 \ T_{2u}$		
4 c7 (6 D											
$4f'({}^{\circ}D_1$	/2,3/2,5/2,7/2	2)			- 6		- 6 -				
$18 \Gamma_{8u}$	2.555	318	37970	75.16	$3 {}^{o}T_{2u}$	21.53	$2 {}^{o}E_u$				
$10 \Gamma_{6u}$	2.556	321	38067	91.35	$2 ^{\circ}E_u$						
$19 \Gamma_{8u}$	2.555	319	38077	52.48	$2^{6}E_{u}$	44.18	$3^{6}T_{2u}$				
11 Γ_{6u}	2.555	317	38310	95.44	$3^{6}T_{2u}$						
$20 \Gamma_{8u}$	2.555	319	38547	53.00	$3^{6}T_{2u}$	38.68	$2^{-6}E_u$				
21 Γ_{8u}	2.555	320	38757	62.34	$2^{6}E_{u}$	23.24	$3^{6}T_{2u}$	10.80	$1^{6}T_{1u}$		
$10 \Gamma_{7u}$	2.556	321	38807	81.49	$2^{6}E_{u}$	11.78	$1^{6}T_{1u}$				
12 Lev	2555	317	38925	80.69	$3^{6}T_{2u}$	$12 \ 31$	$1 {}^{6}T_{1u}$				
<u>12</u> Гол	2 556	317	38975	78 78	$3 {}^{6}T_{2}$	11.38	$1^{6}T_{1}$				
$11 \Gamma_{\pi}$	2.550 2.556	317	39028	84.34	$3^{6}T_{2}^{12u}$	10.67	$1 {}^{6}T_{1}$				
11 1 / u	2.000	011	00020	01.01	0 1 2 u	10.01	1 1 1 <i>u</i>				
$Af^{7}(^{6}C)$			- (-) c								
ч) (U3 	2,5/2,7/2,9/2	2,11/2,1	3/2)	56 60	$1^{6}T$	20 47	961	19 50	26E		
$23 \pm 8u$ 12 Γ	2.554	-0∠0 202	40442	40.05	$4 1_{2u}$	20.47	$2 A_{2u}$	17.00	$3 L_u$ 3 6 E	10.61	- 677
$13 \ 1_{6u}$	2.555	323	48401	49.25	$4 \ 1_{2u}$	18.14	$2 \ ^{\circ}A_{2u}$	17.03	$3 \ E_u$	10.01	$5 \ 1_{2u}$
$24 \ 1_{8u}$	2.555	322	48511	34.25	$4 \ ^{\circ}T_{2u}$	26.51	$3 \ ^{\circ}E_u$	20.63	$3 \ ^{\circ}T_{1u}$		
$14 \ 1_{6u}$	2.555	321	48649	33.97	$3 ^{\circ}E_u$	30.54	$5 \ ^{\circ}T_{2u}$	20.49	$4 \ {}^{\circ}T_{2u}$		
$12 \Gamma_{7u}$	2.554	320	48703	55.93	$3 {}^{o}T_{1u}$	31.92	$3 {}^{o}E_{u}$		2		0
$25 \Gamma_{8u}$	2.555	320	48765	29.30	$3 {}^{6}T_{1u}$	22.02	$3 \ ^{\mathrm{o}}E_u$	16.17	$2 {}^{6}A_{1u}$	10.84	$4 {}^{6}T_{1u}$
				10.81	$5 {}^{6}T_{2u}$						
$26 \Gamma_{8u}$	2.555	322	48794	36.75	$3^{6}T_{1u}$	28.14	$5^{6}T_{2u}$	13.43	$3^{6}E_{u}$	12.12	$4^{6}T_{2u}$
$15 \Gamma_{6u}$	2.554	321	48794	67.38	$3^{6}T_{1u}$	16.52	$5^{6}T_{2u}$				
13 Γ_{7u}	2.555	321	48833	29.12	$3^{6}T_{1u}$	28.55	$5 \ ^{6}T_{2u}$	17.22	$2^{6}A_{1u}$	14.76	$4^{6}T_{2u}$
$27 \Gamma_{8u}$	2.555	321	49003	40.36	$4^{6}T_{2u}$	17.26	$4^{6}T_{1u}$	15.24	$3^{6}E_{u}$	10.12	$3^{6}T_{1u}$
28 Γ ₈₄	2.557	321	49255	71.56	$4 {}^{6}T_{1u}$	13.82	$3^{6}T_{1u}$		u		10
$14 \Gamma_{7}$	2.557	321	49434	39.67	$4^{6}T_{1}$	28 60	$2^{6}A_{1}$	19.93	$5^{-6}T_{2}$		
$29 \Gamma_{\circ}$	2.557	321	49832	23.82	$4^{6}T_{1}^{1u}$	23.50	$2^{6}A_{1}$	18 43	$5^{6}T_{2}^{u}$	14 28	$3^{-6}E$
$16 \Gamma_{-}$	2.554	2021	50202	66.06	$\frac{1}{4} \frac{1}{6} T_{-}$	15.36	$\frac{2}{3} \frac{1}{6} \frac{1}{F}$	10.10	0 12u	17.20	$U L_u$
20 F	2.004 9.555	0⊿0 202	50252	55.00 55.94	+ 12u 16T	15.30 15 54	$3 L_u$ 3 6 F	1/71	3 6T		
30 I 8u	∠.000 9.555	ა∠ა ევი	00002 E0401	00.24 47.22	$4^{-1}2u$	10.04	$\mathcal{O} \stackrel{\circ}{=} E_u$	14.71	$3 I_{1u}$		
$10 \ 1_{7u}$	2.000	322	00401 50510	47.32	$4 \ 1_{2u}$	21.72	$3 I_{1u}$	11.43	$3 E_u$		
$16 \Gamma_{7u}$	2.555	321	50510	36.87	$3 \ ^{\circ}T_{1u}$	31.09	$3 \ ^{\circ}E_u$	12.37	$4 \ ^{\circ}T_{1u}$	10.1-	0.6.4
$31 \Gamma_{8u}$	2.555	320	50544	42.05	$3 \ ^{\circ}T_{1u}$	19.93	$3 \ ^{\circ}E_u$	18.11	$4 \ ^{\circ}T_{1u}$	12.17	$2 \ ^{\circ}A_{1u}$
7.6 -											
$4f'({}^{o}F_{1})$	/2,3/2,5/2,7/2	,9/2,11	/2)		C		c		c		
17 Γ_{6u}	0 F F F	321	51069	43.54	5 ${}^{6}T_{2u}$	23.35	4 ${}^{6}T_{1u}$	20.75	2 ${}^{6}A_{2u}$		
00 T	2.555	021			~ <i>2</i> u		~		~		~
$32\ 1\ 8u$	$\begin{array}{c} 2.555\\ 2.555\end{array}$	321	51942	23.87	$5 {}^{6}T_{2u}^{2u}$	18.71	$2^{6}A_{2u}$	16.29	$3 \ ^{6}T_{1u}$	15.12	$4^{6}T_{2u}$
$32\ 1\ 8u$	2.555 2.555	321	51942	$\begin{array}{c} 23.87\\ 11.65 \end{array}$	$5 {}^{6}T_{2u}$ $4 {}^{6}T_{1u}$	18.71	$2 {}^{6}A_{2u}$	16.29	$3 {}^{6}T_{1u}$	15.12	$4 {}^{6}T_{2u}$
$32 \Gamma_{8u}$ $33 \Gamma_{8u}$	2.555 2.555 2.554	321 321	51942 52392	$23.87 \\ 11.65 \\ 66.04$	$5 {}^{6}T_{2u} \\ 4 {}^{6}T_{1u} \\ 3 {}^{6}T_{1u}$	18.71 13.45	$2 {}^{6}A_{2u}$ $4 {}^{6}T_{1u}$	16.29	$3 {}^{6}T_{1u}$	15.12	$4 {}^{6}T_{2u}$

34 Tsu	2.555	322	52531	21.2	8	$4^{6}T_{2u}$	20.73	$2^{-6}A_{2m}$	20.22	$5^{-6}T_{2u}$	10.52	$3^{6}E_{u}$
18 Γ ₆	2.555	321	52666	42.23	3	$2^{6}A_{2u}$	29.79	$5^{6}T_{2u}$	15.76	$4^{6}T_{2u}$	10.01	5 L u
$18 \Gamma_{7}$	2556	321	52792	42.7	1	$4 {}^{6}T_{1}$	22.80	$2^{6}A_{1}$	13 94	$3^{6}T_{1}$		
$35 \Gamma_{0}$	2.555	320	52836	57.1	1	$5^{6}T_{0}$	12 22	$3^{6}E$	10.99	$2^{6}A_{0}$		
$36 \Gamma_{e}$	2.556	322	52916	36.3	7	$5 {}^{6}T_{2u}$	32.68	$4 {}^{6}T_{1}$	13.76	$\frac{2}{4} \frac{6}{5} T_{2}$		
$10 \Gamma_c$	2.555	321	53001	50.8	à	$5^{6}T_{0}$	23.00	$3^{6}E$	16.26	$\frac{1}{4} \frac{1}{6} T_0$		
$37 \Gamma_{\circ}$	2.555	301	53001	34.9	3 1	$4^{6}T_{-}$	17.00	$3^{6}T$	17.80	$\frac{1}{2} \frac{1}{2} \frac{1}$		
$20 \Gamma_{\circ}$	2.000 2.557	391	53066	63.6	т О	$\frac{1}{4} \frac{6}{T}$	10.99	$5^{6}T_{2}$	11.00	2 111u		
$10 \Gamma_{-}$	2.557	391	53070	71.0	a a	$\frac{1}{4} \frac{6}{T}$	10.22	0 12u				
$38 \Gamma_{0}$	2.556	391	53970	53.0	7	$5^{6}T_{2}$	25 73	$4^{6}T_{1}$				
$30 \pm 8u$	2.000	521	00219	00.0	1	5 12u	20.10	4 1 I u				
$4f^{7}(^{6}H_{5}$	/2,7/2,9/2	2,11/2,13/2	$(15/2)^{c}$									
$20 \Gamma_{7u}$	2.554	321	56062	54.5	6	5 ${}^{6}T_{1u}$	28.19	$4^{6}E_{u}$				
$39 \ \Gamma_{8u}$	2.555	320	56168	34.33	3	5 ${}^{6}T_{1u}$	21.18	$4^{6}E_{u}$	19.85	$6 {}^{6}T_{2u}$	19.24	$6 {}^{6}T_{1u}$
$40 \ \Gamma_{8u}$	2.554	320	56414	76.9	2	$5^{6}T_{1u}$	10.90	$4^{6}E_{u}$				
41 Γ_{8u}	2.554	321	56455	44.2	9	5 ${}^{6}T_{1u}$	23.74	$4^{6}E_{u}$	22.56	$6 {}^{6}T_{1u}$		
$21 \Gamma_{6u}$	2.554	321	56473	48.8	6	5 ${}^{6}T_{1u}$	17.72	$4^{6}E_{u}$	16.43	$6 {}^{6}T_{2u}$		
21 Γ_{7u}	2.554	321	56478	40.3	4	5 ${}^{6}T_{1u}$	36.74	$4^{6}E_{u}$	20.92	$6 {}^{6}T_{1u}$		
$42 \Gamma_{8u}$	2.554	321	56485	57.5	6	$4^{6}E_{u}$	27.08	$5 {}^{6}T_{1u}$				
22 $\Gamma_{7_{24}}$	2.555	321	56565	39.9	5	$6 {}^{6}T_{2u}$	36.11	$6 {}^{6}T_{1u}$	14.25	$4^{6}E_{u}$		
43 Γ ₈₄	2.554	320	56663	68.0	2	$5 {}^{6}T_{1u}$	11.72	$6 {}^{6}T_{1u}$		u		
22 Ten	2.554	320	56674	35.3	7	$4^{6}E_{a}$	33.11	$5 {}^{6}T_{1u}$	18.52	$6^{-6}T_{1u}$		
$23 \Gamma_{6u}$	2.555	322	56707	65.9	3	$6 {}^{6}T_{1w}$	22.27	$4^{6}E_{u}$	10.02	• -1u		
$23 \Gamma_{7}$	2.554	321	56710	84.6	3	$5 {}^{6}T_{1}$		- <i></i> u				
$44 \Gamma_{0}$	2.551	320	56732	58.5	5	$6 {}^{6}T_{1}$	1650	$6^{-6}T_{2}$	14 40	$4^{6}E$		
$45 \Gamma_{\circ}$	2.555	321	56788	37.8	5	$6 {}^{6}T_{1}$	30.05	$4 \ {}^{6}E$	12.95	$6 {}^{6}T_{2}$		
$46 \Gamma_{0}$	2.000 2.556	391	56802	48.9	2 2	$6 {}^{6}T_{1}$	97.45	$6^{6}T_{2}$	12.50	0 1 2 u		
$94 \Gamma_{-}$	2.550 2.555	321	56900	75.1	0 0	$6 {}^{6}T_{-}$	12 00	$4^{6}E$				
$24 \Gamma_{7u}$ $94 \Gamma_{-}$	2.555	201	56000	74.1	3 1	$6 {}^{6}T_{-}$	14.05	$^{4}D_{u}^{6}F$				
47Γ	2.000	201	57059	76.9	н с	$6 \frac{6}{T}$	14.00	4 L_u				
41 1 8u	2.007	201	57050	70.J	1	$0 1_{2u}$	22.00	c 677				
40 I 8u	2.007	021 201	57115	51.6	I F	$0 1_{2u}$	33.00	$0 I_{1u}$				
$25 \ 1 \ 6u$	2.557	321	57120	79.0	р о	$0 1_{2u}$	07.00	e 677				
$49 \Gamma_{8u}$	2.557	321	57140	57.73	2	$6 T_{2u}$	27.98	$6 \ ^{\circ}T_{1u}$				
$20 \ 1 \ 7u$	2.557	521	57104	40.9	J	$0 I_{1u}$	42.91	$0 1_{2u}$				
				Eu ³⁺ -doped	Ba	${}_{1}F_{2}$						
1 £6 (7 E)											
$4J^{*}(^{*}F_{0})$	-6)	40.9	0	27.2	4	1.7T	22 60	1.7T	94.90	174		
$1 A_{1g}$	2.303	402	0	37,33 27,2	4 c	$1 \ 12g$ 17T	32.00	$1 I_{1g}$ 17T	24.29	$1 A_{2g}$ 174		
$1 I_{1g}$	2.303	402	303	37,31	0	$1 \ 1 \ 2g$	29.90	$1 \ 1_{1g}$	27.80	$1^{-1}A_{2g}$		
$1 \ T_{2g}$	2.362	403	902	40.4	2	$1^{+}A_{2g}$ 1 777	37.51	$1^{-1}I_{2g}$ $1^{-7}T$	12.52	$1 \cdot I_{1g}$		
$1 E_g$	2.364	401	1297	62.8	1	$1^{-7}T_{1g}$	33.50	$1^{-1}T_{2g}$	07 17	174		
$2 T_{1g}$	2.363	402	1980	39.4	2	$1^{+}T_{1g}$	30.83	$1 T_{2g}$	27.17	$1 A_{2g}$		
$2 T_{2g}$	2.363	402	2055	60.0	-	$1^{-1}T_{1g}$	25.21	$1^{-1}T_{2g}$	12.20	$1 A_{2g}$		
$1 A_{2g}$	2.364	401	2238	49.6	D C	$1 T_{1g}$	47.81	$1 T_{2g}$ 1 7T				
$2 A_{1g}$	2.362	403	2640	56.4	0	$1^{+}A_{2g}$	41.43	$1 \ T_{1g}$	10.10	174		
$3 T_{1g}$	2.363	403	3069	45.7	U	$1 T_{2g}$ $1 7 T_{2g}$	33.81	$1 \ T_{1g}$	18.40	$1'A_{2g}$		
$3 T_{2g}$	2.364	400	3277	77.9	8	$1 T_{1g}$	17.42	$1 T_{2g}$				
$2 E_g$	2.364	402	3341	80.0	U	$1 ' T_{2g}$	17.96	$1 'T_{1g}$	25	. 7 .		
$4 T_{2g}$	2.363	403	4124	36.6	4	$1 T_{1g}$	35.17	$1 T_{2g}$	25.84	$1 A_{2g}$		
$4 T_{1g}$	2.363	403	4320	72.0	0	$1 T_{2g}$	14.27	$1 \ T_{1g}$	11.38	$1'A_{2g}$		
$3 E_g$	2.364	401	4490	49.1	9	$1 T_{2g}$	48.48	$1 \ _{T_{1g}}$				
$5 T_{1g}$	2.364	401	4490	52.4	2	$1 T_{2g}$	45.18	$1 \ T_{1g}$		7		
$3 A_{1g}$	2.363	403	5471	58.3	3	$1 T_{2g}$	22.06	$1 \ _{2}^{7} T_{1g}$	16.37	$1 \ _{2}^{7}A_{2g}$		
$6 T_{1g}$	2.363	403	5515	53.1	0	$1 T_{2g}$	31.32	$1 \ _{-}^{7} T_{1g}$	12.33	$1 \ A_{2g}$		
$5 T_{2g}$	2.363	402	5538	46.1	9	$1 T_{1g}$	40.41	$1 \ _{-}^{7} T_{2g}$	10.14	$1 {}^{7}A_{2g}$		
$4 E_g$	2.364	401	5709	64.6	0	$1 {}^{7}_{-} T_{1g}$	32.07	$1 \ ^{7}T_{2g}$				
$6 T_{2g}$	2.364	401	5713	58.4	9	$1 {}^{7}_{-} T_{1g}$	38.16	$1 \ ^{7}T_{2g}$				
$2 A_{2g}$	2.364	401	5720	49.23	3	$1 \ ^{7}T_{2g}$	47.42	$1 {\ }^{7}T_{1g}$				
$4f^6(^5D_{c})$	ر ما											
$4 A_1$	2.362	400	20083	55 5	8	$1^{5}T_{2}$	38.63	$1^{-5}E$				
• • • • 1 g	2.002	100	20000	00.0	~	2g	00.00	- <i>Lg</i>				

7 T	9 269	400	20802	55 6 4	$1 {}^{5}T$	20.15	1 ⁵ <i>F</i>				
	2.302	400	20093	55.04	1 5 E	39.10	1 5T				
$\mathcal{D} \mathcal{L}_g$	2.302	400	22010	04.00	$1 D_g$ 15T	40.95	$1 \ 12g$ $1 \ 5E$				
(1_{2g})	2.302	400	22020	00.00	15_{2g}	29.93	$1 L_g$				
$3 A_{2g}$	2.301	400	25196	95.64	$1 \ ^{\circ}E_g$	44.05	- 5 m				
$8 T_{2g}$	2.362	400	25264	50.80	$1 {}^{5}T_{2g}$	44.95	$1 \ ^{3}E_{g}$				
$8 T_{1g}$	2.362	400	25272	87.09	$1 \ {}^{5}T_{2g}$						
1 f6 (5 D	5 T	5σ									
$4J (D_4)$	$, L_{6-10}, $	G_{2-6}	00040	04 77	1.500	10 70	0.5 17	14.00	154	10 71	o. 577
${}^{0}E_{g}$	2.360	399	28248	34.77	$1 \ ^{-}I_{1g}$	19.72	$2 E_g$	14.03	$1 \ A_{1g}$	12.71	$2 \ ^{\circ}I_{1g}$
9 T_{2g}	2.360	399	28250	35.83	$1 \ T_{1g}$	25.18	$2 \ ^{\circ}E_{g}$	10.14	$2 \ T_{1g}$		
$4 A_{2g}$	2.360	399	28271	40.22	$1 {}^{5}T_{1g}$	33.61	$2 {}^{5}E_{g}$	12.15	$3 {}^{5}E_{g}$		
9 T_{1g}	2.360	398	28485	33.47	$2 E_g$	26.06	$1 \ _{5}^{3}T_{1g}$	21.43	$2 \ {}^{s}T_{2g}$		
$10 \ T_{2g}$	2.360	399	28493	49.35	$2 \ _{2}^{3}T_{2g}$	11.89	$1 \ _{2}^{5}T_{2g}$		٣		-
$7 E_g$	2.360	398	28606	38.89	$2 \ ^{\circ}T_{2g}$	13.74	$1 \ ^{\circ}T_{2g}$	11.31	$1 {}^{\circ}E_g$	10.69	$2 \ ^{\circ}E_{g}$
$10 \ T_{1g}$	2.361	399	28617	36.20	$1 {}^{5}T_{1g}$	22.34	$2 {}^{5}T_{2g}$				
$5 A_{1g}$	2.360	398	28619	57.38	$2^{-5}E_g$	15.58	$2^{-5}T_{2g}$				
$5 A_{2g}$	2.362	400	28739	33.52	$3^{-5}E_{g}$	31.37	$2^{5}T_{1g}$	14.98	$2 {}^5E_g$		
$11 \ T_{2g}$	2.361	398	28745	19.77	$2^{-5}E_{g}$	15.97	$2^{5}T_{2g}$	14.21	$2^{5}T_{1g}$	12.44	$1 {}^{5}T_{1g}$
				10.21	$3 {}^{5}E_{q}$						
$12 T_{2q}$	2.361	401	28795	33.33	$1 {}^{5}T_{1q}$	15.04	$3 {}^{5}E_{q}$	13.65	$1 {}^{5}A_{1a}$	13.14	$2^{5}T_{1a}$
$8 E_a$	2.362	400	28937	32.88	$2 {}^{5}T_{1a}$	16.09	$3 {}^{5}E_{q}$	13.90	$1 {}^{5}T_{1q}$	10.80	$2 {}^{5}A_{1a}$
13 \tilde{T}_{2a}	2.363	400	28984	25.27	$3 {}^{5}T_{2a}$	18.17	$1 {}^{5}T_{2a}$	14.06	$3 {}^{5}T_{1a}$	11.46	$4^{5}T_{2a}$
$11 T_{1a}^{-g}$	2.362	397	29013	30.07	$2 {}^{5}T_{1a}^{-g}$	23.97	$3 {}^{5}E_{a}$	12.12	$1 {}^{5}T_{1a}$	11.36	$3{}^{5}T_{2a}$
$12 T_{1}$	2.362	398	29085	20.73	$4 {}^{5}T_{2}$	15.04	$3 {}^{5}T_{2}$	11.84	$3 {}^{5}T_{1}$	11 15	$1 {}^{5}T_{2}$
12 1 1g	2.002	000	20000	10.69	$1 \frac{5}{E}$	10.24	$4 {}^{5}E$	11.01	5 1 1g	11.10	1 1 2g
$14 T_{-}$	9 369	400	200.01	26.86	$n^{5}T$	16.25	$\frac{1}{1} \frac{D_g}{T}$	13.00	$9.5T_{-}$		
$14 \ 12g$ 12 T.	2.302	400	20001	20.00	$\frac{2}{15T}$	15.67	1 12g 95 F	10.00	2^{-12g} 2^{5T}		
	2.301	207	29110	44.07	$1 \ 1 \ 1 \ 1 \ 1 \ 5 \ E$	10.07	$\frac{2}{15T}$	10.29	4 12g 45T	10 /1	15E
$0 A_{1g}$	2.303	397 405	29125	44.02	$1 L_g$ $\sqrt{5T}$	29.00	$1 \ 12g$	10.42	$4 I_{2g}$ 15E	10.41	4 L_g
(A_{1g})	2.303	405	29190	40.10	$4^{-1}2g$	23.80	$4^{-}E_{g}$ 1.5 D	10.75	$1^{-}E_g$	15 54	1 5 4
$9 E_g$	2.362	398	29242	29.69	$1 \ ^{\circ}T_{2g}$	21.41	$1 \ ^{\circ}E_g$	18.51	$2 \ ^{\circ}E_g$	15.74	$1 \ ^{\circ}A_{1g}$
$14 T_{1g}$	2.362	399	29266	27.38	$2 \ ^{5}T_{2g}$	19.14	$1 \ ^{o}T_{2g}$	18.14	$1 E_g$		
$10 E_g$	2.361	401	29267	32.15	$2 \ _{z}^{3}T_{2g}$	11.76	$2 E_g$	11.42	$1 {}^{_{2}}A_{1g}$		E .
$15 \ T_{2g}$	2.363	400	29298	17.69	$1 \ _{2}^{3}T_{2g}$	14.74	$3 \ ^{5}T_{1g}$	13.86	$2^{-5}T_{1g}$	10.81	$2^{-5}A_{1g}$
				10.68	$2 \ ^{5}T_{2g}$		_		_		_
$15 \ T_{1g}$	2.361	401	29318	29.07	$1 {}^{5}T_{1g}$	16.35	$2 {}^{5}T_{2g}$	12.78	$2 {}^{5}T_{1g}$	10.26	$3^{5}E_{g}$
$16 \ T_{2g}$	2.362	400	29350	21.66	$2^{-5}T_{2g}$	13.36	$1 {}^{5}A_{1g}$	10.96	$2 {}^{5}A_{1g}$	10.47	$1 {}^{5}T_{1g}$
$6 A_{2g}$	2.362	401	29420	54.86	$3 {}^{5}T_{1g}$	27.52	$4 {}^5E_g$	11.48	$2 {}^{5}T_{1g}$		
$17 \ T_{2g}$	2.364	403	29491	43.76	$3 {}^{5}T_{2g}$	27.68	$4 {}^{5}T_{2g}$				
16 T_{1q}	2.363	400	29627	28.76	$2^{5}T_{1q}$	19.92	$4 {}^5T_{2q}$	16.66	$3 {}^{5}T_{2q}$	15.72	$4 {}^5E_q$
$11 E_q$	2.364	401	29637	31.12	$4 {}^{5}E_{q}$	23.39	$4 {}^{5}T_{2q}$	13.24	$3 {}^{5}T_{2q}$	11.70	$3 {}^{5}T_{1q}$
17 T_{1q}	2.362	402	29753	37.67	$2 {}^{5}T_{1q}$	25.50	$3 {}^{5}T_{1q}$		5		5
$8 A_{1a}$	2.361	400	29831	68.36	$3 {}^{5}E_{a}$	10.20	$3 {}^{5}T_{2a}$				
$12 E_a$	2.362	401	29901	34.30	$3 {}^{5}E_{a}^{g}$	28.43	$2^{5}A_{1a}$				
$18 T_{2a}$	2.362	399	30084	20.95	$3 {}^{5}T_{1a}^{9}$	14.36	$2^{5}T_{1a}$	13.16	$4^{5}T_{2a}$	11.78	$1^{5}T_{1a}$
$13 E_{a}^{2g}$	2.362	400	30093	29.26	$3{}^{5}T_{2a}$	18.75	$1 {}^{5}T_{1a}$	10.53	$1^{5}A_{1a}^{2g}$	10.03	$2^{5}A_{1a}^{1g}$
$18 T_{1}$	2.363	400	30175	25 49	$4 {}^{5}T_{2}$	20.77	$3 {}^{5}T_{2}$	11 34	$2^{5}T_{2}$	10.00	_ 111g
$10 T_{1g}$ 10 T ₂	2.000	400	30187	20.10	$1^{5}E$	17 17	$3 \frac{5}{T_1}$	16 65	$1^{5}A_{1}$	10.66	$1^{5}T_{1}$
$7 4_{\circ}$	2.001	300	30200	35.50	$1 \frac{D_g}{1 5T_1}$	3/16	$2^{5}F$	10.00	1 111g	10.00	1 1 1g
0 A	2.301	200	20277	50.50	1^{-1}	14 52	5 Dg	12 60	2 ⁵ E		
$9 A_{1g}$ 20 T	2.301	200	30277 20219	20.77	2 12g 2 5T	14.00	$5 L_g$ 1 5 T	11 79	$5 E_g$ 5 F		
$20 \ I_{2g}$ 10 T	2.301	399 409	30312 20297	29.11	$2 \ 1_{2g}$ $3 \ 5T$	21.00 12.17	$1 I_{1g}$ 0 5 E	11.72	$4 E_g$		
$19 I_{1g}$	2.302	402	30327	33.14	2^{-1}_{2g}	13.17	$2^{-}E_{g}$	11.85	$4^{-1} I_{2g}$		
$14 E_g$	2.362	401	30387	23.47	$3 \ 1_{2g}$	12.74	$4 \ ^{\circ}E_{g}$	10.69	$1 \ ^{\circ} T_{1g}$	10.00	1 5 m
$21 \ T_{2g}$	2.303	402	30432	20.73	$4 \ 12g$	21.10	$3 T_{1g}$	14.66	$4 \ \ E_g$	10.90	$1 \ T_{1g}$
20 T_{1g}	2.362	401	30648	42.62	$3 \ E_g$	36.46	$2 \ ^{\circ}T_{1g}$	1010	o 5 🕶		
22 T_{2g}	2.362	401	30703	26.59	$2 {}^{\circ}A_{1g}$	25.03	$2 \ ^{5}T_{1g}$	16.19	$3 E_g$		
$21 T_{1g}$	2.363	401	31007	34.93	$3 \ _{T_{2g}}^{3}$	25.86	$3 \ _{-}^{3}T_{1g}$	15.35	4 " E_g		
$15 E_g$	2.363	402	31051	39.10	$3 \ _{2}^{\circ}T_{1g}$	22.68	$4 \ _{2}^{\circ}T_{2g}$				
$10 \ A_{1g}$	2.363	401	31080	59.08	$3 \ _{2}^{5}T_{2g}$	21.94	$4 {}^{5}E_{g}$		-		
$22 T_{1g}$	2.363	402	31190	51.24	$4 {}^{5}T_{2g}$	25.02	$3^{5}_{2}T_{2g}$	17.45	$3 {}^{5}T_{1g}$		
$23 T_{2g}$	2.363	402	31245	40.44	$4 {}^5T_{2g}$	27.18	$3 \ {}^5T_{1g}$	19.85	$4 {}^5E_g$		
$8 A_{2g}$	2.363	401	31268	65.55	$4 {}^5E_g$	29.29	$3\ {}^{5}T_{1g}$				
9 A_{2g}	2.361	401	31703	44.96	$3 {}^{5}E_{g}$	37.65	$2^{-5}T_{1g}$				

24 T_{2g} 16 E_g	2.362 2.361	$401 \\ 401 \\ 402$	31727 31741	$35.20 \\ 35.15 \\ 42.21$	$2 {}^{5}T_{1g}$ $2 {}^{5}T_{1g}$	29.29 21.20	$3 {}^{5}E_{g}$ $3 {}^{5}E_{g}$	$\begin{array}{c} 13.87\\ 20.54 \end{array}$	${2 \ }^{5}A_{1g} \ {2 \ }^{5}A_{1g}$		
25 T_{2g} 23 T_{1g} 11 A_{1z}	2.363 2.362 2.363	$403 \\ 402 \\ 404$	32097 32114 32305	49.91 49.04 39.00	$3 {}^{5}T_{2g}$ $3 {}^{5}T_{1g}$ $4 {}^{5}T_{2z}$	25.18 32.20 37.50	$3 {}^{5}T_{1g}$ $3 {}^{5}T_{2g}$ $4 {}^{5}E_{-}$	17 69	$3^{5}T_{2}$		
$\begin{array}{c} 24 \ T_{1g} \\ 17 \ E_g \end{array}$	2.363 2.363	402 401	32334 32351	$35.21 \\ 33.10$	$4 {}^{5}E_{g}$ $4 {}^{5}T_{2g}$	$34.04 \\ 32.75$	$4 {}^{5}T_{2g}$ $4 {}^{5}E_{g}$	19.27 24.44	$3 {}^{5}T_{1g}$ $3 {}^{5}T_{1g}$ $3 {}^{5}T_{1g}$		
$26 \ T_{2g}$	2.363	402	32374	55.09	$4 {}^{5}T_{2g}$	19.70	$4 {}^5E_g$	13.89	$3 \ {}^{5}T_{2g}$	10.05	$3 \ {}^{5}T_{1g}$

^a Absorption oscillator strengths for 1 $\Gamma_{6u,8u,7u} \rightarrow i$ transitions are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.550$ Å; the reference value is $f_{ref}=1.688\times10^{-2}$. Emission oscillator strengths for 1 $\Gamma_{8g}\rightarrow1$ $\Gamma_{6u},1$ $\Gamma_{8u},1$ Γ_{7u} and radiative emission lifetime are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.550$ Å; the reference value is $f_{ref}=2.227\times10^{-3}$.

^b The analyses of the wave functions have been done at $d_{\text{Eu}-\text{F}} = 2.550$ Å $(4f^7)$, 2.550 Å $(4f^6(5d^1 + ITE^1_{a_{1g}}))$, 2.350 Å $(4f^6)$. ^c C.f. Table S7.

 $^{\rm d}$ C.f. Table S8.

^e Low-spin (S = 5/2) wave functions of the $4f^6({}^7F_J)(5dt_{2g}^1 + ITE_{a_{1g}}^1)$ configurations have not been included in the spin-orbit calculations.

TABLE S12: Spectroscopic constants and analyses of the spin-orbit wave functions of the ground and lowest lying excited states of Eu^{2+} and Eu^{3+} -doped CaS octahedral defects. Eu-S bond distances $(d_{\operatorname{Eu}-\operatorname{S},e} \text{ in } \operatorname{Å})$, EuS_6 breathing mode harmonic vibrational frequencies $(\omega_{a_{1g}} \text{ in } \operatorname{cm}^{-1})$, minimum-to-minimum energy differences $(\operatorname{T}_e \text{ in } \operatorname{cm}^{-1})$, and relative absorption and emission oscillator strengths $(f_i^{abs}/f_{ref} \text{ and } f_i^{emi}/f_{ref})$ are given. Calculated radiative emission lifetime for the $4f^6(^7F_J)5de_g^1 - 1$ Γ_{8g} excited state is 0.437 μs . Local distortion around the Eu^{2+} impurity, relative to experimental crystal structure $d_{Ca-F} = 2.855$ Å, is $d_{\operatorname{Eu}-\operatorname{S},e}(1\Gamma_{6u}) - d_{\operatorname{Ca}-\operatorname{S}} = +0.021$; ionic radii mismatch is +0.13 Å³¹. See Fig. 3, S3 and text for details.

State	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e	f_i^{abs}/f_{ref} a	f_i^{emi}/f_{ref} a		v	weights	of terms	larger t	han 10%	Ъ	
					Eu^{2+}	-doned	CaS						
					Eu	-uopeu	Cab						
$4f^{7}(^{8}S_{7}$	(a) c												
$1 \Gamma_{e_n}$	2.876	286	0		1.00	97.68	$1^{8}A_{1a}$						
$1 \Gamma_{e_u}$	2.876	$\frac{1}{286}$	Ő		0.34	97.69	$1^{8}A_{1a}$						
$1 \Gamma_{7u}$	2.876	286	0		0.06	97.68	$1 {}^{8}A_{1g}$						
					$4f^{6}(5d+6$	$s)^1$ exci	ted state	s					
4 a6 (7 m	\	<i>a</i> .		d									
$4f^{\circ}(F_J)$	$)5dt_{2g}^{1}$ High	-Spin	coupling	5			- 8-		- 8 -		- 8-		
$1 \Gamma_{8g}$	2.849	283	17309	1.00		34.99	$1 \ ^{\circ}T_{1g}$	30.29	$1 E_g$	16.99	$1 \ ^{\circ}T_{2g}$	10.04	a 8 m
$2 \Gamma_{8g}$	2.849	284	17710	1.11		29.71	$1 \ ^{\circ}T_{2g}$	27.02	$1 \ ^{\circ}E_{g}$	26.24	$1 \ ^{\circ}T_{1g}$	10.94	$2 \ ^{\circ}T_{1g}$
Γ_{7g}	2.849	283	18010	1.74		46.09	$1 \ ^{\circ}T_{2g}$	26.16	$2 \ ^{\circ}T_{1g}$	13.32	$1 \ ^{\circ}E_{g}$		
$3\Gamma_{8g}$	2.849	284	18252	1.30		40.05	$1 {}^{\circ}T_{2g}$	30.26	$1 \ ^{\circ}E_{g}$	12.91	$1 \ {}^{o}T_{1g}$		
$1 \Gamma_{6g}$	2.849	284	18269	0.72		41.49	$1 \overset{\circ}{} E_g$	36.98	$1 {}^{\circ}T_{1g}$		°		
$2 \Gamma_{7g}$	2.849	283	18582	1.99		39.05	$1 \ T_{2g}$	26.84	$2 \ ^{\circ}T_{1g}$	18.65	$1 \ E_g$		e
$4 \Gamma_{8g}$	2.849	283	19003	2.18		34.97	$1 \ ^{\circ}T_{2g}$	20.15	$1 \ ^{\circ}T_{1g}$	18.45	$1 \ ^{\circ}E_{g}$	17.33	$2 \ ^{\circ}T_{1g}$
$2 \Gamma_{6g}$	2.849	283	19090	0.28		46.65	$1 \ ^{\circ}T_{1g}$	15.62	$2 \ ^{\circ}T_{1g}$	15.24	$1 \ ^{\circ}E_{g}$	12.02	$1 \ ^{\circ}T_{2g}$
$5 \Gamma_{8g}$	2.848	282	19404	6.10		35.53	$2 {}^{8}T_{1g}$	29.36	$1 {}^{8}T_{1g}$	24.36	$1 {}^{8}_{0}T_{2g}$		0
$6 \Gamma_{8g}$	2.849	283	19799	2.47		33.03	$1 {}^{8}T_{1g}$	19.87	$1 \ ^{\circ}E_{g}$	14.89	$2 {}^{8}T_{1g}$	12.09	$1 \ {}^{8}T_{2g}$
$3 \Gamma_{7g}$	2.848	283	19805	1.79		31.79	$2 {}^{8}T_{1g}$	16.56	$2 {}^{8}T_{2g}$	13.38	$2 \overset{8}{} E_g$		
$7 \Gamma_{8g}$	2.848	283	19883	1.73		33.48	$1 {}^{8}T_{2g}$	16.40	$2 \ ^{8}E_{g}$	10.60	$2 {}^{8}T_{1g}$		
$3 \Gamma_{6g}$	2.847	284	19938	0.16		34.28	$2 {}^{8}E_{g}$	21.03	$3 {}^{8}T_{1g}$	14.77	$2 {}^{8}T_{2g}$	11.90	$1 {}^{8}T_{2g}$
$8 \Gamma_{8g}$	2.848	282	20109	2.68		19.25	$1 {}^{8}T_{1g}$	14.53	$1 {}^{8}T_{2g}$	12.83	$2 {}^{8}T_{1g}$	12.46	$2^{-8}E_{g}$
						10.26	$3 \ ^{8}T_{1g}$						
$4 \Gamma_{7g}$	2.848	284	20143	2.14		28.04	$1 {}^{8}E_{g}$	17.33	$2^{8}E_{g}$	14.54	$2^{-8}T_{1g}$	10.43	$3 \ ^{8}T_{1g}$
$4 \Gamma_{6g}$	2.848	282	20269	1.66		37.87	$2^{8}T_{1g}$	31.36	$1 \ ^{8}T_{2g}$	17.16	$1 {\ }^{8}T_{1g}$		
$9 \Gamma_{8g}$	2.848	282	20487	1.63		21.21	$2^{8}E_{g}$	19.16	$1^{8}E_{g}$	14.94	$1 \ {}^{8}T_{2g}$	14.71	$2^{-8}T_{1g}$
						13.61	$1 {}^{8}T_{1g}$						
$5 \Gamma_{7g}$	2.848	282	20685	1.28		45.46	$1 {}^{8}T_{1g}$	27.90	$1 {}^{8}T_{2g}$				
$5 \Gamma_{6g}$	2.848	283	20713	1.01		26.70	$1 {}^{8}T_{2g}$	19.98	$2^{8}T_{2g}$	15.38	$2^{8}T_{1g}$		
$10 \Gamma_{8q}$	2.848	283	20768	0.07		37.44	$2^{8}E_{q}$	21.83	$2^{8}T_{2a}$	10.04	$3 {}^{8}T_{1a}$		
$11 \Gamma_{8q}$	2.848	282	20993	2.47		21.58	$2^{8}E_{q}$	19.02	$2^{8}T_{1a}$	18.78	$1 {}^{8}T_{1a}$	15.35	$1^{8}E_{q}$
5						10.98	$3 \ ^{8}T_{1q}$		5		0		0
$6 \Gamma_{7a}$	2.848	283	21014	2.56		40.97	$1 {}^{8}T_{1a}$	21.79	$2^{-8}T_{1a}$	16.30	$1 {}^{8}T_{2a}$	14.62	$1^{-8}E_{a}$
$12 \Gamma_{8a}$	2.848	285	21024	3.34		21.65	$1 {}^{8}T_{2a}$	20.86	$1^{8}E_{a}^{5}$	19.74	$2^{8}T_{1a}$	18.94	$2^{8}E_{a}$
7 Γ _{7α}	2.848	283	21231	0.53		24.51	$1 {}^{8}T_{2a}^{-s}$	18.99	$3 {}^{8}T_{1a}^{3}$	10.46	$2^{8}T_{1a}^{-3}$		5
$6 \Gamma_{6a}$	2.848	282	21238	1.34		30.34	$1 {}^{8}T_{1a}$	17.93	$1 {}^{8}T_{2a}^{1g}$	13.64	$2^{8}T_{1a}^{1g}$	11.17	$2^{-8}T_{2a}$
$7 \Gamma_{6a}$	2.848	282	21610	5.12		32.89	$1 {}^{8}T_{1a}$	25.07	$2^{8}T_{1a}^{-g}$	17.06	$1 {}^{8}T_{2a}^{1g}$	15.40	$1 {}^{8}E_{a}^{2}$
$13 \Gamma_{8a}$	2.848	282	21646	5.04		23.39	$1 {}^{8}T_{1a}$	15.34	$2^{8}T_{1a}^{1g}$	12.41	$2 {}^{8}E_{a}^{5}$	12.30	$1 {}^{8}T_{2a}^{9}$
0g						11.97	$1 {}^{8}E_{a}^{19}$		19		9		29
$14 \Gamma_{8a}$	2.848	282	21696	1.65		23.77	$1 {}^{8}T_{2a}^{-g}$	21.52	$2^{-8}E_{a}$	17.47	$1^{8}E_{a}$	11.56	$2^{-8}T_{2a}$
15 Γsc	2.848	283	21781	1.54		28.30	$1 \frac{8}{T_{2a}}$	17.17	$1 {}^{8}T_{1a}$	11.63	$2 {}^{8}E_{a}^{-9}$	11.12	$2^{8}T_{1c}$
$8 \Gamma_{7a}$	2.847	284	21799	0.29		27.01	$2 {}^{8}E_{a}$	10.73	$3 \ {}^{8}T_{1a}$		— <i>9</i>		- 19
16 Γ ₈ -	2.848	283	21823	2.08		19.60	$1 {}^{8}T_{2a}$	12.42	$1 {}^{8}T_{1a}$	11.19	$2^{-8}E_{\pi}$	11.07	$1^{-8}E_{a}$
oy				2.00		10.65	$2^{8}T_{1a}$		1 <i>y</i>		_ <i>y</i>		_ <i>y</i>
$9 \Gamma_{7a}$	2.849	283	22246	2.25		36.41	$2^{8}T_{1a}$	15.66	$3^{-8}T_{1a}$	11.64	$1^{-8}T_{2a}$	10.53	$1^{-8}T_{1c}$
17 Γο ₋	2.848	$\frac{200}{283}$	22256	3.99		29.88	$\frac{2}{2} \frac{8}{T_{1a}}$	15.21	$2^{8}T_{2a}$	14 16	$3 {}^{8}T_{1z}$	11 07	$\frac{1}{1} \frac{8}{T_{1c}}$
8 Γ _{6α}	2.848	$\frac{200}{283}$	22358	0.45		34.30	$\frac{1}{2} \frac{8}{7_{2a}}$	10.51	$\frac{2}{3} \frac{1}{8} T_{1,2}^{y}$		5 ± 19		± ±19
$9 \Gamma_{6a}$	2.848	283	22399	0.02		40.80	$1 {}^{8}T_{2a}$	27.20	$2 {}^{8}E_{a}$				

						°		°		°		°
$18 \Gamma_{8g}$	2.848	282	22449	6.99	34.93	$2 \ ^{\circ}T_{1g}$	21.38	$2 \ {}^{\circ}T_{2g}$	18.50	$1 {}^{\circ}T_{1g}$	10.13	$3 \ ^{\circ}T_{1g}$
$19 \ \Gamma_{8g}$	2.848	282	22564	0.09	23.06	$1 {}^{8}T_{1g}$	23.04	$1 \ {}^{8}T_{2g}$	16.27	$2 \ ^{\circ}E_{g}$	11.16	$1 \ ^{8}E_{g}$
$10 \ \Gamma_{7g}$	2.848	283	22700	0.02	33.12	$1 {}^{8}T_{1g}$	18.49	$1 {}^{8}T_{2g}$	14.29	$2^{-8}T_{1g}$	10.95	$1 {\ }^{8}E_{g}$
$20 \Gamma_{8a}$	2.848	283	22860	9.55	39.66	$2^{8}T_{1a}$	20.47	$1 {}^{8}T_{1a}$	11.33	$1^{8}E_{a}$		
$10 \Gamma_{6a}$	2.848	283	22881	4.21	49.68	$2^{8}T_{1a}$	16.60	$1 {}^{8}T_{2a}$		5		
21 Гел	2.848	283	23096	8 96	41.57	$2^{8}T_{1a}$	22.74	$2^{8}T_{2a}^{-g}$	16 90	$1^{-8}T_{2a}$		
21 Год 11 Го	2.010	200	23056	0.83	38 11	$\frac{2}{2} \frac{1}{8} \frac{1}{T_{a}}$	13.86	$\frac{2}{2} \frac{1}{8} \frac{2g}{F}$	19.64	$2^{8}T$	10 59	$1^{-8}T_{2}$
11 1 6g 99 F	2.040	200	20200	0.00	19 99	$\frac{2}{9} \frac{12g}{7}$	16.00	$\frac{2}{2} \frac{L_g}{2}$	12.04	2 1 1g	10.05	1 12g
22 1 8g	2.040	200	20004	2.55	42.00	$2 1_{2g}$	15.02	$3 I_{1g}$	11.07	1.870		
$23 \ 1 \ 8g$	2.848	282	23438	0.74	53.39	$2 \ 1_{2g}$	15.30	$3 \ 1_{1g}$	11.97	$1 \ 1_{1g}$		
$11\Gamma_{7g}$	2.848	282	23444	0.10	58.05	$2 \[]{}^{\circ}T_{2g}$	10.04	ΓT_{1g}				
$12 \Gamma_{6g}$	2.848	283	23516	1.91	37.50	$3 \ ^{\circ}T_{1g}$	25.41	$2 \ ^{\circ}T_{2g}$				
$24 \Gamma_{8g}$	2.848	283	23763	0.75	59.75	$3 {}^{8}T_{1g}$	19.70	$2 \ ^{8}T_{2g}$				
$12 \Gamma_{7g}$	2.848	283	23766	0.49	62.66	$3 \ ^{8}T_{1g}$						
$25 \ \Gamma_{8q}$	2.848	282	24028	0.21	37.07	$2^{8}T_{2q}$	16.76	$2^{-8}E_{q}$				
$13 \Gamma_{7a}$	2.847	283	24153	0.01	54.92	$2^{8}T_{2a}$	10.45	$2^{8}E_{a}$				
26 Fsg	2.849	284	24185	0.01	68.88	$1 {}^{6}T_{1a}$	21.51	$2^{8}T_{2a}^{9}$				
$13 \Gamma_{e}$	2 847	283	24624	0.34	48 23	$3^{8}T_{1}$	34 85	$2^{8}T_{2}$				
10 Г 0 <i>у</i> 28 Г.	2.847	200	24685	1.05	61 40	$3^{8}T_{-}$	15 00	$2^{8}T_{2}^{2g}$	14 54	$2^{8}F$		
2018g 14Γ	2.047	200	24000	0.21	40.02	$\frac{5 1_{1g}}{28T}$	12.04	$2^{-1}2g$ $2^{-8}T$	14.04	$2 D_g$		
14 17g	2.041	200	24940	0.31	49.03	$3 I_{1g}$	15.04	2 1 _{2g}				
$29 T_{8g}$	2.847	283	24982	0.68	52.97	$3 \ ^{\circ}I_{1g}$						
$14 \Gamma_{6g}$	2.847	283	24994	0.38	53.88	$3 \ ^{\circ}T_{1g}$						
6 7 -	- 1	_										
$4f^{\circ}(F_J)$	$5dt_{2g}^1$ Low	-Spin o	coupling ^a			0		0				
$15 \Gamma_{7g}$	2.849	283	25411	0.01	78.49	$1 {}^{o}T_{1g}$	11.03	$1 {}^{o}T_{2g}$				
$30 \ \Gamma_{8g}$	2.849	283	25414	0.01	80.32	$1 {}^{6}T_{1g}$						
$16 \Gamma_{7g}$	2.846	283	26839	0.01	38.70	$2^{6}T_{1g}$	35.96	$1^{6}E_{g}$	18.90	$1 {}^{6}T_{1g}$		
$15 \Gamma_{6q}$	2.847	282	27064	0.06	49.69	$1^{6}T_{1q}$	32.01	$1 {}^{6}T_{2a}$	12.40	$2^{6}T_{1a}$		
$31 \Gamma_{8a}$	2.847	282	27089	0.10	47.68	$1 {}^{6}T_{1a}$	33.08	$1 {}^{6}T_{2a}$		0		
$32 \Gamma_{8a}^{2}$	2.845	284	27251	0.01	48.90	$2^{6}T_{1a}^{-3}$	28.04	$1^{6}E_{a}^{-3}$				
$17 \Gamma_{7-}$	2 846	283	27344	0.03	30.50	$1^{6}T_{2}$	28.89	$1^{6}T_{1}$	26.30	$2^{6}T_{1}$		
$16 \Gamma_c$	2.845	283	27462	0100	24.02	$2^{6}T_{1}$	19 35	$1^{6}T_{0}$	16 37	$1^{6}E$	15.62	$2^{6}T_{0}$
10 1 6g	2.040	200	21402		10.08	$\frac{2}{1} \frac{1}{6} T_1$	15.00	1 12g	10.01	1 Lg	10.02	2 12g
99 F	9.945	202	97767	0.02	10.90	$1 1_{1g}$ 0 6T	91.09	0.6T	10.62	16 <i>F</i>	16.07	161
3318g 10 T	2.040	200	27707	0.02	45 10	$2 I_{1g}$ 16 T	21.92	$2 1_{2g}$	19.00	1 6T	10.07	$1 A_{2g}$
$10 \ 1 \ 7g$	2.047	204	27991	0.01	40.12	$1 \ 1_{1g}$	24.40	$2 I_{1g}$	19.97	$1 I_{2g}$		
$\Gamma T \Gamma_{6g}$	2.845	283	28081	0.02	39.33	$1 {}^{\circ}T_{2g}$	37.80	$2 \circ T_{1g}$		- 6-		a 6 m
$34 \Gamma_{8g}$	2.845	283	28267	0.01	20.04	$1 {}^{o}_{c} A_{2g}$	18.50	$2 {}^{o}_{g} T_{2g}$	12.78	$1 \ {}^{o}T_{1g}$	11.90	$2 \ ^{o}T_{1g}$
					11.32	$1 \ ^{\circ}E_{g}$	10.12	$1 {}^{o}T_{2g}$				
$18 \Gamma_{6g}$	2.844	283	28448	0.01	38.67	$1 {}^{6}A_{2g}$	25.41	$2 \ ^{6}T_{2g}$				
$35 \ \Gamma_{8g}$	2.845	283	28490	0.07	35.18	$2^{6}T_{1g}$	34.47	$1 {}^{6}T_{2g}$	15.18	$1 {}^{6}E_{g}$		
$36 \Gamma_{8q}$	2.845	283	28670	0.05	26.77	$1^{6}E_{q}$	20.03	$1 {}^{6}T_{2a}$	18.18	$2 {}^{6}T_{1a}$	10.59	$3^{6}T_{1q}$
19 Γ_{6a}	2.846	283	29080	0.04	35.27	$1 {}^{6}E_{a}$	28.73	$1^{6}T_{2a}$	23.06	$2^{6}T_{2a}$		5
37 Г _{8а}	2.844	283	29154	0.06	21.75	$3^{6}T_{1a}$	21.44	$2^{6}T_{2a}^{-g}$	17.18	$1^{6}E_{a}^{2}$	15.37	$2^{-6}E_{a}$
51 ± 89	2.0.11	-00	20101		12.51	$2^{6}T_{1}$		- + 29	110	1 - 1 - g	10101	- <i>L</i> g
38 Fo	2 844	284	20250	0.03	22.01	$\frac{1}{1} \frac{6}{T_{2}}$	17.95	$2^{6}T_{2}$	16 67	$2^{6}T$	11 70	$9^{6}F$
50 I 8g	2.044	204	29200	0.00	11 49	26T	11.50	2 12g	10.07	2 11g	11.70	$2 D_g$
10 T	0.045	000	90519	0.02	25 54	$3 1_{1g}$	25 40	1 677				
191_{7g}	2.840	282	29513	0.02	35.54	$2^{-1}I_{1g}$	35.40	$1 \ 12g$	00.00	<u>а 6</u> -т		
$20 \ \Gamma_{6g}$	2.844	283	29626	0.01	35.82	$2 \ ^{\circ}E_{g}$	22.97	$1 \ E_g$	22.86	$2 \ ^{\circ}T_{2g}$		
$20 \ \Gamma_{7g}$	2.844	285	29661	0.02	34.02	$3 {}^{o}_{c} T_{1g}$	28.56	$2 \ ^{0}T_{1g}$	13.85	$2 \ ^{0}E_{g}$		
$2 \Gamma_{7u}$	2.870	212	29871		89.54	$1 {}^{o}T_{1u}$						
$2 \Gamma_{8u}$	2.870	212	29883		89.81	$1 {}^{6}T_{1u}$						
$39 \ \Gamma_{8g}$	2.844	283	29916	0.02	22.86	$2^{6}E_{g}$	19.84	$2^{6}T_{2g}$	15.05	$1 {}^{6}A_{2g}$	14.14	$3^{6}T_{1g}$
$21 \Gamma_{6q}$	2.846	283	30059	0.04	47.57	$1 {}^{6}T_{2q}$	15.82	$3^{6}T_{1a}$	10.45	$1 {}^{6}T_{1a}$		
40 Γ ₈₀	2.845	283	30163	0.02	28.65	$2^{6}T_{1a}$	26.68	$1^{6}T_{2a}$	18.02	$2^{6}T_{2a}$		
3 Гел	2.870	210^{-1}	30250		94.06	$1 {}^{6}T_{1}^{19}$		-9		-9		
41 Γ ₀	2.844	284	30325	0.05	29.81	$2^{6}T_{2}$	22, 25	$3^{6}T_{1}$	$15 \ 41$	$1^{6}T_{2-}$	11.90	$2^{-6}T_{1}$.
11 г <i>8g</i> 21 Г-	2 8/1	201	30363	0.03	33.00	$2^{6}T_{-}^{2g}$	26 10	$3^{6}T$	15 74	$1^{6}F$	15 70	$\frac{2}{2} \frac{1}{6} \frac{1}{T_2}$
2117g 2Γ-	2.044 9.870	201 91⊑	30597	0.00	99.44 95.44	$\frac{2}{16T}$	11 00	$3 \ 6 T_{-}$	10.14	т Dg	10.10	⊥ 12g
4Γ	2.070	410 01¢	20527 20529		00.44 05 50	$1 \frac{1}{1} $	11.00	J 12u				
$4 \pm 8u$	2.870	∠10 017	30332 20541		89.98 85 70	$1 1_{1u}$	10.97	a 6 🖂				
$5 \ 1 \ 7u$	2.870	217	30341	0.07	85.79	$1 \tilde{I}_{1u}$	10.37	$2 \ E_u$	15.01	165	10.01	0.67
$42 \Gamma_{8g}$	2.845	284	30591	0.07	29.45	$1 {}^{o}T_{2g}$	29.24	$2 \ ^{\circ}T_{1g}$	15.31	$1 \ ^{\circ}E_{g}$	10.21	$3 \ ^{\circ}T_{1g}$
$22 \Gamma_{7g}$	2.844	283	30612	0.02	29.10	$2 \overset{\circ}{} E_g$	22.11	$1 \overset{\circ}{} E_g$	17.14	$3 {}^{\circ}T_{1g}$		
$43 \ \Gamma_{8g}$	2.845	283	30903	0.12	51.00	$1 \ ^{\mathrm{o}}T_{2g}$	16.37	$1 \ ^{\mathrm{o}}E_g$	13.43	$2 \ ^{\mathrm{o}}T_{1g}$		

$23 \Gamma_{7g}$	2.844	283	31141	0.01	54.68	$2 {}^{6}T_{2g}$	22.58	$1 {}^{6}A_{1g}$	10.00	0.6 17	10.00	о. 6 <i>т</i> т
$44 \Gamma_{8g}$	2.844	283	31270	0.02	21.75 10.52	$2 {}^{6}T_{2g}$	20.26	$1 {}^{o}A_{1g}$	13.20	$2 \ ^{\circ}E_{g}$	12.00	$3 \ ^{o}T_{1g}$
22 Га	2 8/13	283	31997	0.01	10.52	$1 A_{2g}$ $3 {}^{6}T_{1}$	25.03	$1^{6} A_{2}$	21.62	$2^{6}T_{2}$	17.80	$1^{6}T_{2}$
$45 \Gamma_{8a}$	2.843	$\frac{200}{283}$	31473	0.03	27.02	$2^{6}T_{2a}$	25.00 25.47	$2^{6}E_{a}$	23.73	$\frac{2}{3} \frac{1}{6} \frac{2g}{T_{1g}}$	12.01	$1^{6}T_{2a}$
$46 \Gamma_{8a}$	2.844	283	31511	0.01	61.79	$\frac{2}{3} \frac{1}{6} \frac{2}{T_{1a}}$	14.93	$\frac{2}{2} \frac{2}{6} \frac{2}{T_{1a}}$	20110	5 ± 19	12101	± ±29
$23 \Gamma_{6q}$	2.844	283	32559	0.01	38.53	$3 {}^{6}T_{1q}^{1g}$	38.09	$2^{6}T_{2q}^{1g}$	13.63	$1 {}^{6}A_{2q}$		
47 Γ_{8g}	2.843	283	32595		43.07	$2 \ {}^{6}T_{2g}$	26.22	$2^{-6}E_{g}^{-1}$	15.95	$1 \ {}^{6}A_{2g}$		
$24 \Gamma_{7g}$	2.843	283	32728	0.01	53.20	$3\ {}^{6}T_{1g}$	34.08	$2^{6}E_{g}$				
$48 \Gamma_{8g}$	2.843	283	32742	0.01	35.13	$3^{6}_{g}T_{1g}$	33.48	$2^{6}E_{g}$	24.27	$2^{6}T_{2g}$		
$24 \Gamma_{6g}$	2.843	283	32782		44.48	$2 {}^{6}_{c} E_{g}$	41.12	$2 {}^{6}_{c} T_{2g}$				
$25 \Gamma_{7g}$	2.843	283	33073		47.77	$1 {}^{6}A_{1g}$	41.36	$3^{6}_{c}T_{1g}$				
$49 \Gamma_{8g}$	2.843	283	33090		45.65	$1 \ ^{0}A_{1g}$	42.60	$3 \ {}^{0}T_{1g}$				
$4f^{6}(^{7}F_{J}$	$(5de_{a}^{1} +$	$-6sa_{1a}^{1}$) H	igh-, Lo	ow- and Mixed	-Spin coupling ^d							
$50 \Gamma_{8g}$	2.882	275	40030	7.55	62.01	$3 \ ^8T_{2g}$	28.58	$4^{8}T_{1g}$				
$26 \Gamma_{7g}$	2.883	275	40125	3.43	68.95	$3 \ ^{8}T_{2g}$	26.64	$4 \ ^{8}T_{1g}$				
$51 \ \Gamma_{8g}$	2.883	275	40271	1.08	79.75	$3 \ ^8T_{2g}$						
$27 \ \Gamma_{7g}$	2.881	275	40746	6.95	50.82	$4 {}^{8}T_{1g}$	34.94	$3 {}^{8}T_{2g}$				
$52 \Gamma_{8g}$	2.883	261	41065	0.10	30.81	$3 {}^{8}_{\circ}T_{2g}$	22.49	$4 {}^{8}T_{1g}$	19.35	$3^{6}_{0}T_{2g}$		
$25 \Gamma_{6g}$	2.882	275	41125	2.72	51.91	$3 {}^{8}_{c} T_{2g}$	25.49	$4 {}^{8}T_{1g}$	11.49	$5 {}^{8}T_{1g}$		
53 Γ_{8g}	2.861	326	41289	9.26	38.29	$3 \ ^{\circ}_{\circ}T_{2g}$	17.31	$3 \ ^{\circ}_{\circ}T_{2g}$	12.06	$4 \ {}^{8}T_{1g}$		
$54 \Gamma_{8g}$	2.872	395	41685	13.75	54.45	$4 \ {}^{\circ}T_{1g}$	30.78	$3 \ ^{\circ}_{\circ} T_{2g}$		o		o
$26 \Gamma_{6g}$	2.875	383	41732	3.67	29.48	$3 \ T_{2g}$	26.06	$4 \ ^{\circ}T_{1g}$	20.77	$3 \ ^{\circ}E_{g}$	12.59	$4 \ ^{\circ}T_{2g}$
					10.06	$5 {}^{\circ}T_{1g}$. 8				
$28 \Gamma_{7g}$	2.882	261	41980	0.20	34.64	$4 {}^{\circ}T_{1g}$	26.72	$3 \ {}^{\circ}T_{2g}$	00 50	0.8 17	10.00	4.877
$55 \Gamma_{8g}$	2.881	303	42104	0.05	32.29	$4 \ T_{2g}$	28.56	$3 \ ^{\circ}T_{2g}$	20.58	$3 \ ^{\circ}E_g$	10.83	$4 \ ^{\circ}T_{1g}$
29 Γ_{7g}	2.855	360	42271	5.26	20.50	$5 \ ^{\circ}T_{1g}$	19.00	$3 \ E_g$	17.45	$4 \ ^{\circ}T_{1g}$	13.69	$3 \ ^{\circ}T_{2g}$
56 Γ_{8g}	2.881	282	42379	2.99	24.54	$5 \ ^{\circ}T_{1g}$	21.00	$4 \ ^{\circ}T_{2g}$	19.50	$4 \ ^{\circ}T_{1g}$	17.68	$3 \ ^{\circ}T_{2g}$
$27 \Gamma_{6g}$	2.880	553	42402	0.05	27.84	$4 \ ^{\circ}T_{2g}$	18.01	$4 \ ^{\circ}T_{1g}$	16.80	$5 \ ^{\circ}T_{1g}$	12.14	$3 \ ^{\circ}T_{2g}$
$57 \Gamma_{8g}$	2.879	368	42486	0.39	16.51	$3 \ ^{\circ}T_{2g}$	16.49	$3 \ ^{\circ}E_{g}$	15.34	$5 \ ^{\circ}T_{1g}$	14.57	$3 \ ^{\circ}E_{g}$
50 F	9 961	917	49649	4.69	13.48	4^{-1}_{1g}	94 55	2 8 E				
00 I 8g 28 Г.	2.801	343	42042	4.02	20.90	$5 I_{1g}$ $5 ^{6}T$	24.00	$3 E_g$ $4 ^8 T_2$	14.87	1.8T	14 75	$3^{6}T$
20 Ι _{6g} 50 Γ.	2.007	345 215	42003	5.21 1.54	22.91	$5 I_{1g}$ $4 {}^{8}T$	16.96	$^{4} 1_{2g}$ ^{6}T	14.07	$4 I_{1g}$ $3 {}^{6}T_{-}$	14.75	$3 1_{2g}$ $4^{6}T$
59 I 8g 60 Га	2.870	310 911	43056	1.54	21.22	$4 I_{1g}$ 4^8T_{1g}	10.30	$\frac{4}{3}\frac{1}{8}\frac{1}{T_2}$	14.27	$5 1_{2g}$ 5 $8T_{c}$	10.17	4 1 _{1g}
$30 \Gamma_{-}$	2.870	565	43001	0.13	21.04	$4^{8}T_{1}$	13 40	$\frac{5}{4} \frac{12g}{7}$	19.92	5^{-1}_{1g}	11.05	$5^{6}T_{-}$
$30 \Gamma_{7g}$ $31 \Gamma_{-}$	2.879	459	43079	0.13	20.33	$4^{-1}1g$ $4^{-8}T_{-}$	13.40 93.09	$\frac{4}{3}\frac{12g}{7}$	12.20	$5 {}^{8}T_{-}$	11.90	5 11g
$\frac{5117g}{20\Gamma_{c}}$	2.019 2.877	396	43163	5.05 1.91	34.54	$\frac{4}{1}\frac{1}{2}\frac{1}{2}g$	25.02	$5^{8}T_{-}$	10.10	$3 \ {}^{8}T_{2}$	19.01	$4^{-8}T_{-}$
$25 \Gamma_{6g}$ 61 Γ_{\circ}	2.011 2.861	320	43105	2.83	99.19	$\frac{4}{12g}$	16.93	$3 {}^{8}E$	16.82	$\frac{5}{4} \frac{12g}{7}$	15.49	$5 {}^{8}T_{1}$
01 1 8g	2.001	004	40020	2.00	10.56	$3 {}^{8}T_{2a}$	10.50	$5 L_g$	10.02	ч 11g	10.45	0 11g
30 Fea	2.881	321	43389	2.37	60.48	$3 {}^{8}T_{2a}$	18.67	$5^{-8}T_{1a}$	13.81	$4^{8}T_{1a}$		
$32 \Gamma_{7a}$	2.858	356	43412	0.40	24.49	$4 {}^{8}T_{2a}$	19.86	$3^{8}E_{a}$	11.00	$5 {}^{8}T_{1a}$		
$31 \Gamma_{6a}$	2.880	300	43685	1.27	41.37	$4 {}^{8}T_{2a}$	29.12	$3 {}^{8}E_{a}$	12.32	$4 {}^{8}T_{1a}$	11.30	$5^{-8}T_{1a}$
$62 \Gamma_{8a}$	2.877	312	43693	0.93	35.79	$3 {}^{8}E_{a}^{2g}$	30.20	$4 {}^{8}T_{2a}^{9}$	18.40	$5 \ {}^{8}T_{1a}^{1g}$		19
$63 \Gamma_{8a}$	2.879	539	43738	9.01	43.21	$4 {}^{8}T_{1a}^{9}$	18.05	$3 {}^{8}T_{2a}^{2g}$	17.14	$3 {}^{8}E_{a}^{19}$	11.07	$4^{8}T_{2a}$
$64 \Gamma_{8a}$	2.881	290	44218	0.71	31.95	$3 {}^{8}T_{2a}^{1g}$	28.03	$3 {}^{8}E_{a}^{2g}$	16.87	$4 {}^{8}T_{2a}^{g}$	13.78	$5 \ ^{8}T_{1a}$
$33 \Gamma_{7a}$	2.881	291	44343		48.56	$5 {}^{8}T_{1a}$	21.29	$4^{8}T_{2a}^{9}$		-9		-9
$65 \Gamma_{8a}$	2.880	463	44491	0.06	19.87	$5 {}^{6}T_{1a}$	17.61	$4 {}^{6}T_{1a}$	13.00	$5 \ ^{8}T_{1a}$	12.98	$4^{8}T_{1a}$
$32 \Gamma_{6a}$	2.865	208	44557	0.11	39.90	$4^{6}T_{2a}^{-s}$	37.21	$3^{6}E_{a}^{-3}$	12.18	$5 {}^{6}T_{1a}$		-3
$34 \Gamma_{7a}$	2.860	328	44616	0.01	26.59	$4 {}^{6}T_{1a}$	18.69	$5 {}^{6}T_{1a}$	15.03	$2^{6}A_{1a}$	13.39	$4^{6}T_{2a}$
$66 \Gamma_{8q}$	2.869	239	44639	0.12	17.73	$4^{6}T_{1q}^{-s}$	13.17	$5 \ ^{8}T_{1q}^{-s}$	12.50	$5 {}^{6}T_{1a}$	10.08	$3^{6}E_{a}^{-3}$
$67 \Gamma_{8q}$	2.857	300	44765	0.60	27.49	$3^{6}T_{2q}$	15.36	$5 {}^{6}T_{1q}$	14.73	$4^{6}T_{2a}$	13.77	$4 {}^{6}T_{1a}$
$34 \Gamma_{6a}$	2.860	350	44824	8.24	67.99	$4 \ {}^{8}T_{1a}^{-s}$	20.60	$3 \ ^{8}T_{2a}^{-3}$		-3		-9
$33 \Gamma_{6a}$	2.855	255	44836	0.05	39.96	$4 {}^{6}T_{2a}^{-3}$	28.52	$3 {}^{6}T_{2a}^{-s}$	19.52	$4 {}^{6}T_{1a}$		
68 Γ_{8a}^{0}	2.859	323	44870	7.38	18.47	$4 {}^{6}T_{1a}^{-9}$	17.48	$3 {}^{6}E_{a}^{5}$	14.85	$5 {}^{6}T_{1a}^{1}$	12.77	$4^{-8}T_{1a}$
09					10.92	$4 {}^{6}T_{2a}^{1}$	10.87	$3 {}^{6}T_{2a}^{9}$		-9		-9
69 Γ_{8q}	2.861	343	44916	15.94	41.70	$4 \ {}^{8}T_{1q}$	19.32	$5 \ ^{8}T_{1q}$	10.71	$4 {}^{8}T_{2q}$		
$35 \Gamma_{7q}$	2.876	549	45013	0.01	59.37	$4 \ {}^{8}T_{2q}$	28.86	$3 \ ^{8}E_{q}$		5		
70 Γ_{8q}	2.868	317	45216	3.08	52.50	$4 \ {}^{8}T_{2q}$	27.29	$5 \ ^{8}T_{1q}$	11.42	$3^{-8}E_{q}$		
$35 \Gamma_{6g}$	2.876	396	45278	1.96	48.37	$4 \ ^{8}T_{2g}$	41.22	$5 \ ^{8}T_{1g}$		5		
71 Γ_{8g}	2.880	366	45727	4.89	51.00	$5 \ ^8T_{1g}$	31.81	$3^{-8}E_{g}$	12.26	$4 \ ^{8}T_{1g}$		

$36 \Gamma_{6g}$	2.881	291	45775	0.40	61.41	$5 {}^{8}T_{1g}$	27.54	$3 {}^{8}E_{g}$				
$72 \ \Gamma_{8g}$	2.882	263	46059	0.31	63.63	$5 {}^{8}T_{1g}$	19.37	$3 {}^{8}E_{g}$				
$36 \Gamma_{7g}$	2.875	417	46169	0.03	76.81	$5 {}^{8}T_{1g}$	11.23	$3 {}^{8}E_{g}$				
$73 \ \Gamma_{8g}$	2.865	304	46294	1.10	27.37	$4 {}^{6}T_{1g}$	19.94	$6 {}^{6}T_{1g}$	15.18	$5 {}^{6}T_{1g}$	12.62	$4^{6}T_{2g}$
					11.28	$3 {}^{6}E_{g}$						
$74 \ \Gamma_{8g}$	2.880	500	46610	0.02	78.24	$4 {}^{8}T_{2g}$						
$75 \ \Gamma_{8g}$	2.881	271	46793		68.49	$4 {}^{8}T_{2g}$	28.55	$5 {}^{8}T_{1g}$				
$37 \Gamma_{7g}$	2.881	267	46816		71.98	$4 {}^{8}T_{2g}$	26.00	$5 \ ^{8}T_{1g}$				
$38 \Gamma_{7g}$	2.855	357	47084	0.01	52.75	$5 \ ^{6}T_{1g}$	33.66	$4 {}^{6}T_{1g}$				
$76 \ \Gamma_{8g}$	2.855	326	47110	0.28	39.01	$4 {}^{6}T_{1g}$	24.19	$5 {}^{6}T_{1g}$	17.33	$3^{6}T_{2g}$	14.36	$4^{6}T_{2g}$
$37 \Gamma_{6g}$	2.851	292	47136	0.01	44.80	$4^{6}T_{1g}$	32.63	$3^{6}T_{2g}$	12.36	$4^{6}T_{2g}$		
$38 \Gamma_{6g}$	2.851	286	47338	0.02	33.37	$3^{6}T_{2g}$	27.24	$4^{6}T_{2g}$	22.65	$3^{6}E_{g}$		
$77 \ \Gamma_{8g}$	2.851	290	47374	0.02	26.73	$3^{6}T_{2g}$	21.81	$3^{6}E_{g}$	20.34	$5 {}^{6}T_{1g}$	16.97	$4^{6}T_{2g}$
$78 \ \Gamma_{8g}$	2.850	298	47470	0.12	45.97	$4 {}^{6}T_{2g}$	17.44	$5 {}^{6}T_{1g}$	17.16	$2^{6}A_{1g}$		
$39 \ \Gamma_{7g}$	2.853	275	47488	0.02	28.63	$4 {}^{6}T_{2g}$	23.74	$5 \ ^{6}T_{1g}$	18.41	$2^{6}A_{1g}$	14.24	$3^{6}T_{2g}$
$40 \ \Gamma_{7g}$	2.876	575	47845	0.01	54.52	$6 {}^{6}T_{1g}$	14.19	$4 {}^{6}T_{1g}$	12.44	$2^{6}A_{1g}$		
79 Γ_{8g}	2.876	573	47993	0.01	55.42	$6 {}^{6}T_{1g}$	19.22	$4^{6}T_{1g}$	10.96	$2^{6}A_{1g}$		
$80 \ \Gamma_{8g}$	2.855	292	48316	0.01	65.60	$6 {}^{6}T_{1g}$	11.85	$3^{-6}E_{g}$				
$39 \Gamma_{6g}$	2.867	214	49006		24.77	$5 \ ^{6}T_{2g}$	23.04	$6 {}^{6}T_{1g}$	10.37	$4^{6}E_{g}$		
81 Γ_{8g}	2.857	245	49133		33.77	9 ${}^{6}T_{1g}$	28.01	$7\ {}^{6}T_{2g}$				
$40 \Gamma_{6g}$	2.876	634	49137		32.86	$5 \ ^{6}T_{2g}$	15.10	$4^{6}E_{g}$	12.73	$6 {}^{6}T_{1g}$		
$82 \Gamma_{8g}$	2.860	260	49147		31.78	$6 {}^{6}T_{1g}$						
41 Γ_{7g}	2.857	246	49167		39.20	$7^{6}T_{2g}$	23.33	9 ${}^{6}T_{1g}$				
$42 \Gamma_{7g}$	2.853	304	49208		32.89	$6 {}^{6}T_{1g}$	17.44	$4 {}^{6}T_{1g}$	10.21	$7 {}^{6}T_{1g}$		
83 Γ_{8g}	2.853	272	49253		36.05	$5 \ ^{6}T_{2g}$	17.79	$4^{6}E_{g}$				
$41 \Gamma_{6g}$	2.855	269	49260		24.48	$2^{6}A_{2g}$	17.71	$6 \ ^{6}T_{2g}$	17.08	$5 {}^{6}T_{2g}$	10.53	$8^{6}T_{1g}$
$84 \Gamma_{8g}$	2.854	266	49303		24.56	$5 {}^{6}T_{2g}$	23.10	$2^{6}A_{2g}$	13.40	$7^{6}T_{1g}$	12.58	$6^{-6}T_{2g}$
43 Γ_{7g}	2.851	277	49415		35.75	$10^{-6}T_{1g}$	28.90	$5^{-6}E_{g}$				
$44 \Gamma_{7g}$	2.851	294	49445		23.84	$7 {}^{6}T_{1g}$	16.84	$3 {}^{6}A_{1g}$	12.92	$8^{6}T_{1g}$		
$85 \Gamma_{8g}$	2.855	249	49450		20.36	$6 \ ^{6}T_{2g}$	14.35	$7 {}^{6}T_{1g}$	14.02	$5 \ ^{6}T_{2g}$	12.52	$8^{-6}T_{1g}$
86 Γ_{8g}	2.855	264	49473		20.33	$7 {}^{6}T_{1g}$	16.35	$3 \ ^{6}A_{1g}$	12.65	$2^{6}A_{2g}$		
87 Γ_{8g}	2.854	255	49549		29.88	$10^{-6}T_{1g}$	20.74	$5^{-6}E_{g}$	11.95	$4 {}^{6}A_{1g}$		
$42 \Gamma_{6g}$	2.876	582	49562		34.97	$6 {}^{6}T_{2g}$	13.67	$7 {}^{6}T_{1g}$	12.77	$7 {}^{6}T_{2g}$		
$45 \Gamma_{7g}$	2.851	281	49596		28.20	$6 {}^{6}T_{2g}$	26.70	$5 \ ^{6}T_{2g}$	12.68	$4^{6}E_{g}$		
88 Γ_{8g}	2.857	247	49623		19.07	$6 {}^{6}T_{2g}$	18.58	$7 {}^{6}T_{1g}$	11.67	$5 {}^{6}T_{2g}$		
46 Γ_{7g}	2.857	294	49669		51.53	$6 \ ^8T_{1g}$	38.22	$5 \ ^{8}T_{2g}$				
89 Γ_{8g}	2.855	255	49740		42.38	9 ${}^{6}T_{1g}$	13.09	$7^{6}T_{2g}$				
$43 \Gamma_{6g}$	2.855	252	49786		43.37	$7^{6}T_{2g}$						
$90 \ \Gamma_{8g}$	2.876	630	49844		16.36	$4^{6}E_{g}$	14.94	$5\ ^{6}T_{2g}$				
$47 \Gamma_{7g}$	2.857	280	49861		24.72	$7 {}^{6}T_{1g}$	19.55	$5\ ^{6}T_{2g}$				
91 Γ_{8g}	2.855	260	49906		21.79	$10^{-6}T_{2g}$	13.45	$9\ ^{6}T_{2g}$	10.23	$6^{-6}E_{g}$	10.23	$11 \ {}^{6}T_{1g}$
44 Γ_{6g}	2.856	253	49948		18.11	$7^{6}T_{1g}$	17.36	$11 \ {}^{6}T_{1g}$	16.04	9 $^{6}T_{2g}$		
92 Γ_{8g}	2.857	248	49973		54.82	$6 {}^{8}T_{1g}$	36.29	$5 \ ^{8}T_{2g}$				
93 Γ_{8g}	2.853	271	50010		12.87	$7 \ {}^{6}T_{1g}$						
$48 \Gamma_{7g}$	2.852	286	50013		18.19	$11 \ {}^{6}T_{1g}$	14.77	$4 {}^{6}A_{1g}$	12.64	$10^{-6}T_{1g}$		
$45 \Gamma_{6g}$	2.857	252	50029		15.17	$7 \ {}^{6}T_{1g}$	11.35	$11 \ {}^{6}T_{1g}$	10.77	9 ${}^{6}T_{2g}$	10.71	$6 \ ^{6}T_{2g}$
94 Γ_{8g}	2.855	292	50049		11.95	$8 {}^{6}T_{1g}$	10.76	$7^{6}T_{1g}$				
49 Γ_{7g}	2.857	306	50075		19.41	$3 \ ^{6}A_{1g}$	19.20	$6^{-6}T_{2g}$	17.88	$4^{6}E_{g}$		
46 Γ_{6g}	2.855	290	50081		23.74	$6 {}^{6}T_{2g}$	11.90	$5\ {}^{6}T_{2g}$				
$95 \ \Gamma_{8g}$	2.856	291	50099		23.93	$8 \ ^{6}T_{1g}$						
$50 \ \Gamma_{7g}$	2.858	319	50158		29.24	$8 \ ^{6}T_{1g}$	19.30	$7 {}^{6}T_{1g}$	13.36	$7^{6}E_{g}$		
96 Γ_{8g}	2.858	276	50225		13.59	$10^{-6}T_{2g}$	13.30	$5^{-6}E_{g}$	12.36	$10^{-6}T_{1g}$		
47 Γ_{6g}	2.858	242	50295		23.70	$10^{6}T_{2g}$	23.20	$6 {}^{6}E_{g}$	11.38	$12 \ ^{6}T_{2g}$	10.09	9 $^{6}T_{2g}$
97 Γ_{8g}	2.857	262	50336		23.19	9 ${}^{6}T_{1g}$						
98 Γ_{8g}	2.858	259	50371		20.09	$8^{6}T_{1g}$	13.98	$4^{6}E_{g}$				
$48 \Gamma_{6g}$	2.850	279	50375		39.22	$7 \ ^{6}T_{2g}$	11.88	$10^{-6}T_{1g}$	10.67	9 ${}^{6}T_{1g}$		
99 Γ_{8g}	2.857	276	50389			_						
$100 \ \Gamma_{8g}$	2.858	277	50428		63.12	$6 {}^{8}T_{1g}$	30.74	$5 \ ^{8}T_{2g}$				
101 Γ_{8g}	2.857	297	50433		26.64	$3 {}^{6}_{2g}T_{2g}$						
$51 \ \Gamma_{7g}$	2.855	295	50442		37.61	$3^{6}_{2g}T_{2g}$	15.56	$5 \ ^{6}T_{1g}$				
$102 \ \Gamma_{8g}$	2.857	291	50479		13.38	$5 {}^{6}T_{1g}$						
49 Γ_{6g}	2.853	268	50480		18.60	$3^{6}T_{2q}$	11.35	$4^{6}E_{g}$	11.07	$8^{6}T_{2g}$		

$50 \ \Gamma_{6q}$	2.853	280	50515		20.30	$5^{6}T_{2q}$	12.03	$8^{-6}T_{1q}$				
$52 \Gamma_{7a}$	2.853	297	50556		23.75	$8^{6}T_{1a}$	18.75	$7^{6}T_{1a}$	10.00	$3^{6}T_{2a}$		
103 E	2.857	280	50575		14.85	$4^{6}T_{2}^{19}$	10.97	$5 {}^{6}T_{1}^{19}$	10.23	$6 {}^{6}T_{2}^{9}$		
100 1 8g	0.051	200	50629		06.00	$\frac{1}{11} \frac{12g}{7}$	00.01	$6 ^{6}F$	10.20	$0^{6}T$		
$55 \pm 7g$	2.803	312	5063Z		20.88	$\prod I_{1g}$	ZZ.1Z	$0 E_g$	12.40	$9^{-1}1_{2g}$		
$104 \ \Gamma_{8g}$	2.858	273	50642		10.82	$5 {}^{0}T_{2g}$						
$54 \Gamma_{7g}$	2.850	346	50659		49.92	$5 \ ^{8}T_{2g}$	24.93	$6 {}^{8}T_{1g}$				
$105 \ \Gamma_{8a}$	2.857	280	50674									
51 Le-	2.856	242	50713	0.01	24.79	$10^{-6}T_{1-}$	12.37	$5^{6}E_{-}$	10.65	$9^{6}T_{2}$		
106 T	2.000	212	50757	0.01	19.14	76T	10.69	$11 \frac{6}{T}$	10100	0 i 2g		
100 I 8g	2.001	274	50757		12.14	$1 1_{1g}$	10.00	$11 1_{2g}$	10.00	0. 6 <i>m</i>		
$107 \ \Gamma_{8g}$	2.855	274	50790		24.43	$10 \ {}^{o}T_{2g}$	10.52	$12 \ ^{\circ}T_{1g}$	10.02	$9 \ ^{o}T_{2g}$		
$55 \ \Gamma_{7g}$	2.853	326	50825		26.50	$12 \ ^{6}T_{1g}$	11.78	$6 {}^{6}E_{g}$				
108 Γ_{8a}	2.855	269	50843		23.96	$12^{6}T_{1a}$	11.37	$12^{-6}T_{2a}$				
52 Ee-	2848	235	50872		11 44	$8^{6}T_{2}$		-3				
100 T	2.010	200	50970	0.02	21 6 4	$5 \pm 2g$ 11 $6T$	95 91	ο ⁶ Τ				
109 I 8g	2.000	200	50019	0.05	11.04	$11 \ 12g$	20.21	5 12g				
$110 \ \Gamma_{8g}$	2.854	293	50887		11.00	$12 \circ T_{2g}$		C				
$56 \Gamma_{7g}$	2.851	323	50913		29.18	$4 \ ^{o}E_{g}$	22.43	8 ${}^{6}T_{1g}$				
53 Γ_{6q}	2.852	231	50965		13.10	$8^{6}T_{2a}$	10.46	$12^{-6}T_{2a}$				
111 Lea	2.855	277	50966		13.60	$8^{6}T_{1a}$	13.30	$4^{6}T_{2a}$	11.31	$7^{6}E_{a}$		
57 Γ-	2 853	325	51014			19		29		g		
110Γ	0.057	020	51014		19.07	o 677						
112 1 8g	2.007	201	51059		15.07	$\circ I_{1g}$		10.67				
$58 \Gamma_{7g}$	2.850	338	51079		37.14	$9 {}^{0}T_{1g}$	13.31	$10 \ ^{o}T_{1g}$				
$54 \Gamma_{6g}$	2.847	247	51092		32.67	$8^{6}T_{2g}$	18.07	$11 \ {}^{6}T_{2g}$				
113 Γ_{8a}	2.854	263	51095									
114 Г _{о-}	2.855	276	51098		21.84	$8^{6}T_{2-}$	$13 \ 40$	$11^{-6}T_{2-}$				
115 T	2.000	265	51169		11 22	$5 \pm 2g$ 11 $6T$	10.10	11 129				
110 1 8g	2.000	200	51100		11.00	$11 \ 12g$	10.00	11.67				
55 Γ_{6g}	2.848	261	51170		11.16	$2 \ A_{2g}$	10.89	$\prod_{g} T_{2g}$		c		C
$56 \Gamma_{6g}$	2.849	274	51208		12.00	$13 \ ^{o}T_{1g}$	10.63	$13 \ ^{o}T_{2g}$	10.61	$6 \ ^{o}E_{g}$	10.51	$8 \ ^{o}E_{g}$
116 Γ_{8q}	2.856	273	51222		11.01	$13 {}^{6}T_{2q}$	10.79	$10^{-6}T_{1q}$				
117 Γ_{8a}	2.856	278	51243		48.63	$6 {}^{8}T_{1a}$	30.00	$5 {}^{8}T_{2a}$				
50 L-	2 850	314	51273		12 22	$5 {}^{8}T_{2}^{19}$	32 1/	$6^{8}T_{1}^{29}$				
$c_0 \Gamma$	2.000	200	51000		90.00	1×67	14 00	1 4 67T				
$00 \ 1 \ 7g$	2.049	322	51260		20.80	$14 \ 1_{2g}$	14.02	$14 I_{1g}$				
$57 \Gamma_{6g}$	2.849	265	51283		47.28	$5 \ ^{o}T_{2g}$	35.88	$6 \ ^{o}T_{1g}$				
$58 \Gamma_{6g}$	2.852	279	51308		15.20	$11 \ {}^{6}T_{2g}$	14.23	$7 \ ^{\mathrm{o}}E_g$				
$61 \ \Gamma_{7a}$	2.850	324	51316		14.04	$11^{6}T_{1a}$	13.67	$6^{-6}T_{1a}$	12.35	$12^{-6}T_{2a}$		
118 Fea	2.857	270	51323		13.80	$6^{6}T_{1a}$	13.62	$2^{6}A_{1a}$	12.11	$4^{6}T_{1a}$		
110 Г.	2.857	276	51340	0.04	11 76	$0^{6}T_{-}$	10.02	- 111g		19		
119 1 8g	2.007	270	51340	0.04	11.70	5 12g	14 77	F 6 D	19.10	10.67		
$59 \ 1 \ 6g$	2.854	277	51410		20.11	$9 \ ^{\circ}T_{2g}$	14.75	$5 \ ^{\circ}E_g$	13.19	$10 \ ^{\circ}T_{1g}$		
$120 \ \Gamma_{8g}$	2.857	260	51417									
$62 \Gamma_{7g}$	2.849	321	51418		14.27	$13 \ {}^{6}T_{1g}$	12.53	$12^{-6}T_{1g}$				
$63 \Gamma_{7a}$	2.849	318	51467		15.15	$6^{6}T_{1a}$	10.09	$12^{-6}T_{2a}$				
121 Fea	2.855	270	51474			19		-9				
60 Г.	2.856	201	51489		94 64	$10^{6}T_{-}$						
$100 \pm 6g$	2.000	000	51402		19 50	r_{6}						
122 I 8g	2.853	268	51518		13.59	$5 \ ^{\circ}T_{2g}$						
$123 \ \Gamma_{8g}$	2.853	276	51540									
$64 \Gamma_{7g}$	2.850	313	51550	0.01	10.87	$6 {}^{6}T_{1g}$	10.06	$14 \ {}^{6}T_{2g}$				
$124 \Gamma_{8a}$	2.853	267	51608		13.71	$13^{-6}T_{2a}$	13.63	$13^{-6}T_{1a}$				
65 Γ ₇₋	2.850	345	51612		21 95	$12^{6}T_{1}^{-9}$	12.07	$8^{6}E_{-}^{19}$	1154	$10^{-6}T_{2-}$		
195 F	2.000	975	51640		02 12	$14^{6}T$	12.01	5 <i>Ly</i>	11.01	10 129		
120 1 8g	2.001	275	51040		20.10	14 1 _{2g}						
011_{6g}	2.857	280	51040			<i>c</i> —		6 —				
126 Γ_{8g}	2.857	261	51738		12.99	$7 {}^{0}T_{2g}$	11.20	$10 \ ^{0}T_{1g}$				
$127 \ \Gamma_{8g}$	2.857	272	51774									
62 Γ _{6α}	2.855	265	51808		20.49	$16^{-6}T_{2a}$	12.83	$15^{-6}T_{2a}$	11.58	$9^{-6}E_{a}$	10.43	$15^{-6}T_{1a}$
66 Γ 7 -	2.850	295	51821		16.59	$16 {}^{6}T_{1}^{\bar{g}}$	13.07	$10^{-6}E$		Э		-9
198 F	2.000	200 261	51297		19.99	$7^{6}F$	10.01	8 ⁶ T	10.05	$11^{6}T$		
	2.009	204	51027		12.22	ப் 1 பிர	11.00	0 12g	10.00	11 1 _{2g}		
$0 \ 1 \ 7g$	2.849	315	51868		13.08	$10 \ 1_{1g}$	11.02	$10 ~ I_{2g}$				
$63 \Gamma_{6g}$	2.853	302	51868		16.63	$13 \ ^{\circ}T_{1g}$	10.59	$13 \ ^{o}T_{2g}$				
$68 \Gamma_{7q}$	2.849	329	51875		24.02	$15 \ ^{6}T_{1a}$						
129 T ₈₀	2.857	254	51935			5						
130 Г.	2.857	254	51971		12.75	$12^{-6}T_{2}$						
$64 \Gamma_{-}$	2.001	978	52000			2g						
∪±⊥6g 191 ⊡	2.004 9.057	210 0F1	52000									
131 I 8g	2.807	251	92006		10 -	. 6-						
$69 \Gamma_{7a}$	2.849	303	52019		18.07	$9 \ ^{\circ}T_{1g}$	15.81	$10 \ ^{\circ}T_{1g}$				

132 Γ_{8a}	2.853	266	52048		13.28	$7^{6}E_{a}$	11.68	$16^{-6}T_{2a}$				
70 Γ_{7a}	2.848	313	52049		18.78	$13 {}^{6}T_{1a}$	14.03	9 ${}^{6}T_{1a}$	11.57	$11^{-6}T_{1a}$		
133 Г.,	2.853	266	52066		10.24	$7^{6}T_{2a}$		19		19		
100 Г ₈ у	2.853	265	52070		11 69	$14^{6}T_{2}$						
$134 \Gamma_{0}$	2.853	$\frac{200}{275}$	52083		56 41	$6^{8}T_{1}$	27.04	$5^{8}T_{2}$				
10 + 1 8g 66 Γ_a	2.000	210	52080		17 40	$16 \frac{6}{T_{2}}$	13 70	$15 \frac{6}{T_{2}}$	10 59	$4^{6} 4_{2}$	10.06	$0^{6}F$
$135 \Gamma_{0}$	2.001	202	52009		17.40	10 12g	10.75	10 12g	10.55	4 A2g	10.00	$J \square_g$
100 1 8g	2.000	202	52099		10.60	0.6T						
	2.047	304	52122		10.09	$9 I_{1g}$ 10 6 T	19.96	11 6 T				
$0 / 1_{6g}$	2.803	292	02122 50150		17.43	$12^{-1}1_{2g}$	12.20	$11 \ 1_{2g}$				
130 T _{8g}	2.853	274	52152		23.03	$11 \ 1_{2g}$	11.10	$15 \ ^{\circ}T_{1g}$				
$137 \Gamma_{8g}$	2.853	280	52163		10.00	o 6 m						
$138 \Gamma_{8g}$	2.853	284	52182		10.30	$8 {}^{o}T_{2g}$						
$72 \Gamma_{7g}$	2.849	313	52184	0.01	38.02	$11 {}^{o}T_{2g}$						
139 Γ_{8g}	2.853	271	52249	0.03	11.17	$10 {}^{o}T_{1g}$						
$68 \Gamma_{6g}$	2.855	271	52250	0.01	21.42	$11 {}^{6}T_{2g}$						
$140 \ \Gamma_{8g}$	2.852	270	52268	0.01	10.67	$12 \ {}^{6}T_{1g}$						
$69 \Gamma_{6g}$	2.855	268	52274		37.47	$6 \ ^{8}T_{1g}$	16.21	$5 \ ^{8}T_{2g}$				
141 Γ_{8g}	2.853	277	52285	0.01	59.39	$5 \ ^{8}T_{2g}$	18.76	$6 \ ^8T_{1g}$				
142 Γ_{8q}	2.852	287	52293		18.92	$7 {}^{6}E_{a}$	12.86	$11 \ {}^{6}T_{2a}$				
73 Γ_{7a}	2.848	282	52320		23.53	$13 \ {}^{6}T_{1a}$	10.14	$13 \ {}^{6}T_{2a}$				
143 Γ _{8α}	2.854	286	52341		16.46	$7^{6}E_{a}^{19}$		29				
$74 \Gamma_{7-}$	2 851	297	52342		10.45	$10 \frac{6}{T_{2}}$						
$70 \Gamma_c$	2.851	201	52355		2/ 30	$7^{6}E$	14 65	$11^{-6}T_{0}$				
$144 \Gamma_{-}$	2.001	231	52285		14.97	$12 \frac{Dg}{12}$	14.00	11 12g				
144 1 8g	2.000	204	52300		14.07	$14 \ 6T$						
111_{6g}	2.004	209	52455		14.00	$14 \ 12g$ $14 \ 6T$						
140 I 8g	2.800	200	52441		18.09	$14^{-1}I_{1g}$						
$140 \ \Gamma_{8g}$	2.855	296	52459		21.42	$14 \ ^{\circ}T_{1g}$						
$147 \Gamma_{8g}$	2.857	302	52490		12.09	$11 \ ^{\circ}T_{2g}$		6-				
$72 \ \Gamma_{6g}$	2.857	294	52530		20.29	$15 \ {}^{o}T_{2g}$	10.07	$16 \ ^{0}T_{2g}$				
148 Γ_{8g}	2.857	280	52587		13.83	$15 \ ^{\circ}T_{2g}$						
$75 \ \Gamma_{7g}$	2.876	730	52600		24.02	$16^{-6}T_{2g}$	17.16	9 ${}^{6}E_{g}$	10.74	$15 \ ^{6}T_{1g}$		
149 Γ_{8g}	2.857	268	52684									
$73 \Gamma_{6g}$	2.858	257	52740		14.55	$13 \ ^{6}T_{2g}$	10.34	$14 \ ^{6}T_{2g}$	10.19	9 $^{6}T_{2g}$		
$150 \ \Gamma_{8g}$	2.857	269	52741		11.90	$11 {}^{6}T_{1g}$	10.47	$5^{-6}E_{g}$				
151 Γ_{8q}	2.858	267	52785		12.30	$13 \ {}^{6}T_{1a}$	10.48	$15 \ {}^{6}\check{T}_{1a}$				
76 Γ_{7a}	2.855	239	52813		23.78	$13 {}^{6}T_{1a}$	11.00	$9^{6}T_{1a}$	10.53	$12^{-6}T_{1a}$		
$152 \Gamma_{8a}$	2.854	290	52819			-9		19		-9		
74 Γ _{6α}	2.853	270	52826		22.90	$14^{-6}T_{2a}$	14.97	$13^{-6}T_{2a}$	11.89	$12^{-6}T_{2a}$		
$77 \Gamma_{7a}$	2 849	280	52830		28.57	$14^{6}T_{1a}$	1 1.0 .	10 129	11.00	1 - 129		
$75 \Gamma_{e}$	2.854	298	52844		14 46	$13 {}^{6}T_{2}$	11 94	$12^{-6}T_{2-}$				
153 Γ ₀	2.855	293	52859		10.60	$13^{6}T_{0}$	11.01	12 129				
$150 \Gamma_{8g}$ $154 \Gamma_{2}$	2.000	250	52025		11.63	$10^{-1}2g$ $10^{-6}T$						
104 I 8g 76 Г	2.000	210	52925		20.69	$10 \ 1_{1g}$ $0 \ 6T$	96.25	7 6 T				
155 D	2.000	200	52970		19.02	$9 I_{1g}$ 0 $6T$	20.33	10.6T				
$100 \ 1 \ 8g$	2.000	209	50010		17.54	$9 I_{1g}$	11.27	r_{6}				
$(8 \ 17_{g})$	2.855	248	53011	0.04	17.54	$10^{-1}1_{1g}$	12.37	$5 E_g$				
$100 \Gamma_{8g}$	2.854	278	03024 50025	0.04	28.46	$(I_{2g} $	19.07	$9^{-1}I_{1g}$				
$77 \Gamma_{6g}$	2.857	281	53097		12.93	$12 {}^{o}T_{1g}$	12.21	$13 {}^{o}T_{2g}$				
$157 \ \Gamma_{8g}$	2.854	273	53098		13.32	$11 {}^{o}_{c} T_{1g}$	10.16	$6 \ ^{\mathrm{o}}E_{g}$				
$79 \ \Gamma_{7g}$	2.851	265	53101		17.48	$10 \ ^{o}T_{2g}$	12.60	$12 \ ^{\mathrm{o}}T_{1g}$				
$158 \ \Gamma_{8g}$	2.855	274	53157									
$159 \ \Gamma_{8g}$	2.854	276	53177		12.59	9 ${}^{6}T_{2g}$	12.00	$11 \ {}^{6}T_{1g}$	11.60	$14 \ {}^{6}T_{2g}$		
$80 \ \Gamma_{7g}$	2.851	270	53190		24.30	$15 \ ^{6}T_{1g}$	13.29	$16^{-6}T_{2g}$				
78 Γ_{6g}	2.857	270	53214	0.01	16.94	$16 \ ^{6}T_{2q}$	10.06	$4 {}^{6}A_{2g}$				
160 Γ_{8a}	2.855	270	53226	0.01	13.21	$15 \ ^{6}T_{1a}$	12.44	$17 \ {}^{6}T_{2a}$	10.82	$9^{-6}E_q$		
79 Γ_{6a}	2.857	293	53231		29.10	$6 \ ^{8}T_{1a}$	22.19	$5 \ ^{8}T_{2a}$	14.84	$12 \ {}^{6}\tilde{T}_{1a}$		
80 Γ _{6α}	2.857	314	53240		22.44	$6 {}^{8}T_{1a}$	16.23	$5 {}^{8}T_{2a}^{-3}$	14.24	$16 {}^{6}T_{1a}$	12.30	$12^{-6}T_{1a}$
161 Tea	2.855	276	53270		52.99	$6 \ {}^{8}T_{1a}$	41.65	$5 \ {}^{8}T_{2a}^{2a}$		- 19		- 19
162 Γ ₈ -	2.857	288	53296		18.49	$16 {}^{6}T_{2a}$	17.76	$15 \ {}^{6}\bar{T}_{22}$				
81 Γ ₇₋	2.853	258	53312		17.88	$5^{6}A_{1-}$		- 2g				
$82 \Gamma_{7-}$	2.851	287	53322		59.84	$6 \frac{8T_{1}}{7_{1}}$						
32 Γ _/ g	2.855	207	53383		20.04 20.49	$14^{6}T$						
00 1 7g 162 Γ	2.000	967	53407		29.42 90.94	17 6T						
100 I 8g	4.000	201	00401		20.04	11 12g						

164 F.	9.957	974	52440		60.05	5 8T-	15 19	6 ⁸ T.				
104 I 8g	2.007	214	53449		19.00	5 12g 0.6 T	11 01	1167T				
$100 \ 1 \ 8g$	2.000	291	00020		12.00	$9 \ 1_{2g}$	11.01	$11 I_{1g}$	10.40	10.677	11 01	10.677
$81 \Gamma_{6g}$	2.851	292	53566		15.07	$9 {}^{\circ} I_{2g}$	14.88	$3 \ ^{\circ}A_{2g}$	13.40	$13 \ ^{\circ}T_{2g}$	11.21	$10 \ ^{\circ}T_{2g}$
					10.31	$12 {}^{o}T_{2g}$		6 —				
$84 \ \Gamma_{7g}$	2.857	279	53569		27.98	$16 {}^{o}T_{1g}$	10.81	$13 {}^{o}T_{2g}$		0		0
$166 \Gamma_{8g}$	2.854	287	53581		19.82	$12 {}^{6}T_{2g}$	14.96	$10 {}^{6}T_{2g}$	10.92	$13 {}^{6}T_{2g}$	10.39	$6 {}^{\mathbf{b}}E_g$
167 Γ_{8g}	2.853	286	53615		15.15	$16 \ ^{6}T_{1g}$	10.36	$13 \ ^{6}T_{1g}$				
82 Γ_{6q}	2.855	313	53647		17.70	$12^{-6}T_{2a}$	17.56	$10^{-6}T_{2q}$	16.92	$13^{-6}T_{2a}$	11.15	$6^{-6}E_{q}$
$85 \Gamma_{7a}$	2.860	303	53652		26.75	$13^{6}T_{1a}$	19.13	$13^{6}T_{2a}$		5		5
168 Tsa	2.853	280	53715		22.45	$13 {}^{6}T_{1a}$	18.30	$12 {}^{6}T_{2a}$	15.84	$13^{-6}T_{2a}$		
160 Fo	2.853	294	53733		36.62	$13^{6}T_{1}$	10.03	$14^{6}T_{0}$	10.01	10 129		
$170 \Gamma_{-}$	2.000	227	53800		31 33	$13 \ ^{6}T$	10.00	14 129				
	2.000	201	53800		01.00	$10 I_{1g}$ 10 6T	14.00	15 677	10.01	10.67	10.19	16 677
$00 \ 1 \ 7g$	2.800	270	55040		20.02	$13 I_{2g}$	14.00	$10 \ 1_{2g}$	12.21	$10 \ I_{1g}$	12.15	$10 \ I_{1g}$
83 I _{6g}	2.857	200	53888		23.58	$10 \ 1_{2g}$	13.87	$4 \ ^{\circ}A_{2g}$	10.58	10 ° E_g		
$171 \ \Gamma_{8g}$	2.859	295	53889		13.33	$15 \ {}^{o}T_{2g}$	12.14	$13 \ {}^{o}T_{2g}$		C		
$87 \ \Gamma_{7g}$	2.876	734	53906		34.36	$12 {}^{\circ}T_{1g}$	15.47	$15 \ ^{\circ}T_{1g}$	10.87	$8 \ ^{\mathrm{o}}E_g$		
$84 \Gamma_{6g}$	2.861	305	53909	0.02	18.09	$16^{-6}T_{1g}$	12.49	$16^{-6}T_{2g}$				
86 Γ_{6g}	2.857	364	53928		13.16	$13 \ ^{6}T_{2g}$	11.97	$16 {}^{6}T_{1g}$				
$85 \Gamma_{6q}$	2.856	338	53933		20.11	$13 \ {}^{6}T_{2a}$	11.44	$8^{6}E_{q}$				
$172 \Gamma_{8a}$	2.858	281	53959		13.09	$12^{6}T_{1a}$	10.47	$16 \ {}^{6}\tilde{T}_{2a}$				
88 Lza	2.876	622	54064	0.02	1658	$15 {}^{6}T_{2a}$	$16 \ 17$	$9^{6}E_{a}^{29}$	12.01	$12^{-6}T_{1a}$	11.52	$15^{-6}T_{1a}$
00 1 19	2.010	022	0 100 1		10.82	$10^{6}F$	10.11	U Lly	12.01	12 119	11.02	10 119
87 F.	9.857	347	54000		10.02 95.14	$16 \ ^{6}T_{-}$	17 45	$10^{-6}F$	11.87	$15^{6}T_{-}$		
172Γ	2.007	960	54117	0.04	20.14	$15 \ 15 \ 6T$	15 77	$10 \ E_g$ $16 \ 6T$	11.07	$10 \ 12g$		
173 I 8g	2.801	208	54117	0.04	23.30	$10^{-1}I_{2g}$	10.77	$10^{-1} I_{2g}$	10.10	10.67		
$1(4 \ 1 \ 8g$	2.870	696	54257		10.04	$18 \ ^{\circ}I_{2g}$	13.30	$11 \ ^{\circ}E_g$	10.12	$19 \ ^{\circ}T_{2g}$		
$\Gamma75 \Gamma_{8g}$	2.876	679	54312		15.05	$\prod_{g \in G} E_g$	10.66	$19 {}^{\circ}T_{2g}$		6		6 —
$89 \Gamma_{7g}$	2.876	898	54327		24.43	$15 \ {}^{o}T_{1g}$	18.36	$5 \ ^{\circ}A_{1g}$	11.89	$14 \ ^{\circ}T_{2g}$	11.04	$15 \ ^{\circ}T_{2g}$
					10.97	$14 \ {}^{o}T_{1g}$		c				
88 Γ_{6g}	2.856	317	54384		32.19	$14 {}^{o}T_{1g}$	27.90	$14^{\circ}T_{2g}$				
$176 \Gamma_{8g}$	2.876	706	54397		19.25	$15 \ ^{6}T_{1g}$	15.31	$5 \ ^{6}A_{1g}$	13.07	$14 \ {}^{6}T_{2g}$		
$90 \ \Gamma_{7g}$	2.876	744	54412		50.34	$6 \ ^{8}T_{1g}$	48.04	$5 \ ^{8}T_{2g}$				
$177 \ \Gamma_{8q}$	2.876	784	54465	0.01	21.78	$14 \ {}^{6}T_{2q}$	16.55	$18^{-6}T_{2q}$				
89 Γ _{6a}	2.853	318	54531		20.33	$18 {}^{6}T_{1a}$	20.31	$19 {}^{6}T_{2a}$	15.47	$17^{-6}T_{2a}$	10.78	$5^{6}A_{2a}$
$178 \Gamma_{8a}$	2.858	240	54581		56.16	$6 {}^{8}T_{1a}$	41.05	$5 {}^{8}T_{2a}$		-3		-3
91 Γ _{7α}	2.876	770	54629		31.78	$5 \ {}^{8}T_{2a}$	17.04	$6 {}^{8}T_{1a}^{-g}$	10.44	$10^{-6}E_{\pi}$		
179 Γ ₀₋	2 876	598	54648		34 96	$17 \frac{6}{7} T_{2}$	12 30	$18 \frac{6}{T_{2}}$		g		
$110 \pm 8g$ $02 \Gamma_7$	2 867	378	54664	0.01	2/ 33	$10^{6}E$	22.60	$16^{6}T_{1}$	13 75	$5^{8}T_{2}$		
52 Γ (g 00 Γ.	2.001	210	54674	0.01	27.00	$17 {}^{6}T_{-}$	19.69	$15 \ ^{6}T_{-}$	10.10	0 1 2g		
$90 \pm 6g$ 01 Γ	2.002	240	54074		21.01	17 12g 15 6T	15.02	$10 \ 12g$	1/0/	0.6E		
911_{6g}	2.007	349	54077		31.40	$15 I_{2g}$	10.00	$4 A_{2g}$	14.04	9 Eg 4 6 4	14.00	1.6 677
180 I 8g	2.801	200	54679		28.03	$10^{-1}I_{2g}$	21.07	$9 E_g$	19.12	$4 A_{2g}$	14.00	$10^{-1}I_{2g}$
$181 \Gamma_{8g}$	2.860	257	54700		20.66	$16 {}^{0}T_{1g}$	15.09	$9 {}^{\circ}E_g$	11.39	$15 \ {}^{o}T_{2g}$		<i>c</i>
$92 \Gamma_{6g}$	2.856	432	54704		18.44	$9 \ ^{\mathrm{o}}E_{g}$	16.16	$15 \ ^{0}T_{2g}$	13.05	$15 \ ^{0}T_{1g}$	11.77	$17 \ ^{0}T_{2g}$
					11.72	$16^{o}T_{2g}$						
$182 \Gamma_{8g}$	2.864	295	54756		49.08	$5 \ ^{8}T_{2g}$	18.68	$6 {}^{8}T_{1g}$				
93 Γ_{7g}	2.857	414	54814	0.01	50.61	$5 \ ^{8}T_{2g}$	14.25	$6 \ ^{8}T_{1g}$				
183 Γ_{8q}	2.864	298	54822		25.93	$16^{-6}T_{1q}$	22.39	$10^{-6}E_{q}$	14.37	$16^{-6}T_{2q}$		
$184 \Gamma_{8q}$	2.862	273	54994		34.08	$16 \ ^{6}T_{2q}$	14.34	$10^{-6}E_{q}$				
$94 \Gamma_{7a}$	2.851	426	55071		21.60	$11^{6}E_{a}$	15.39	$17 {}^{6}T_{1a}$	13.49	$19^{-6}T_{1a}$	12.42	$18^{-6}T_{1a}$
185 Γ _{8α}	2.876	623	55096		21.69	$18 {}^{6}T_{2a}$	17.53	$19^{6}T_{2a}^{-3}$	15.68	$18^{6}T_{1a}$	11.30	$5^{6}A_{2a}$
93 Γ _{6α}	2.850	407	55110		28.19	$18 {}^{6}T_{2a}^{2g}$	17.18	$11^{6} E_{a}^{2g}$		19		29
186 Го	2.858	310	55248		17.58	$18^{6}T_{2}$	16 99	$17 \frac{6}{T_1}$	14.73	$18^{-6}T_{1}$	10.85	$11^{-6}E$
187 L.	2.856	808	55540	0.04	22.01	$17 {}^{6}T$	11 19	$10^{6}T_{-}$	11.10	10 1 1g	10.00	II Dg
0.4Γ	2.010	294	55608	0.04	22.01 25.70	$11 \ 6E$	11.12 91.91	$19 \ 12g$ $18 \ 6T$				
9416g	2.004	324 976	55008	0.01	20.79	$11 \ Lg$ $11 \ 6E$	21.31	$10 \ 12g$ $17 \ 6T$				
100 I 8g	2.850	270	55040		20.71	$11 L_g$ 17 6T	20.51	$11 \ 1_{1g}$	10 50	c 6 4		
189 I 8g	2 851	293	5565Z		26.77	$17 \ ^{\circ}I_{1g}$	25.77	$11 \ ^{\circ}E_g$	12.70	$0 \ ^{\circ}A_{1g}$		
$190 \Gamma_{8g}$	2.001	000	FFFOO	0.01			16 91	1 / 0/1/				
	2.853	292	55720	0.01	19.41	$11^{\circ}E_g$	10.01	$17^{-1}1_{2g}$				
95 Γ_{7g}	2.853 2.851	292 278	55720 55735	0.01	$19.41 \\ 42.31$	$11 \ ^{6}E_{g}$ $17 \ ^{6}T_{1g}$	15.51 17.00	$17 \ ^{6}T_{2g}$ $17 \ ^{6}T_{2g}$		6-		
95 Γ _{7g} 96 Γ _{7g}	2.853 2.851 2.851 2.849	$292 \\ 278 \\ 275$	$55720 \\ 55735 \\ 55798$	0.01 0.01	$19.41 \\ 42.31 \\ 31.53$	$ \begin{array}{c} 11 & E_g \\ 17 & {}^6T_{1g} \\ 18 & {}^6T_{1g} \\ \end{array} $	15.31 17.00 18.37	$17 \ ^{6}T_{2g}$ $17 \ ^{6}T_{2g}$ $19 \ ^{6}T_{2g}$	13.29	$17 {}^{6}_{c} T_{1g}$		
95 Γ_{7g} 96 Γ_{7g} 191 Γ_{8g}	$2.851 \\ 2.853 \\ 2.851 \\ 2.849 \\ 2.851$	292 278 275 271	55720 55735 55798 55844	0.01 0.01	$ \begin{array}{r} 19.41 \\ 42.31 \\ 31.53 \\ 13.92 \\ \end{array} $	$ \begin{array}{c} 11 & E_g \\ 17 & {}^6T_{1g} \\ 18 & {}^6T_{1g} \\ 18 & {}^6T_{2g} \end{array} $	$ \begin{array}{r} 15.31 \\ 17.00 \\ 18.37 \\ 13.60 \\ \end{array} $	$\begin{array}{c} 17 & 1_{2g} \\ 17 & 6T_{2g} \\ 19 & 6T_{2g} \\ 18 & 6T_{1g} \end{array}$	$13.29 \\ 11.29$	$17 \ {}^{6}T_{1g}$ $19 \ {}^{6}T_{1g}$		
$\begin{array}{l} 95 \ \Gamma_{7g} \\ 96 \ \Gamma_{7g} \\ 191 \ \Gamma_{8g} \\ 192 \ \Gamma_{8g} \end{array}$	$2.851 \\ 2.853 \\ 2.851 \\ 2.849 \\ 2.851 \\ 2.850$	292 278 275 271 279	55720 55735 55798 55844 55905	0.01	$19.41 \\ 42.31 \\ 31.53 \\ 13.92 \\ 28.37$	$ \begin{array}{c} 11 & E_g \\ 17 & {}^6T_{1g} \\ 18 & {}^6T_{1g} \\ 18 & {}^6T_{2g} \\ 17 & {}^6T_{2g} \\ 17 & {}^6T_{2g} \end{array} $	$ \begin{array}{r} 15.31 \\ 17.00 \\ 18.37 \\ 13.60 \\ 11.72 \\ \end{array} $	$\begin{array}{c} 17 & 17_{2g} \\ 17 & 6T_{2g} \\ 19 & 6T_{2g} \\ 18 & 6T_{1g} \\ 18 & 6T_{2g} \end{array}$	$13.29 \\ 11.29$	$17 \ {}^{6}T_{1g}$ $19 \ {}^{6}T_{1g}$		
$\begin{array}{c} 95 \ \Gamma_{7g} \\ 96 \ \Gamma_{7g} \\ 191 \ \Gamma_{8g} \\ 192 \ \Gamma_{8g} \\ 97 \ \Gamma_{7g} \end{array}$	2.853 2.853 2.851 2.849 2.851 2.850 2.849	292 278 275 271 279 270	55720 55735 55798 55844 55905 55905	0.01	$19.41 \\ 42.31 \\ 31.53 \\ 13.92 \\ 28.37 \\ 32.05$	$\begin{array}{c} 11 & E_{g} \\ 17 & {}^{6}T_{1g} \\ 18 & {}^{6}T_{1g} \\ 18 & {}^{6}T_{2g} \\ 17 & {}^{6}T_{2g} \\ 17 & {}^{6}T_{1g} \end{array}$	$15.31 \\ 17.00 \\ 18.37 \\ 13.60 \\ 11.72 \\ 25.04$	$\begin{array}{c} 17 & 17_{2g} \\ 17 & 6T_{2g} \\ 19 & 6T_{2g} \\ 18 & 6T_{1g} \\ 18 & 6T_{2g} \\ 17 & 6T_{2g} \end{array}$	$13.29 \\ 11.29$	$17 \ {}^{6}T_{1g}$ $19 \ {}^{6}T_{1g}$		

95 Γ_{6q}	2.855	268	55981	52.05	$17 {}^{6}T_{2a}$	14.89	$13^{-6}E_{q}$				
194 Γ_{8a}	2.849	279	56019	15.30	$11 {}^{6}E_{a}$	14.25	$12^{-6}E_{a}^{'}$	14.17	$17 {}^{6}T_{1a}$	10.64	$17 {}^{6}T_{2a}$
98 Γ_{7a}	2.849	275	56050	22.81	$19 {}^{6}T_{1a}$	13.97	$21 \ {}^{6}T_{2a}$	11.05	$6 {}^{6}A_{1a}$		-3
$195 \Gamma_{8a}$	2.848	280	56063	16.57	$20 \ {}^{6}T_{2a}$	10.15	$19 {}^{6}T_{2a}$	10.10	$17 {}^{6}T_{1a}$		
99 Γ _{7α}	2.850	274	56162	50.17	$6 {}^{6}A_{1a}$	11.11	$19^{6}T_{1a}^{2g}$		19		
96 Γ _{6α}	2 847	284	56273	20.47	$5^{6}A_{2a}$	15 52	$18^{-6}T_{2a}$	12.08	$18^{-6}T_{1a}$	10.61	$20^{-6}T_{2a}$
196 Гел	2.849	$\frac{1}{272}$	56301	38.85	$17 {}^{6}T_{1a}$	10.02	10 129	12.00	10 11g	10101	1 0 1 29
197 Гол	2 850	280	56354	42 46	$6^{6}A_{1}$	1673	$11^{-6}E_{-}$				
$100 \Gamma_{\pi}$	2.849	$\frac{200}{274}$	56362	19 59	$18 \frac{6}{T_1}$	17.01	$19^{6}T_{1}$	15.29	$17 {}^{6}T_{1}$	10.06	$6^{6}A_{1}$
100 Γ ₁ 198 Γ ₀	2.850	271	56420	14 49	$20^{6}T_{0}$	19.14	$10^{-1} T_{0}^{-1}$	11.08	$20^{6}T_{1}$	10.00	0 111g
$97 \Gamma_c$	2.851	258	56428	35.82	$17 {}^{6}T_{1}$	16.91	$20^{6}T_{0}$	10.83	$18^{6}T_{0}$		
97 Γ ₆ g	2.001	200	56469	48.65	$18^{6}T_{2}$	16.21	$12^{6}E$	10.00	10 12g		
50 1 6g 100 Га	2.049	$250 \\ 275$	56486	18.88	$18 \ ^{6}T_{-}$	11.63	$\frac{12}{20} \frac{D_g}{6T_a}$	10.46	$12^{6}F$		
$101 \Gamma_{-}$	2.049	210	56546	24.60	$13 \ 12 \ 6 E$	21 80	$18^{6}T$	14.00	$\frac{12}{20} \frac{D_g}{T}$		
1011_{7g} 00Γ .	2.000	202	56616	24.03	$10 \ D_g$ $10 \ ^6T_{-}$	17.00	$10 I_{1g}$ $01 ^{6}T_{-}$	14.03	20 11g		
991 _{6g} 900 Г	2.040	211	56651	33.27	$19 \ 12g$ $10 \ 6T$	10.40	21 12g 10 6E	10.16	$10^{6}T$		
200 I 8g 109 F	2.000	203	56682	20.90	$10 \ 12g$ $01 \ 6T$	17.40	$12 E_g$ 20 6T	10.10	$19 \ 12g$ $19 \ 6E$		
$102 \ 1 \ 7g$	2.049	209	50005	10.20	$21 1_{2g}$ 10 6 T	17.92	$20 \ 1_{2g}$	12.70	$12 \ E_g$ $10 \ 6T$	10.10	10.6 5
$201 \ 1 \ 8g$	2.848	218		20.00	$18^{-1} I_{2g}$	17.49	$19^{-1}I_{1g}$	11.28	$19^{-1}1_{2g}$	10.10	$12^{-1}E_g$
100 I 6g	2.849	282	50757	23.00	$19 \ ^{\circ}T_{2g}$	12.13	$20 \ ^{\circ}T_{2g}$	11.82	$3 \ ^{\circ}A_{2g}$		
$103 \ \Gamma_{7g}$	2.849	259	56809	29.41	$18 \ ^{\circ}T_{2g}$	12.65	$21 \circ T_{2g}$	10.79	$19 \ ^{\circ}T_{1g}$		
$202 \ \Gamma_{8g}$	2.849	279	56838	20.26	$19 \ ^{\circ}T_{2g}$	16.36	$13 \ ^{\circ}E_{g}$	11.70	$19 \ ^{\circ}T_{1g}$		
$101 \Gamma_{6g}$	2.848	276	56946	25.92	$12 \ ^{\circ}E_{g}$	21.55	$21 \ ^{\circ}T_{2g}$	21.47	$18 \ ^{\circ}T_{2g}$		
$203 \ \Gamma_{8g}$	2.850	275	56957	26.63	$13 {}^{\circ}E_{g}$	18.92	$20 \ ^{o}T_{2g}$		6 -		6-
204 Γ_{8g}	2.848	274	57025	21.38	$21 {}^{o}_{c} T_{2g}$	18.29	$19 \ ^{0}T_{2g}$	13.86	$12 {}^{0}E_{g}$	12.45	$19 \ ^{0}T_{1g}$
205 Γ_{8g}	2.849	290	57062	49.04	$20 \ {}^{o}_{c}T_{2g}$		6 —		6 —		6 —
$102 \ \Gamma_{6g}$	2.848	280	57165	32.81	$19 {}^{o}_{c}T_{1g}$	14.66	$18 {}^{o}_{c}T_{1g}$	10.62	$20 \ ^{0}T_{1g}$	10.15	$20 \ ^{0}T_{2g}$
$104 \ \Gamma_{7g}$	2.848	276	57248	32.87	$19 {}^{o}_{c}T_{1g}$	16.00	$18 {}^{o}_{c}T_{1g}$				
$206 \ \Gamma_{8g}$	2.848	281	57283	30.58	$13 \ ^{\circ}E_{g}$	13.34	$18 {}^{o}T_{1g}$		0		
$103 \Gamma_{6g}$	2.848	288	57368	27.36	$21 {}^{o}_{g}T_{2g}$	24.61	$19 {}^{o}T_{1g}$	12.41	$20 {}^{o}T_{1g}$		
$207 \ \Gamma_{8g}$	2.849	277	57425	33.18	$19 {}^{6}T_{1g}$	19.72	$18 {}^{6}T_{1g}$	17.22	$21 {}^{6}T_{2g}$		
$104 \Gamma_{6g}$	2.849	277	57430	36.39	$20 {}^{6}T_{1g}$	14.59	$21 {}^{6}T_{2g}$	10.68	$13^{-6}E_{g}$		
$208 \ \Gamma_{8g}$	2.850	281	57452	24.90	$21 {}^{6}T_{2g}$	22.46	$20^{-6}T_{1g}$				
$105 \ \Gamma_{7g}$	2.848	280	57485	31.85	$19^{-6}T_{2g}$	27.86	$18^{-6}T_{1g}$				
$209 \ \Gamma_{8g}$	2.848	283	57518	35.48	$20 \ ^{6}T_{1g}$	13.91	$18 \ ^{6}T_{1g}$	10.38	$19^{-6}T_{2g}$	10.25	$20^{-6}T_{2g}$
$210 \ \Gamma_{8g}$	2.848	286	57541	16.05	$19 {}^{6}T_{2g}$	14.01	$20 \ ^{6}T_{1g}$	13.27	$5 \ ^{6}A_{2g}$	10.85	$20 \ ^{6}T_{2g}$
$105 \Gamma_{6g}$	2.850	286	57541	17.43	$19^{-6}T_{2g}$	14.65	$21 \ ^{6}T_{2g}$	12.32	$5 {}^{6}A_{2g}$	10.25	$13^{-6}E_{g}$
211 Γ_{8g}	2.849	280	57619	22.04	$19 \ ^{6}T_{1g}$	18.92	$18 \ ^{6}T_{1g}$	14.91	$20^{-6}T_{1g}$	13.81	$12^{-6}E_{g}$
				10.93	$19^{-6}T_{2g}$						
$106 \Gamma_{6g}$	2.849	281	57624	34.44	$19^{-6}T_{1g}$	24.06	$12^{-6}E_{g}$	10.50	$18 \ ^{6}T_{1g}$		
106 Γ_{7q}	2.847	299	57649	28.15	$20 \ ^{6}T_{2q}$	26.44	$21 \ {}^{6}T_{2q}$	10.13	$18 \ ^{6}T_{1q}$		
107 Γ_{6q}	2.846	290	57695	28.32	$21 \ {}^{6}T_{2q}$	21.58	$20 \ ^{6}T_{1q}$	15.85	$18 \ ^{6}T_{1q}$	15.73	$19^{-6}T_{2q}$
212 Γ_{8q}	2.847	281	57754	28.25	$21 \ {}^{6}T_{2a}$	15.27	$19 \ ^{6}T_{1q}$	10.31	$20 \ ^{6}T_{1q}$		5
213 Γ_{8a}	2.847	284	57778	60.07	$20 \ {}^{6}T_{1a}$		-3		-3		
214 Γ_{8a}	2.848	283	57963	39.97	$20 \ ^{6}T_{1a}$	15.77	$21 \ ^{6}T_{2a}$	11.97	$20^{-6}T_{2a}$		
$107 \Gamma_{7a}$	2.848	271	58071	54.95	$20^{6}T_{1g}^{1g}$	14.15	$20^{-6}T_{2a}^{2g}$		29		
$215 \Gamma_{8-}$	2.846	286	58130	23.53	$21 {}^{6}T_{2a}$	18.66	$20 \ {}^{6}T_{1a}$	13.67	$20^{-6}T_{2a}$	13.32	$13^{-6}E_{c}$
108 Γ _{6α}	2.846	$\frac{-90}{291}$	58151	34.97	$20^{6}T_{2a}$	21.06	$21 \ {}^{6}T_{2}$	17.68	$13^{6}E_{c}$		<i>y</i>
216 Γ ₈ -	2.847	$\frac{-2}{284}$	58208	25.93	$21 \ {}^{6}T_{22}$	25.39	$20^{6}T_{1a}$	16.14	$20^{-6}T_{2a}$		
217 Γ ₀₋	2.846	288	58250	35.16	$20^{6}T_{1}$	25.57	$21 \ {}^{6}T_{2}$	13.62	$20^{6}T_{2}$		
108 Γ ₇	2.846	280	58259	41.82	$\frac{20}{20} \frac{6}{7_1}$	28.94	$13^{6}E_{-}$	10.01	<u>-</u> 0 - 2g		
109 Γ _α	2 848	280	58285	53.00	$20^{6}T$	22.10	$\frac{10}{20} \frac{E_g}{6T_2}$				
100 I 6g	2.010	200	00200	00.00	20 11g	44.13	20 12g				

 $4f^7$ excited states

$4f^{7}(^{6}P_{3}$	$(2,5/2,7/2)^{c}$		
$2 \Gamma_{7u}$	2.870	212	29871
$2 \Gamma_{8u}$	2.870	212	29883
$3 \Gamma_{8u}$	2.870	210	30250
$2 \Gamma_{6u}$	2.870	215	30527
$4 \Gamma_{8u}$	2.870	216	30532
$3 \Gamma_{7u}$	2.870	217	30541

A £7/6 T			\ C								
$4f(1_{7/2})$	2,9/2,11/2,1	13/2, 15/2, 280	17/2)	72.40	1 ⁶ T	91-14	16E				
31 _{6u}	2.809	280	34401	73.40	$1 \ 1 \ 2u$ $1 \ 6T$	21.14	$1^{+}E_{u}$ 1.6 E				
$5 1_{8u}$	2.869	279	34406	72.80	$1 \circ T_{2u}$	14.95	$1 \ E_u$		- 6 -		
$4 \Gamma_{7u}$	2.869	280	34444	47.81	$2 {}^{o}T_{1u}$	26.30	$2 {}^{\circ}T_{2u}$	23.12	$1 {}^{\circ}A_{1u}$		
$6 \Gamma_{8u}$	2.869	279	34445	75.02	$1 {}^{o}_{c}T_{2u}$	12.65	$1 {}^{\circ}E_u$				
$4 \Gamma_{6u}$	2.869	279	34453	82.61	$1 {}^{o}_{c}T_{2u}$		c		0		C
$7 \Gamma_{8u}$	2.869	278	34477	42.41	$1 {}^{6}T_{2u}$	28.55	$2 {}^{6}T_{1u}$	13.88	$1 {}^{6}A_{1u}$	13.43	$2 {}^{6}T_{2u}$
$8 \Gamma_{8u}$	2.869	282	34481	60.25	$1 {}^{6}T_{2u}$	15.36	$2^{-6}T_{1u}$	11.71	$1 {}^{6}A_{1u}$	11.20	$2^{-6}T_{2u}$
$5 \Gamma_{7u}$	2.869	280	34483	90.68	$1 {}^{6}T_{2u}$						
9 Γ_{8u}	2.869	281	34530	45.43	$2^{6}T_{1u}$	35.10	$2^{6}T_{2u}$	14.67	$1 {}^{6}A_{1u}$		
$5 \Gamma_{6u}$	2.869	281	34546	48.10	$2^{6}T_{2u}$	43.09	$2^{6}T_{1u}$				
$6 \Gamma_{7u}$	2.869	280	34584	33.51	$1 {}^{6}A_{1u}$	31.30	$2^{6}T_{1u}$	28.46	$2^{6}T_{2u}$		
$10 \Gamma_{8u}$	2.869	280	34596	71.22	$2^{6}T_{1u}$	19.31	$2^{6}T_{2u}$				
6 Ген	2.869	281	34625	85.97	$2^{6}T_{2u}$		20				
$7 \Gamma_{7}$	2 869	280	34644	36.08	$2^{6}T_{1}^{-2a}$	31.69	$1^{-6}E_{-}$	18 85	$1^{6}A_{1}$	13 29	$2^{-6}T_{2}$
$11 \Gamma_{0}$	2.869	281	34676	43.0/	$2^{6}T_{0}$	18 29	$1^{6}A_{1}$	17.23	$2^{6}T_{1}$	1/ 38	$1^{6}E^{12u}$
$19 \Gamma_{\circ}$	2.005	201	34688		$2^{6}T$	10.25 97.18	$2^{6}T_{2}$	19.05	$\frac{2}{16}$	19.79	$1 \frac{6}{4}$
$12 \Gamma_{8u}$ 12 Γ_{-}	2.003	200	34704	60.97	$\frac{2}{16}F$	27.10	$2^{-1}2u$ $2^{6}T$	19.00	ΓD_u	12.72	\square $\square_1 u$
13 I 8u о Г	2.009	279	34704 24709	60.24	$1 L_u$ 1 6 E	20.90	$2 1_{2u}$ 3 6T				
$0 \ 1 \ 7u$	2.009	219	04700 04700	62.00	$1 L_u$ 16E	02.42 14.91	$2 I_{1u}$	19 70	a 677		
$14 \Gamma_{8u}$	2.869	280	34730	53.21	$1 \ E_u$	14.31	$2 \ ^{\circ}I_{1u}$	13.78	$2 \ 1_{2u}$		
$7 \Gamma_{6u}$	2.869	280	34746	57.70	$1 {}^{o}E_{u}$	14.35	$1 {}^{o}T_{2u}$	11.45	$1 {}^{0}A_{2u}$		
$9 \Gamma_{7u}$	2.869	280	34787	52.13	$2 {}^{o}_{c} T_{1u}$	24.14	$2 {}^{\circ}T_{2u}$	22.36	$1 {}^{o}_{c} A_{1u}$		<i>c</i> .
$8 \Gamma_{6u}$	2.869	281	34788	31.73	$2 {}^{o}T_{2u}$	24.64	$2 {}^{o}T_{1u}$	19.32	$1 {}^{o}E_{u}$	15.24	$1 {}^{o}A_{2u}$
$15 \Gamma_{8u}$	2.869	281	34793	33.77	$2 {}^{6}T_{1u}$	30.15	$2 {}^{6}T_{2u}$	14.69	$1 {}^{6}E_u$	11.67	$1 {}^{6}A_{1u}$
$16 \Gamma_{8u}$	2.869	282	34814	72.30	$2^{6}T_{2u}$	18.02	$2^{6}T_{1u}$				
$17 \Gamma_{8u}$	2.870	280	34834	73.28	$1 {}^{6}A_{2u}$						
9 Γ_{6u}	2.870	280	34838	64.17	$1 {}^{6}A_{2u}$	18.80	$2^{6}T_{2u}$				
$4f^{7}(^{6}D_{1}$	/2.3/2.5/2.7	$_{7/2})^{c}$									
$10 \Gamma_{6u}$	2.869	279	37105	95.23	$3^{6}T_{2u}$						
$18 \Gamma_{8u}$	2.869	279	37295	72.05	$3^{6}T_{2u}$	27.60	$2^{6}E_{u}$				
19 Г _{8и}	2.869	279	37322	78.35	$3^{6}T_{2u}$	21.58	$2^{6}E_{u}$				
11 Ген	2.869	279	37361	89.25	$2^{6}E_{u}$	10.72	$3^{6}T_{2u}$				
20 Ге.	2.869	279	37622	47.26	$2^{6}E_{-}^{2}$	46.96	$3^{6}T_{2}$				
$10 \Gamma_{-}$	2.869	279	37958	87.10	$\frac{2}{3} \frac{E_u}{6T_0}$	10.60	$1 \frac{6}{T_1}$				
$21 \Gamma_{o}$	2.000	210	38070	59.19	$3^{6}T_{2}$	37.46	$2^{6}E$	10.38	$1^{6}T_{-}$		
$\frac{2118u}{19\Gamma_{2}}$	2.003	273	20156	02.12	$2^{6}T_{-}$	19.91	$\frac{2}{16T}$	10.00	1 1 1 u		
12 16u	2.009	219	20100	54.25	$3^{0} 12u$ $3^{0} E$	12.21	1 1 1 u 2 6 T	1167	$1^{6}T$		
$22 \ 1 \ 8u$ 11 Γ	2.009	279	20222	04.55	$2 L_u$ 2 6 F	00.02 11.74	3 12u 16T	11.07	$I I_{1u}$		
1117u	2.809	279	30219	80.10	$Z L_u$	11.74	$I I_{1u}$				
				E^{3+} done	10.8						
				Eu -doped	i Cas						
1 £6 (7 E)										
4 J (F ₀₋	-6/	200	0	40.4	1 777	26.26	1 777				
$1 A_{1g}$	2.729	308	0	48.40	$1 (T_{1g})$	30.30	$1 (1_{2g})$				
$1 T_{1g}$ 1 T	2.729	308	372	50.79	$1 (T_{1g})$	35.76	$1 (T_{2g})$				
$1 E_g$	2.728	308	945	68.00	$17T_{1g}$	28.25	$17T_{2g}$	11.00	1 17 4		
$1 I_{2g}$	2.729	308	1142	46.15	$1 (T_{1g})$	38.40	$1 (T_{2g})$	11.82	$1 \ (A_{2g}$		
$1 A_{2g}$	2.728	308	1944	55.53	$17T_{1g}$	41.97	$17T_{2g}$	10.00	1 17 4		
$2 T_{2g}$	2.729	308	2026	45.50	$1 \ 7T_{1g}$	32.90	$17T_{2g}$	19.00	$17A_{2g}$		
$2 T_{1g}$	2.729	308	2074	46.78	$1.7T_{2g}$	37.51	$1.7T_{1g}$	13.15	$1 \ 7A_{2g}$		
$3 T_{2g}$	2.728	308	2933	69.23	$1.7T_{1g}$	24.82	$1 \ 7T_{2g}$				
$2 E_g$	2.729	308	3171	73.32	$1 \ 7T_{2g}$	24.62	$1 \ 7T_{1g}$				
$3 T_{1g}$	2.729	308	3211	44.25	$1 \ 7T_{2g}$	29.17	$1 \ 7T_{1g}$	24.51	$1 \ 7A_{2g}$		
$2 A_{1g}$	2.729	308	3252	48.85	$1 \; 7A_{2g}$	37.23	$1 \ 7T_{1g}$	11.83	$1 \ 7T_{2g}$		
$4 T_{1g}$	2.728	308	4172	51.04	$1 \ 7T_{1g}$	44.38	$1 \ 7T_{2g}$				
$3 E_g$	2.728	308	4204	51.45	$1 \ 7T_{2g}$	46.18	$1 \ 7T_{1g}$				
$4 T_{2g}$	2.729	308	4251	64.79	$1 \ 7T_{1g}$	24.40	$1 \ 7A_{2g}$				
$5 T_{1g}$	2.729	308	4416	73.81	$1 \ 7T_{2g}$	12.74	$1 \ 7T_{1g}$	11.07	$1 \ 7A_{2g}$		
$4 E_g$	2.728	308	5369	54.99	$1 \ 7T_{1g}$	41.70	$1 \ 7T_{2g}$				
$5 T_{2g}$	2.728	308	5391	50.60	$1 \ 7T_{1g}$	45.30	$1 \ 7T_{2g}$				
$2 A_{2g}$	2.728	308	5446	55.11	$1 \ 7T_{2g}$	41.55	$1 \ 7T_{1g}$				
$6 T_{2g}$	2.729	308	5653	44.03	$1 \ 7T_{2g}$	37.12	$1 7 A_{2g}$	15.53	$1 \ 7T_{1g}$		

$\begin{array}{c} 6 \ T_{1g} \\ 3 \ A_{1g} \end{array}$	$\begin{array}{c} 2.729 \\ 2.729 \end{array}$	$\frac{308}{308}$	5687 5715	$\begin{array}{c} 46.35\\ 47.40\end{array}$	$\begin{array}{c} 1 \ 7T_{2g} \\ 1 \ 7T_{2g} \end{array}$	$\begin{array}{c} 37.60\\ 38.81 \end{array}$	$\begin{array}{c} 1 \ 7A_{2g} \\ 1 \ 7A_{2g} \end{array}$	$\begin{array}{c} 12.73 \\ 10.44 \end{array}$	$\begin{array}{c} 1 \ 7T_{1g} \\ 1 \ 7T_{1g} \end{array}$		
$4f^{6}(^{5}D_{0})$	-3)										
$4 A_{1a}$	2.727	307	19893	57.55	$1 \ 5T_{2a}$	36.69	$1 5E_a$				
$7 T_{1a}^{1g}$	2.727	307	20699	58.17	$1.5T_{2a}^{2g}$	36.63	$1.5E_{a}^{g}$				
$7 T_{2}$	2 727	307	22337	70.60	$15T_{2g}$	24 94	$1.5E_{-}$				
5 E	2.121	307	22440	53.00	$1.5I_{2g}$ 1.5E	<u>/1 /0</u>	$1.5 T_{o}$				
5 12g 8 72.	2.121	307	25010	85 55	$15D_g$ $15T_a$	10 12	1512g 15F				
$\circ T_{1g}$	2.121	307	25063	50.00	1512g 15F	45 49	$15D_g$ $15T_a$				
$3 A_{2g}$	2.727	$307 \\ 307$	25100	95.34	$1.5E_{g}$ $1.5E_{a}$	40.42	1 512g				
0 1 1 2 y				00101	1 0 2 9						
$4f^{6}(^{5}D_{4})$	$^{5}L_{6-10}, ^{5}G$	(2-6)									
9 T_{2g}	2.726	307	28200	23.26	$1 \ 5T_{1g}$	22.66	$2 5E_g$	16.25	$4 \ 5T_{2g}$	14.50	$2 \ 5T_{1g}$
$5 A_{1g}$	2.725	307	28212	54.31	$3 5T_{2g}$	33.41	$3 5E_g$				
$4 A_{2g}$	2.726	307	28225	37.63	$1 \ 5T_{1g}$	36.55	$2 5E_g$	13.47	$2 5T_{1g}$		
$9 T_{1g}$	2.725	307	28234	32.05	$3 5T_{2g}$	13.37	$1 5T_{1g}$	13.35	$2 5T_{1g}$	13.30	$3 5 E_g$
				11.10	$2 5E_g$						
$10 \ T_{2g}$	2.726	307	28378	43.45	$1 5T_{1g}$	14.42	$2 5E_g$	10.37	$3 5T_{2g}$	10.01	$4 5T_{1g}$
$11 \ T_{2g}$	2.726	307	28379	41.40	$1 5T_{1g}$	35.38	$1 5A_{1g}$				
$6 E_g$	2.726	307	28413	44.78	$1 5T_{1g}$	22.10	$2 5E_g$	18.46	$1 \; 5A_{1g}$		
$12 \; T_{2q}$	2.726	307	28463	26.80	$4 5 T_{2q}$	16.11	$1 \ 5T_{1q}$	14.57	$2 5 E_q$	10.03	$3 5T_{2q}$
$10 T_{1q}$	2.726	307	28513	44.39	$1 \; 5T_{1q}$	20.58	$2 5 T_{2a}$		5		0
$7 E_a$	2.726	307	28514	32.42	$1 5 A_{1a}$	16.62	$2 5 E_a$	11.16	$2 5T_{2a}$	10.23	$1 \ 5T_{2a}$
$13 \ T_{2a}$	2.727	307	28529	22.05	$4 5 T_{2a}^{-s}$	21.42	$3 5 T_{2a}^{3}$	17.97	$3 5 T_{1a}^{-s}$	13.05	$4 5 E_a^{-s}$
-9				12.66	$2 5 T_{1a}^{-g}$		-9		-9		9
$6 A_{1a}$	2.727	307	28605	64.54	$2.5 E_{g}^{1g}$	13.87	$2 5T_{2a}$	13.80	$5 5T_{2a}$		
$8 E_a$	2.727	308	28625	31.75	$\frac{1}{3}\frac{1}{5T_{1a}}$	20.52	$45T_{2a}$	17.19	$4.5E_{a}$	10.56	$2.5A_{1a}$
$5 A_{2a}$	2 727	307	28635	40.31	$25T_{1a}$	18 85	$45E_{a}$	12.64	$35E_{a}$	10.00	_ 01119
$14 T_{2}$	2.727	308	28745	71 97	$25T_{2}$	10.00	1 0 <i>L g</i>	12.01	0 0 <u>L</u> g		
$11 T_{1}^{2g}$	2.121	307	28821	2/ 10	2.512g 2.5 T_1	20.91	$3.5T_{ m o}$	10.84	$4.5T_{\rm e}$		
7 4	2.726	307	28845	56 55	$\frac{2}{15E}$	36 10	$15T_{2g}$	10.01	ч 012g		
0 E	2.120	307	28901	33.00	35E	13 60	1.512g $4.5T_{2}$	11.89	$2.5T_{\rm c}$	11 74	$2.5T_{\odot}$
$\frac{g}{12T}$	2.121	307	28901	30.47	$15E_g$	20.25	$\frac{4}{1}\frac{5T_{2g}}{5T_{2g}}$	10.49	2.51_{1g} $2.5T_{2}$	11.14	2 012g
$12 I_{1g}$ 15 T	2.121	207	20910	95 0 4 95 0 4	25T	10.00	1 J I 2g 2 5 T	11.42	2512g 45F	10 55	4.5T
$10 \ I_{2g}$ $10 \ E$	2.121	207	20924	41.04	$3 51_{2g}$ 1 5 T	20.60	$2 \ 5I_{1g}$ 1 5 E	11.00	$4.5 E_g$	10.55	4 51 _{2g}
10 Eg 16 T	2.121	307	20900	41.04	1.51_{2g}	30.09	1 0 <i>E</i> g 1 5 <i>T</i>	10.00	$2 DE_g$		
$10 \ I_{2g}$	2.121	307	29021	20.00	$2 5 E_g$	16.00	$1 5 I_{1g}$ 1 ET	11.00	$2 \ 51_{2g}$	11 00	9 F.T
$1(I_{2g})$	2.121	307	29022	18.09	$2 3 E_g$	15.29	$1 \ 3I_{1g}$	11.04	$1 \ _{0}A_{1g}$	11.23	Z 31 _{2g}
$18 \ T_{2g}$	2.727	308	29028	34.03	$1 \ 51_{2g}$	15.48	$2 51_{2g}$	13.15	$1 \ 5 T_{1g}$	10 50	0 F 77
$13 T_{1g}$	2.727	307	29088	23.07	$4 5T_{2g}$	20.41	$4 5 E_g$	19.17	$3 5 T_{1g}$	13.58	$2 \ 5T_{2g}$
$0 A_{2g}$	2.727	308	29114	40.96	$3 5T_{1g}$	24.40	$4 5 E_g$	21.32	$3 5 E_g$		
$11 E_g$	2.727	308	29137	55.16	$2 5T_{2g}$						
$14 T_{1g}$	2.727	307	29154	34.92	$2 5T_{2g}$	10 -	0 5 4	10.04	0 F.T.	10.15	
$19 \ T_{2g}$	2.727	308	29165	28.97	$3 \ 5T_{1g}$	18.79	$2 \ 5A_{1g}$	18.04	$2 \ 5T_{1g}$	12.45	$3 5 E_g$
10 10				11.04	$4 \ 5T_{2g}$						
$12 E_g$	2.726	307	29573	51.15	$3 \ 5T_{2g}$	19.91	$2 \ 5T_{1g}$	14.36	$4 \ 5T_{2g}$		
$20 \ T_{2g}$	2.726	307	29601	32.48	$2 \ 5T_{1g}$	27.26	$3 5E_g$	14.31	$4 \ 5T_{2g}$	10.27	$3 \ 5T_{2g}$
$15 \ T_{1g}$	2.726	308	29686	25.67	$3 5T_{2g}$	16.70	$4 5T_{2g}$	13.79	$4 5 E_g$	12.98	$3 5E_g$
				11.62	$2 5T_{1g}$	10.73	$3 5T_{1g}$				
$21 \ T_{2g}$	2.727	308	29787	35.80	$3 5T_{1g}$	13.95	$4 5 E_g$	12.17	$4 5T_{2g}$		
$16 T_{1g}$	2.727	308	29823	48.22	$3 5T_{1g}$	20.88	$2 5T_{1g}$	18.84	$4 5T_{2g}$		
$8 A_{1g}$	2.727	307	29867	54.65	$4 5 E_g$	24.86	$4 5T_{2g}$	14.68	$3 5T_{2g}$		
$13 E_g$	2.726	307	29901	31.66	$1 5T_{1g}$	17.23	$2 5E_g$	15.46	$1 \; 5A_{1g}$		
$22 T_{2g}$	2.726	307	29938	35.49	$1 5T_{1g}$	23.00	$2 5E_g$	12.90	$1 \; 5A_{1g}$		
$14 E_g$	2.727	308	29949	22.14	$2 \ 5A_{1g}$	18.69	$2 5T_{1g}$	16.04	$4 \ 5T_{2g}$	13.77	$4 5E_g$
$7 A_{2a}$	2.727	307	29982	38.00	$1 5 T_{1a}$	35.33	$2 5 E_a$	12.44	$4 5 T_{1a}$		5
9 A_{1a}^{-3}	2.727	307	30116	58.63	$2 5 T_{2a}^{-3}$	15.11	$5 5 E_a$	14.43	$2 5 E_{a}^{-3}$		
$17 T_{1a}^{13}$	2.727	307	30120	51.65	$2 5 T_{2a}^{-3}$		Э		э		
$23 T_{2a}^{19}$	2.727	307	30143	48.89	$2 5 T_{2a}^{2g}$	12.53	$5 5T_{1a}$	11.75	$1 \; 5T_{1a}$		
$8 A_{2a}$	2.726	307	30532	58.93	$35E_{2}$	25.10	$25T_{1a}$		- 19		
$24 T_{2a}$	2.726	307	30536	30.14	$25T_{12}$	28.59	$3 5T_{22}$	19.51	$4.5T_{2a}$		
$18 T_{1a}$	2.726	307	30538	41.47	$\frac{1}{3} \frac{5}{5T_{2a}}$	21.47	$25T_{1a}$	21.02	$45T_{2a}$		
$10 A_{1-}$	2.726	308	30632	33 15	$35E_{-}$	29 79	$\frac{1}{4} \frac{5 \pm 1g}{5 E_{-}}$	25 36	$35T_{2}$		
		200		55110	J J L g	0	- <i>5-29</i>	_ 3.30	5 5 - 29		

$19 T_{1g}$	2.727	308	30652	41.25	$3 5T_{1g}$	22.04	$4 5T_{2g}$	13.91	$3 5 E_g$		
$15 E_g$	2.727	307	30725	30.90	$4 5 E_g$	22.99	$4 5T_{2g}$	19.41	$2 \ 5A_{1g}$		
$25 T_{2q}$	2.727	308	30815	26.82	$2 5 A_{1q}$	22.32	$2 5 T_{1q}$	20.50	$4 5 T_{2q}$	12.53	$4 5 E_q$
5				12.52	$3 5 T_{1q}$		0		5		5
$20 T_{1g}$	2.727	308	30843	42.32	$3 5 T_{1g}$	36.79	$4 5 E_g$				
$21 T_{1g}$	2.725	307	31577	57.80	$3 \ 5T_{2g}$	20.90	$3 5 E_g$	13.20	$2 5T_{1g}$		
$16 E_g$	2.726	307	31632	31.49	$3 \ 5T_{2g}$	31.00	$2 \ 5T_{1g}$	28.83	$3 5 E_g$		
22 T_{1g}	2.726	307	31652	40.58	$2 \ 5T_{1g}$	25.89	$3 5 E_g$	18.08	$3 \ 5T_{2g}$		
$11 \ A_{1g}$	2.726	308	31704	60.74	$4 \ 5T_{2g}$	24.63	$3 5E_g$	11.78	$4 5 E_g$		
$23 T_{1g}$	2.727	307	31755	39.44	$4 5T_{2g}$	24.09	$2 5T_{1g}$	16.00	$4 5 E_g$	12.58	$3 5T_{1g}$
$26 T_{2g}$	2.727	308	31799	36.28	$4 5T_{2g}$	28.85	$3 5T_{1g}$	11.58	$4 5 E_g$		
9 A_{2g}	2.727	308	31982	50.80	$4 5 E_g$	40.85	$3 5T_{1g}$				
27 T_{2g}	2.727	308	32020	43.26	$3 \ 5T_{1g}$	26.92	$4 5 E_g$	24.22	$2 \ 5A_{1g}$		
$17 E_g$	2.727	308	32034	42.99	$3 \ 5T_{1g}$	30.67	$2 \ 5A_{1g}$	21.76	$4 5 E_g$		

^a Absorption oscillator strengths for 1 $\Gamma_{6u,8u,7u} \rightarrow i$ transitions are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.850$ Å; the reference value is $f_{ref}=5.062\times10^{-3}$. Emission oscillator strengths for 1 $\Gamma_{8g}\rightarrow1$ Γ_{6u} ,1 Γ_{8u} ,1 Γ_{7u} and radiative emission lifetime are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=2.800$ Å; the reference value is $f_{ref}=8.993\times10^{-4}$. ^b The analyses of the wave functions have been done at $d_{\mathrm{Eu}-\mathrm{F}}=2.850$ Å ($4f^{6}(5d^{1}+6sa_{1g}^{1})$), 2.700 Å ($4f^{6}$). ^c C.f. Table S7. ^d C.f. Table S8.

TABLE S13: Spectroscopic constants and analyses of the spin-orbit wave functions of the ground and lowest lying excited states of Eu^{2+} and Eu^{3+} -doped SrS octahedral defects. Eu–S bond distances $(d_{\operatorname{Eu}-\operatorname{S},e} \text{ in } \operatorname{\AA})$, EuS_6 breathing mode harmonic vibrational frequencies $(\omega_{a_{1g}} \text{ in } \operatorname{cm}^{-1})$, minimum-to-minimum energy differences $(\operatorname{T}_e \text{ in } \operatorname{cm}^{-1})$, and relative absorption and emission oscillator strengths $(f_i^{abs}/f_{ref} \text{ and } f_i^{emi}/f_{ref})$ are given. Calculated radiative emission lifetime for the $4f^6(^7F_J)5dt_{2g}^1 - 1 \operatorname{\Gamma}_{8g}$ excited state is 0.306 μs . Local distortion around the Eu^{2+} impurity, relative to experimental crystal structure $\operatorname{d}_{Sr-F} = 3.010$ Å, is $d_{\operatorname{Eu}-\operatorname{S},e}(1\Gamma_{6u}) - d_{\operatorname{Sr}-\operatorname{S}} = -0.035$; ionic radii mismatch is -0.01 Å³¹. See Fig. 3, S3 and text for details.

State	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e	f_i^{abs}/f_{ref} a	f_i^{emi}/f_{ref} a		v	weights	of terms	larger t	han 10%	ь	
					Eu^{2+}	-doped	\mathbf{SrS}						
$4f^{7}(^{8}S_{7})$	a) c												
$1 \Gamma_{0}$	2975	273	0		0.39	97 71	$1^{8}A_{1}$						
$1 \Gamma_{eu}$	2.975	273	Ő		1.00	97 70	$1 {}^{8}A_{1}$						
$1 \Gamma_{7u}$	2.975	273	0		0.06	97.70	$1 {}^{8}A_{1g}$						
					$4f^{6}(5d+6)$	s) ¹ exci	ted state	S					
					1) (0a + 0	0) 01101							
$4f^{6}(^{7}F_{J})$	$)5dt_{2g}^1$ High	-Spin	$\operatorname{couplin}_{i}$	g d									
$1 \Gamma_{8g}$	2.945	263	18978	1.00		35.23	$1 {}^{8}T_{1g}$	24.67	$1 {}^{8}E_{g}$	20.92	$1 {}^{8}T_{2g}$	11.57	$2^{8}T_{1g}$
$2 \Gamma_{8g}$	2.945	263	19368	0.88		31.83	$1 {\ }^{8}T_{2g}$	28.46	$1 {}^{8}T_{1g}$	22.31	$1 {\ }^{8}E_{g}$	11.17	$2^{-8}T_{1g}$
$1 \ \Gamma_{7g}$	2.944	264	19626	1.44		51.15	$1 {\ }^{8}T_{2g}$	28.10	$2^{-8}T_{1g}$				
$3 \Gamma_{8g}$	2.944	263	19949	1.43		40.37	$1 {\ }^{8}T_{2g}$	24.78	$1 {\ }^{8}E_{g}$	16.40	$1 {}^{8}T_{1g}$	10.40	$2^{-8}T_{1g}$
$1 \Gamma_{6g}$	2.944	263	19993	0.51		42.98	$1 {\ }^{8}T_{1g}$	30.45	$1 {\ }^{8}E_{g}$				
$2 \Gamma_{7g}$	2.944	264	20246	2.22		34.97	$1 {}^{8}T_{2g}$	32.16	$2^{-8}T_{1g}$	16.73	$1 {}^{8}E_{g}$	10.13	$1 {}^{8}T_{1g}$
$4 \Gamma_{8g}$	2.944	263	20670	1.70		34.79	$1 {\ }^{8}T_{2g}$	24.41	$1 {\ }^{8}T_{1g}$	17.07	$1 {\ }^{8}E_{g}$	15.64	$2^{-8}T_{1g}$
$2 \Gamma_{6g}$	2.944	263	20743	0.41		47.02	$1 {\ }^{8}T_{1g}$	20.98	$1 {\ }^{8}E_{g}$	12.56	$2^{-8}T_{1g}$	10.58	$1 {\ }^{8}T_{2g}$
$5 \Gamma_{8g}$	2.944	263	21010	5.73		38.76	$2^{8}T_{1g}$	27.90	$1 {}^{8}T_{1g}$	24.40	$1 \ {}^{8}T_{2g}$		
$6 \Gamma_{8g}$	2.944	263	21491	1.78		41.74	$1 {\ }^{8}T_{1g}$	18.74	$1^{-8}E_{g}$	13.90	$2^{-8}T_{1g}$	11.69	$1 {\ }^{8}T_{2g}$
$3 \Gamma_{7g}$	2.943	262	21536	2.68		36.34	$2^{8}T_{1g}$	13.29	$2^{-8}T_{2g}$	12.90	$1 {\ }^{8}E_{g}$	10.03	$1 {\ }^{8}T_{2g}$
$7 \ \Gamma_{8g}$	2.943	264	21596	3.23		45.56	$1 {}^{8}T_{2g}$	14.19	$1 {}^{8}T_{1g}$	14.19	$2^{8}T_{1g}$		
$3 \Gamma_{6g}$	2.943	263	21786	0.61		26.15	$2^{8}E_{g}$	24.06	$1 \ {}^{8}T_{2g}$	18.39	$3 \ ^{8}T_{1g}$	14.63	$2^{-8}T_{2g}$
$8 \Gamma_{8g}$	2.943	264	21902	0.95		18.32	$2^{-8}T_{2g}$	17.27	$2^{8}E_{g}$	16.89	$3 \ ^8T_{1g}$	10.70	$2^{-8}T_{1g}$
$4 \Gamma_{6g}$	2.943	263	21903	1.11		39.62	$2^{8}T_{1g}$	19.12	$1 \ ^{8}T_{2g}$	17.25	$1 {}^{8}T_{1g}$		
$4 \Gamma_{7g}$	2.943	262	22004	1.11		19.35	$2^{8}E_{g}$	18.87	$1 {}^{8}E_{g}$	16.83	$2^{8}T_{2g}$	12.97	$3 \ ^8T_{1g}$
						10.69	$1 {}^{8}T_{1g}$						
$9 \Gamma_{8g}$	2.944	263	22242	1.61		21.57	$1 {}^{8}E_{g}$	21.27	$1 \ ^{8}T_{2g}$	16.46	$2^{-8}T_{1g}$	15.96	$1 {\ }^{8}T_{1g}$
						10.54	$2^{-8}E_{g}$						
$5 \Gamma_{7g}$	2.943	263	22331	1.18		49.84	$1 {}^{8}T_{1g}$	28.33	$1 \ {}^{8}T_{2g}$				
$5 \Gamma_{6g}$	2.943	263	22459	1.19		37.32	$1 \ {}^{8}T_{2g}$	17.50	$2^{-8}T_{1g}$	16.33	$2^{-8}T_{2g}$		
$10 \ \Gamma_{8g}$	2.943	263	22662	0.55		30.33	$2^{8}E_{g}$	28.39	$2^{-8}T_{2g}$	11.58	$3 \ ^{8}T_{1g}$		
$6 \Gamma_{7g}$	2.943	262	22697	2.84		35.94	$1 \ {}^{8}T_{1g}$	23.14	$2^{-8}T_{1g}$	19.72	$1 {}^{8}E_{g}$	14.51	$1 {}^{8}T_{2g}$
$11 \ \Gamma_{8g}$	2.943	262	22770	3.72		38.20	$2^{8}T_{1g}$	33.14	$1^{-8}E_{g}$	11.81	$1 \ {}^{8}T_{2g}$		
$12 \Gamma_{8g}$	2.943	264	22852	0.68		35.35	$2^{8}E_{g}$	21.15	$3 \ ^8T_{1g}$				
$7 \ \Gamma_{7g}$	2.943	263	22966	0.65		25.44	$1 {}^{8}T_{2g}$	18.65	$3 \ ^8T_{1g}$	17.00	$2^{-8}T_{1g}$	12.59	$2^{-8}T_{2g}$
$6 \Gamma_{6g}$	2.943	263	22966	0.82		26.60	$1 {}^{8}T_{1g}$	22.40	$2^{-8}T_{2g}$	10.77	$2^{-8}T_{1g}$		
$7 \Gamma_{6g}$	2.943	263	23284	4.50		27.20	$2^{8}T_{1g}$	25.01	$1 {\ }^{8}T_{1g}$	23.36	$1 {}^{8}T_{2g}$	14.11	$1^{-8}E_{g}$
$13 \Gamma_{8g}$	2.943	262	23354	6.19		25.96	$2^{8}T_{1g}$	23.85	$1 \ {}^{8}T_{2g}$	21.86	$1 {\ }^{8}T_{1g}$	12.67	$1 {\ }^{8}E_{g}$
$14 \ \Gamma_{8g}$	2.943	263	23453	0.78		39.39	$1 {\ }^{8}T_{2g}$	20.03	$1 {\ }^{8}E_{g}$	14.08	$2^{-8}T_{2g}$	10.00	$2^{-8}E_{g}$
$15 \Gamma_{8g}$	2.943	264	23528	2.35		20.34	$1 {}^{8}T_{1g}$	18.53	$1 {}^8E_g$	17.31	$2^{8}E_{g}$	16.03	$2^{-8}T_{1g}$
$16 \Gamma_{8g}$	2.943	263	23736	1.16		23.66	$2^{8}E_{g}$	15.60	$2^{-8}T_{2g}$	12.07	$1 {}^{8}T_{1g}$		
$8 \Gamma_{7g}$	2.943	263	23760	1.21		20.43	$3 {}^{8}T_{1g}$	12.34	$2^{8}E_{g}$	11.93	$2 {}^{8}T_{1g}$		
9 Γ_{7g}	2.943	263	23974	1.17		20.98	$2 {}^{8}T_{1g}$	19.54	$3 {}^{8}T_{1g}$	14.14	$2^{8}E_{g}$	10.76	$1 {}^{8}T_{1g}$
$17 \ \Gamma_{8g}$	2.943	264	24016	2.65		23.51	$2 {}^{8}T_{1g}$	18.79	$3 {}^{8}T_{1g}$	14.26	$2 {}^{8}T_{2g}$		
$18 \Gamma_{8g}$	2.943	264	24118	5.16		32.06	$2 {}^{8}T_{1g}$	19.95	$2 {}^{8}T_{2g}$	17.00	$1 {}^{8}T_{1g}$	13.37	$3 \ ^{8}T_{1g}$
$8 \Gamma_{6g}$	2.943	263	24121	0.75		31.05	$2 {}^{8}T_{2g}$	16.39	$1 {^{8}_{o}}E_{g}$	11.85	$1 {}^{8}T_{2g}$		
$9 \Gamma_{6g}$	2.943	264	24254	0.30		27.47	$1 {}^{8}T_{2g}$	17.68	$2 {^{8}E_{g}}$				
19 Γ_{8g}	2.943	264	24304	0.37		24.42	$1 {}^{8}T_{2g}$	24.27	$1 {}^{8}T_{1g}$	15.60	$2^{8}E_{g}$	14.67	$1 {}^{8}E_{g}$
$10 \ \Gamma_{7g}$	2.943	263	24412	0.03		34.81	$1 {\ }^{8}T_{1g}$	18.07	$1 \ ^{8}T_{2g}$	14.73	$1 {}^8E_g$	11.97	$2^{-8}E_{g}$

					11 22	$2^{8}T_{1}$						
10 E.	9 0/3	264	24567	5.08	53.05	2^{-1}	17 78	$1^{8}T_{2}$				
$10 \ 1 \ 6g$ $20 \ \Gamma$	2.945	204	24507	0.50	20.50	$2^{-1}1g$ $2^{-8}T$	20.19	$1 \ 12g$ $1 \ 8T$	11 00	18 <i>E</i>		
$20 \pm 8g$	2.943	203	24001	9.00	20.14	$2 I_{1g}$ 3 8 T	20.12	$1 I_{1g}$ 3 8 T	12.00	$1 \frac{L}{g}$ $1 \frac{8}{T}$	10.99	9.8m
2118g	2.945	204	24702	0.09	39.14	$2 I_{1g}$ 2 8 T	21.27	$2 1_{2g}$	10.00	$1 \ 1 \ 2g$ $1 \ 8T$	10.20	$5 I_{1g}$
111_{6g}	2.943	203	20000	0.00	29.50	$2^{-1}2g$	27.10	$2^{-}E_{g}$	10.81	$1^{-1}I_{1g}$		
$22 T_{8g}$	2.943	264	25122	0.00	52.90	$2^{-1}2g$	10.19	$3^{-1}1g$	11.49	$2^{-}E_{g}$		
$23 T_{8g}$	2.943	263	25134	0.89	41.89	$2 \ ^{\circ}T_{2g}$	13.13	$2 \ ^{\circ}E_{g}$	12.44	$3 \circ T_{1g}$		
$\prod \Gamma_{7g}$	2.943	264	25194	0.01	63.17	$2 \ ^{\circ}T_{2g}$		- *				
$12 \Gamma_{6g}$	2.942	264	25306	1.30	44.91	$3 \ ^{\circ}T_{1g}$	15.07	$2 \ {}^{\circ}T_{2g}$				
$24 \Gamma_{8g}$	2.943	264	25408	0.86	56.33	$3 \ ^{\circ}T_{1g}$	17.91	$2 \ ^{\circ}_{\circ}T_{2g}$				
$12 \Gamma_{7g}$	2.943	263	25437	0.47	58.48	$3 {}^{8}T_{1g}$	10.67	$2 \ ^{\mathbf{s}}E_{g}$				
$25 \Gamma_{8g}$	2.945	264	25676	0.01	85.38	$1 {}^{o}T_{1g}$						
$26 \Gamma_{8g}$	2.942	263	25901	0.20	49.51	$2 {}^{8}T_{2g}$	14.51	$2^{-8}E_{g}$				
$13 \Gamma_{7g}$	2.942	263	26000	0.01	48.72	$2^{-8}T_{2g}$	11.87	$2^{8}E_{g}$				
$27 \Gamma_{8g}$	2.942	264	26303	0.83	51.39	$3 \ ^{8}T_{1g}$	26.44	$2^{-8}T_{2g}$	11.18	$2^{8}E_{g}$		
$13 \Gamma_{6g}$	2.942	264	26332	0.27	40.46	$3 \ ^{8}T_{1g}$	36.63	$2^{8}T_{2g}$				
$28 \Gamma_{8q}$	2.942	264	26418	0.89	57.44	$3 \ ^{8}T_{1q}$	18.11	$2^{8}E_{q}$	14.92	$2^{8}T_{2a}$		
$14 \Gamma_{7a}$	2.942	263	26757	0.36	44.20	$3 \ ^{8}T_{1a}$		5		5		
29 Γ_{8a}	2.942	263	26815	0.76	47.40	$3 {}^{8}T_{1a}$						
14 Γ _{6α}	2.942	263	26836	0.40	47.76	$3 {}^{8}T_{1a}$						
1 1 1 0 <i>g</i>	2.0 12	200	20000	0110	11110	5 I 1g						
$4f^{6}(^{7}F_{1})$	$5dt_{2}^{1}$ Low	-Spin d	coupling ^d									
30 E	2944	264	26963		79.64	$1^{6}T_{1}$						
15 Г-	2.911	264	26976		78 16	$1^{6}T_{1}$	10.26	$1^{6}T_{2}$				
$16 \Gamma_{\gamma g}$	2.944	263	28524	0.01	36.97	$2^{6}T$	3/ 88	$1^{6}F$	<u> </u>	$1^{6}T$		
15 T	2.941	205	20024	0.01	50.27	$^{2} 1_{1g}$ 16T	04.00 90.95	1 6T	22.20	1 1 _{1g}		
10 1 6g 21 T	2.942	204	20704	0.00	00.00 50.06	$1 \ 11g$ $1 \ 6T$	29.20	$1 \ 12g$ $1 \ 6T$				
этт _{8g}	2.942	204	20121	0.09	52.90	$1 I_{1g}$	20.41	$1 1_{2g}$ 1 6 E				
$32 T_{8g}$	2.940	264	28961	0.01	51.52 20.11	$2 \ ^{\circ} T_{1g}$	25.80	$1 \ ^{\circ}E_{g}$	07.74	<u>а б</u> <i>т</i>		
$\Gamma T \Gamma_{7g}$	2.941	264	29020	0.03	29.11	$1 \ ^{\circ}T_{2g}$	28.60	$1 \circ T_{1g}$	27.74	$2 \ T_{1g}$	10.00	2.677
$16 \Gamma_{6g}$	2.940	264	29178	0.01	28.13	$2 \ {}^{0}T_{1g}$	20.56	$1 {}^{o}T_{2g}$	16.55	$1 {}^{o}E_{g}$	13.93	$2 {}^{o}T_{2g}$
$33 \Gamma_{8g}$	2.940	264	29496	0.03	24.36	$2 {}^{o}_{c} T_{1g}$	22.18	$1 {}^{\circ}E_g$	19.51	$2 {}^{o}_{g}T_{2g}$	13.81	$1 {}^{0}A_{2g}$
$18 \Gamma_{7g}$	2.942	264	29636	0.02	40.70	$1 {}^{o}_{a}T_{1g}$	25.53	$2 {}^{o}T_{1g}$	16.22	$1 {}^{o}T_{2g}$		
$17 \ \Gamma_{6g}$	2.940	263	29807	0.02	39.50	$1 {}^{o}T_{2g}$	38.31	$2^{\circ}T_{1g}$				
$34 \ \Gamma_{8g}$	2.940	263	30012	0.01	21.98	$1 {}^{6}A_{2g}$	20.77	$2^{-6}T_{2g}$	12.55	$1 {}^{6}T_{1g}$	11.57	$1 {}^{6}T_{2g}$
					11.15	$2^{6}T_{1g}$						
$35 \Gamma_{8g}$	2.941	264	30196	0.08	31.41	$2^{6}T_{1g}$	27.92	$1 {}^{6}T_{2g}$	15.85	$1 {}^6E_g$		
$18 \Gamma_{6g}$	2.939	263	30217	0.01	28.22	$1 {}^{6}A_{2g}$	18.90	$2^{6}T_{2g}$	16.15	$2^{6}T_{1g}$	12.28	$1^{6}T_{2g}$
$36 \Gamma_{8g}$	2.940	264	30399	0.07	28.29	$1^{6}E_{g}$	22.84	$1^{6}T_{2g}$	18.28	$2^{6}T_{1g}$		
19 Γ _{6α}	2.941	264	30768	0.06	38.32	$1 {}^{6}E_{a}$	29.13	$1 {}^{6}T_{2a}$	20.59	$2^{6}T_{2a}$		
$37 \Gamma_{8a}$	2.939	262	30949	0.08	21.44	$1 {}^{6}E_{a}$	20.69	$3^{6}T_{1a}$	19.72	$2^{6}T_{1a}$	12.31	$2^{6}T_{2a}$
$38 \Gamma_{8a}$	2.939	264	31031	0.04	28.94	$2^{6}T_{2a}^{3}$	19.43	$1 {}^{6}T_{2a}$	19.27	$2^{6}E_{a}^{-3}$	13.54	$3^{6}T_{1a}^{-s}$
19 Γ _{7α}	2.941	263	31235		47.34	$2^{6}T_{1a}^{-g}$	33.05	$1^{6}T_{2a}^{-g}$		9		-9
$20 \Gamma_{6a}$	2.939	263	31433	0.01	36.41	$2^{6}E_{a}$	25.06	$2^{6}T_{2a}^{2g}$	19.00	$1^{-6}E_{a}$		
$20 \Gamma_{7a}$	2.938	263	31480	0.06	37.00	$3^{6}T_{1a}$	17.75	$2^{6}T_{1a}$	16.08	$2^{6}E_{a}$	12.37	$1^{6}A_{1a}$
<u>2017</u>	2 938	$\frac{1}{264}$	31727	0.03	23 40	$2^{6}E_{-}$	20.67	$2^{6}T_{2}$	15 51	$1^{6}A_{2}$	15 13	$3^{6}T_{1}$
$21 \Gamma_o$	2.000	263	31754	0.06	47.69	$\frac{1}{1} \frac{6}{T_{2}}$	14.66	$\frac{2}{3} \frac{6}{T_1}$	10.30	$2^{6}T_{1}$	10.15	$1^{6}E$
$40 \Gamma_{\circ}$	2.911	263	31880	0.04	34.51	$2^{6}T_{2}$	25.80	$1 {}^{6}T_{2}$	1/ 00	$2^{6}T_{2}$	10.00	1 Lg
$91 \Gamma_{-}$	2.941	205	39108	0.04	35 16	2^{-1}	22.03	$1^{6}F$	18.87	$2^{6}T_{1}$	15.06	$9^{6}T_{2}$
2117g $41\Gamma_{-}$	2.940	205	32108	0.02	39.10	2^{-1}	23.00	$\frac{1}{2} \frac{D_g}{T}$	15.79	$1 \frac{6}{T}$	11.90	$\frac{2}{16} \frac{12g}{1}$
41 1 8g 49 F	2.930	204	22120	0.07	02.70 29 52	$2 1_{2g}$ 3 6T	22.27	$1 \frac{6}{T}$	15.72	$1 \ 12g$ $1 \ 6E$	11.00	1 A_{1g}
$42 \ 1 \ 8g$	2.941	204	32290	0.10	32.33	$2 I_{1g}$	00.01 05 74	$1 \ 12g$	10.00	$1 E_g$ 16E		
$22 T_{7g}$	2.938	264	32406	0.03	34.70	$2 \ ^{\circ}E_{g}$	25.74	$3 \ ^{\circ}I_{1g}$	10.59	$1 \ E_g$		
$43 \Gamma_{8g}$	2.941	263	32013	0.19	52.54	$1 \tilde{I}_{2g}$	17.31	$1 \ E_g$	14.62	$2^{-1}I_{1g}$		
$23 \Gamma_{7g}$	2.938	263	32967	0.02	55.75	$2 \ \tilde{T}_{2g}$	23.03	$1 \overset{\circ}{} A_{1g}$	10.07	0.6 5	10.01	0.6 <i>m</i>
$44 \ 1'_{8g}$	2.938	263	33093	0.04	23.61	$2 \ ^{\circ}T_{2g}$	20.46	$1 \ ^{\circ}A_{1g}$	13.95	$2 \ ^{\circ}E_{g}$	12.31	$3 \ ^{\circ}T_{1g}$
	0.007		0015-		11.19	$1 {}^{\circ}A_{2g}$		- 6 -		a 6 -	40	- 6
$22 \Gamma_{6g}$	2.938	263	33127	0.01	28.55	$3 {}^{\circ}T_{1g}$	25.18	$1 {}^{\circ}A_{2g}$	22.33	$2 \ ^{\circ}T_{2g}$	16.63	$1 \ {}^{o}T_{2g}$
$45 \Gamma_{8g}$	2.939	262	33293	0.01	33.04	$3 {}^{\circ}_{6}T_{1g}$	23.86	$2 {}^{o}_{6}T_{2g}$	20.38	$2 \overset{\circ}{} E_g$		6
46 Γ_{8g}	2.938	264	33316	0.03	49.36	$3 {}^{\circ}T_{1g}$	17.08	$2 \overset{o}{} E_g$	11.03	$2 C_{g}^{\circ}T_{2g}$	10.01	$2 \ ^{o}T_{1g}$
$23 \Gamma_{6g}$	2.938	263	34376	0.02	39.61	$3 {}^{o}_{c} T_{1g}$	37.39	$2 {}^{\circ}_{c} T_{2g}$	13.38	$1 {}^{\rm o}A_{2g}$		C
$47 \ \Gamma_{8g}$	2.938	263	34426	0.01	42.28	$2 {}^{o}_{c} T_{2g}$	26.28	$2 \overset{o}{} E_g$	15.49	$1 \ ^{\mathrm{o}}A_{2g}$	10.09	$3 \ ^{\mathrm{o}}T_{1g}$
$24 \Gamma_{7g}$	2.938	263	34557	0.02	52.89	$3^{o}_{a}T_{1g}$	34.56	$2^{b}E_{g}$		0		
$48 \Gamma_{8g}$	2.938	263	34575	0.03	34.40	$2 \ ^{\mathrm{o}}E_g$	34.02	$3 {}^{6}T_{1g}$	24.51	$2 {}^{6}T_{2g}$		

24 I	Γ_{6g}	2.938	263	34624	0.01	45.15	$2^{6}E_g$	41.07	$2^{-6}T_{2g}$				
$4f^{6}($	$^{7}F_{J}$	$(5de_a^1 +$	$6sa_{1a}^{1})$ H	igh-, Lo	ow- and Mixed	-Spin coupling ^d							
50 Ì	[8]	2.983	262	39417	6.41	61.54	$3^{-8}T_{2a}$	28.77	$4^{-8}T_{1a}$				
26 I	- 89 Г л	2 983	263	39514	2.87	68.46	$3 \frac{8}{T_0}$	26.90	$\sqrt{\frac{8}{1}}$				
51 I	Γ_{α}	2.000	260	39646	0.85	79.34	$3 {}^{8}T_{2}$	10 10	$3^{8}E$				
97 I	- 8g Г_	2.000	202	40133	6.08	50.61	$4 \frac{8}{T}$	25.00	$3 \frac{8T}{2}$				
211	17g	2.902	202	40100	0.08	JU.01 47.99	4 $^{1}_{1g}$	20.09	$3 \ 12g$	12.05	9 8 F		
021	8g	2.982	202	40430	1.18	47.28	3^{-1}_{2g}	33.84	$4^{-1}I_{1g}$	13.00	$3^{-}E_{g}$		
25 1	6g	2.983	262	40503	2.33	50.70	$3 \ ^{\circ}T_{2g}$	25.42	$4 \ ^{\circ}T_{1g}$	11.56	$5 \ ^{\circ}T_{1g}$		
$53 \ 1$	8g	2.982	262	40987	12.68	55.03	$4 {}^{\circ}T_{1g}$	30.22	$3 \ {}^{\circ}T_{2g}$		0		0
26 I	Γ_{6g}	2.982	262	41085	3.09	29.87	$3 \ ^{\circ}T_{2g}$	24.87	$4 \ ^{\circ}T_{1g}$	21.34	$3 \ ^{\circ}E_{g}$	12.37	$4 \ ^{\circ}T_{2g}$
						10.44	$5 {}^{8}T_{1g}$						
28 I	Γ_{7g}	2.982	262	41340	4.95	42.58	$4 {}^{8}T_{1g}$	38.40	$3 \ ^{8}T_{2g}$	13.96	$3 \ {}^{8}E_{g}$		
$54~\mathrm{I}$	80	2.982	261	41477	3.29	29.91	$3 \ ^8T_{2a}$	29.27	$4 {}^{8}T_{2a}$	22.42	$3^{8}E_{q}$	11.96	$4 {}^{8}T_{1a}$
$55~\mathrm{I}$	[8a	2.982	261	41746	2.18	30.19	$5 \ ^{8}T_{1a}$	27.82	$3^{8}E_{a}$	13.16	$4 \ {}^{8}T_{2a}$		5
27 I	6g	2.982	262	41809	2.79	42.71	$4 {}^{8}T_{2a}$	34.32	$4^{8}T_{1a}$	13.92	$5 {}^{8}T_{1a}^{-g}$		
56 I	Γο_	2 982	261	41837	2.78	30.33	$5 {}^{8}T_{1}$	22 43	$4^{8}T_{1}$	15 13	$4 {}^{8}T_{2}$	13 88	$3^{-8}T_{2-}$
001	- 8g	2.002	201	1100.	2.1.0	19.57	$3^{8}F$	22.10	1 1 1g	10.10	1 1 2g	10.00	• ± 2g
57 I		9 094	956	49910	10.74	16.24	$\frac{5}{2} \frac{D_g}{T}$	15 97	5 6T	10.72	26E		
0/1	8g	2.904	200	42319	10.74	40.34	$3 1_{2g}$	17.74	$3 \ 1_{1g}$	10.75	$5 L_g$		
291	7g	2.982	202	42471	8.20	68.41	$4 \ ^{\circ} I_{1g}$	17.74	$3 \ ^{\circ}T_{2g}$	1 = 0.0	- 8-		
58 I	8g	2.982	258	42507	2.67	52.23	$4 \ T_{1g}$	23.40	$3 \ T_{2g}$	17.93	$5 \ T_{1g}$. •
$28\ 1$	6g	2.982	262	42512	1.06	33.66	$4 \ {}^{\circ}T_{2g}$	28.58	$5 \ {}^{\circ}T_{1g}$	18.88	$3 \ {}^{\circ}T_{2g}$	12.72	$4 {}^{\circ}T_{1g}$
30 I	Γ_{7g}	2.982	261	42533	0.27	29.75	$4 {}^{8}T_{2g}$	22.71	$3 {}^{8}T_{2g}$	21.99	$3 {}^{8}E_{g}$	20.50	$5 \ ^{8}T_{1g}$
29 I	Γ_{6g}	2.983	262	42774	2.33	58.57	$3 \ ^{8}T_{2g}$	19.74	$5 \ ^{8}T_{1g}$	12.03	$4 {}^{8}T_{1g}$		
$59~\mathrm{I}$	80	2.962	290	42798	0.04	30.76	$4 \ ^8T_{2a}$	19.65	$3^{8}E_{a}$	18.39	$4 \ ^8T_{1a}$	16.32	$5 \ ^8T_{1a}$
	- 5					13.06	$3 \ ^{8}T_{2a}$		5		5		5
30 I	69	2.982	261	43064	1.14	40.70	$4 {}^{8}T_{2a}$	25.66	$3^{-8}E_{a}$	13.36	$4^{8}T_{1a}$		
60 I	- 0 <i>9</i> Го	2 974	501	43071	1 74	35.13	$3^{8}E^{-2g}$	30.06	$\frac{4}{4} \frac{8}{T_{0}}$	17 18	$5 \frac{8}{7}$		
61 I	- 8g Га	2.071	449	13071	7.98	41.59	$4 \frac{8}{T}$	18.22	$3 \frac{8}{2g}$	17.87	$3^{8}F$	11.60	$4^{-8}T_{2}$
69 1	- 8g	2.971	909	49540	0.45	95.70	2 6 E	95.67	5 12g 2 6T	10 60	$5 D_g$	11.00	4 12g
021	8g	2.902	290	43049	0.45	20.79	э _{Ед} г 6 т	20.07	$3 1_{2g}$	10.09	$5 I_{1g}$	10.00	4.67
311	7g	2.978	208	43698	0.01	35.21	$5 \ ^{\circ}T_{1g}$	24.39	$3 E_g$	13.90	$4 \ ^{\circ}I_{2g}$	10.23	$4 \ ^{\circ}T_{1g}$
631	8g	2.982	291	43826	6.85	31.92	$3 \ ^{\circ}T_{2g}$	28.93	$3 \ E_g$	17.75	$4 \ ^{\circ}T_{2g}$	14.67	$5 \ T_{1g}$
32.1	7g	2.959	343	43883	2.29	53.70	$5 {}^{\circ}T_{1g}$	23.09	$4 {}^{\circ}T_{2g}$		C		
31 I	Γ_{6g}	2.986	254	44025	0.01	42.60	$5 {}^{6}T_{1g}$	26.85	$3 {}^{6}T_{2g}$	11.85	$4 {}^{6}T_{2g}$		
64 I	Γ_{8g}	2.979	198	44065	0.14	25.29	$4 {}^{6}T_{2g}$	21.85	$4 {}^{6}T_{1g}$	21.56	$3^{6}T_{2g}$		
33 I	Γ_{7g}	2.967	313	44108	0.01	23.42	$4^{6}T_{2g}$	23.04	$4 {}^{6}T_{1g}$	19.64	$5 {}^{6}T_{1g}$	13.70	$3^{6}E_{g}$
65~I	80	2.961	280	44255	14.59	29.17	$5 \ ^{8}T_{1a}$	26.85	$4 {}^{8}T_{1a}$	19.20	$4 {}^{8}T_{2a}$	13.42	$3^{8}E_{q}$
$34~\mathrm{I}$		2.954	374	44515	0.01	60.70	$4 {}^{8}T_{2a}$	27.42	$3^{8}E_{a}$		5		5
66 I	.у Год	2.975	481	44567	0.02	57.55	$4^{8}T_{1a}$	17.81	$5 {}^{8}T_{1a}$	11.22	$4^{8}T_{2a}$		
67 I	- 89 Го.	2 961	331	44647	2 55	53.38	$4^{8}T_{2}$	26 41	$5 \ {}^{8}T_{1}$	11 53	$3^{8}E_{-}$		
32 1	Γ_c	2.001	252	44651	5.16	69.16	$4^{8}T_{1}$	20.11	$3 {}^{8}T_{0}$	11.00	5 L g		
95 I	- 6 <i>g</i>	2.304	469	44792	0.05	26.40	$5^{6}T$	16 70	0^{-12g}	14 40	1 6T	14 10	$4^{6}T$
001	17g	2.909	402	44725	0.00	30.40	$\frac{5}{\sqrt{8}T}$	10.79		14.40	4 11g	14.19	4 12g
001	-6g	2.992	303	44770	1.59	49.04	$4 I_{2g}$	40.52	$3 I_{1g}$	11 01	4.87		
081	8g	2.981	300	45035	4.75	40.47	$5 \ T_{1g}$	27.59	$3 E_g$	11.81	$4 \ 1_{1g}$		
341	6g	3.000	406	45185	0.38	61.87	$5 {}^{\circ}T_{1g}$	25.82	$3 {}^{\circ}E_g$				
69 I	$\lceil 8g \rceil$	2.981	255	45387	0.08	58.24	$4 {}^{\circ}T_{1g}$	10.31	$3 {}^{o}T_{2g}$				
70 I	Γ_{8g}	2.974	365	45459	0.90	26.05	$4 {}^{6}T_{1g}$	18.32	$3^{6}T_{2g}$	17.58	$5 \ ^{6}T_{1g}$	12.50	$2^{-6}A_{1g}$
36 I	Γ_{7g}	2.956	355	45707		77.16	$5 \ ^{8}T_{1g}$	10.48	$3^{8}E_{g}$				
71 I	80	2.979	487	46016	0.01	64.38	$5 \ ^8T_{1a}$	18.24	$3^{8}E_{a}$				
37 I		2.960	381	46102		72.45	$4 {}^{8}T_{2a}$	25.46	$5 \ ^{8}T_{1a}$				
35 I	19 [6a	2.946	214	46150	0.01	41.57	$4^{6}T_{2a}^{2g}$	36.14	$3^{6}E_{a}^{19}$				
79 I	- 0 <i>9</i> Го	2 975	447	46152	0.22	29.66	$3^{6}E$	21 21	$5 \frac{6}{5} T_1$	16 56	$4^{6}T_{1}$	14.68	$3^{6}T_{0}$
121	89	2.510	TTI	10102	0.22	10.59	$4^{6}T_{-}$	21.21	0 1 1g	10.00	ч 11g	14.00	0 1 2 g
79 1		9 065	207	46101	0.09	10.00	+ 12g 1877						
131	- 8g	∠.900 0.001	307	40181	0.02	10.03	$4 \ 1_{2g}$	0.0.40	9.6 <i>T</i>	05 10	1.67		
36 I	6g	2.881	738	46274	0.03	39.72	$4 \ ^{\circ}T_{2g}$	26.48	$3 \ ^{\circ}T_{2g}$	25.16	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
74 I	8g	2.964	325	46340	0.12	68.56	$4 \ C^{\circ}T_{2g}$	27.44	$5 \ {}^{\circ}_{c}T_{1g}$				
38 I	Γ_{7g}	2.956	526	46385		40.48	$6 {}^{o}_{g}T_{1g}$	36.88	$4 {}^{\circ}_{g}T_{1g}$		0		0
75 I	Γ_{8g}	2.952	288	46814		22.12	$6 {}^{o}T_{1g}$	19.60	$4 {}^{o}T_{2g}$	19.17	$4 {}^{6}T_{1g}$	12.70	$3 {}^{6}T_{2g}$
						10.04	$5 \ ^{6}T_{1g}$						
39 I	Γ_{7g}	2.958	375	47480		73.81	$4 {}^{6}T_{1q}$	14.20	$5 {}^{6}T_{1q}$				
$76~\mathrm{I}$	[8a	2.962	297	47733	0.01	40.81	$4 {}^{6}T_{1a}$	23.27	$6 {}^{6}T_{1a}$	14.10	$3^{6}T_{2a}$		
37 I	Г _{6а}	3.006	282	47762		30.89	$4 {}^{6}T_{1a}^{-s}$	26.09	$3^{6}T_{2a}^{-3}$	14.47	$4 {}^{6}T_{2a}^{-3}$	11.39	$5^{-6}T_{1a}$
	- 3						-9		-9		-9		-9

	0.070	0.40	12010	0.01	11.00	4.677	14.00	c 677	11.05	4.677	10 51	- 677
(118g	2.970	243	47910	0.01	41.09	$4 T_{1g}$	14.80	$0 I_{1g}$	11.35	$4 I_{2g}$	10.51	5^{-1}_{1g}
$40 \Gamma_{7g}$	2.956	416	47933		27.23	$4 \ {}^{0}T_{2g}$	24.15	$2 {}^{0}A_{1g}$	16.99	$5 \ {}^{0}T_{1g}$	10.60	$3 \ ^{o}T_{2g}$
78 Γ_{8q}	2.990	330	48151	0.01	31.15	$4^{6}T_{2q}$	26.95	$2^{6}A_{1q}$	19.92	$3^{6}E_{q}$		
$38 \Gamma_{6a}$	2.983	314	48311		33.96	$3^{6}T_{2a}$	21.31	$4^{6}T_{2a}$	17.73	$3^{6}E_{a}$	14.62	$5^{6}T_{1a}$
79 Γ ₀₋	2 994	283	48517	0.01	31.38	$4^{6}T_{2}^{2}$	28 53	$5 {}^{6}T_{1}$	18 87	$3^{6}T_{2}^{9}$		19
13 1 8g	2.004	200	40011	0.01	01.00	т 12g с 67Т	20.00	$7^{6}T$	10.01	5^{-12g}		
4117_{g}	2.962	387	48834		29.58	$0 I_{1g}$	24.80		12.09	$\frac{3}{5} \frac{1}{1g}$		
$80 \Gamma_{8g}$	2.960	341	48854		33.05	$6 {}^{0}T_{1g}$	19.29	$6 {}^{\circ}T_{1g}$	13.42	$5 \ ^{\circ}T_{2g}$		
$39 \Gamma_{6g}$	2.994	302	48921		50.20	$6 \ ^{8}T_{1g}$	38.67	$5 \ ^{8}T_{2g}$				
$81 \Gamma_{8a}$	2.964	303	48969	0.01	34.04	$6 {}^{8}T_{1a}$	23.82	$5 \ ^{8}T_{2a}$	18.75	$6 {}^{6}T_{1a}$		
$42 \Gamma_{7-}$	2 970	688	49049		50.66	$5 \ {}^{8}T_{2}$	22.24	$6^{8}T_{1}^{-9}$		-9		
99 E.	2.075	505	40206		25.57	$6^{6}T$	10.02	$7^{6}T$	11 17	2 6T		
02 I 8g	2.975	000	49200		33.37	$0 I_{1g}$	12.20		11.11	$5 I_{2g}$	11.00	- 677
$40 \ \Gamma_{6g}$	2.997	327	49329		21.47	$0 \ ^{\circ}T_{1g}$	17.23	$5 \ ^{\circ}T_{2g}$	12.62	$5 \circ T_{1g}$	11.86	$7 \circ T_{1g}$
					11.81	$4 {}^{o}T_{2g}$						
$41 \ \Gamma_{6q}$	2.989	347	49526		46.75	$5 {}^{6}T_{2a}$	19.94	$4^{6}E_{q}$				
83 Г.	2.981	292	49539		63.95	$6^{8}T_{1a}$	31.97	$5 \ ^{8}T_{2a}$				
43 Γ-	2.073	534	40505		94 34	$5 {}^{6}T_{2}$	20 32	$7 {}^{6}T$				
40 I 7g	2.975	201	49090	0.01	49.19	5 12g	20.52	46E				
841_{8g}	2.901	301	49703	0.01	43.18	5^{-1}_{2g}	17.93	$4 E_g$				
$44 \Gamma_{7g}$	2.956	389	49803		45.69	$7 \ {}^{0}T_{2g}$	25.91	$9 \ {}^{0}T_{1g}$				
$85 \Gamma_{8q}$	2.967	298	49901		16.19	$9{}^{6}T_{1q}$	15.87	$7^{6}T_{1q}$	14.80	$7^{6}T_{2q}$		
86 Fs.	2.967	269	50107		21.99	$9^{6}T_{1a}$	18.59	$7 {}^{6}T_{1a}$	17.16	$7 {}^{6}T_{2a}$		
45 Γ -	2 960	398	50127		39.83	$7 {}^{6}T_{1}$	17.00	$5 {}^{6}T_{2}$		- 29		
40 F	2.500	020	50121		02.00		17.74	$7^{6}T$	17 40	064	15 40	= 6m
$42 \ 1 \ 6g$	2.974	373	50224		23.68	$0^{-1}2g$	17.74	1^{-1}_{1g}	17.40	$2^{-}A_{2g}$	15.48	$\frac{5}{12g}$
$87 \Gamma_{8g}$	2.982	329	50231		26.14	$5 \ ^{o}T_{2g}$	15.10	$7 {}^{\circ}T_{1g}$	13.04	$6 \ {}^{0}T_{2g}$	12.74	$2 {}^{\circ}A_{2g}$
$43 \Gamma_{6g}$	2.990	345	50253		35.40	$7^{6}T_{1g}$	13.42	$2^{6}A_{2g}$	10.03	$4^{6}T_{1g}$		
$88 \Gamma_{8a}$	2.982	346	50299		17.51	$6 {}^{6}T_{2a}$	16.45	$8^{6}T_{1a}$	14.89	$7^{6}T_{1a}$	10.81	$3^{6}A_{1a}$
46 Γ ₇	2 950	361	50365		27.25	$6 {}^{6}T_{0}^{29}$	18.26	$8^{6}T_{1}^{19}$	16.70	$7^{6}T_{1}^{19}$	10.44	$5^{6}T_{2}^{19}$
10 I (g	2.000	001	50500		40 74	5 1 2g	10.20	c^{8T}	10.10	1 1 1 g	10.11	0 12g
$44 \ 1 \ 6g$	2.960	333	50450	0.01	40.74	$5 1_{2g}$	31.23	$0 I_{1g}$				
$89 T_{8g}$	2.963	239	50616	0.01	48.98	$6 {}^{\circ}T_{1g}$	29.02	$5 \ ^{\circ}T_{2g}$				
$47 \ \Gamma_{7g}$	2.950	304	50627		45.72	$5 \ ^{8}T_{2g}$	37.63	$6 {}^{8}T_{1g}$				
$90 \Gamma_{8a}$	2.962	258	50642		19.15	$8^{6}T_{1a}$	17.52	$7^{6}T_{1a}$	12.59	$2^{6}A_{2a}$	11.41	$6^{-6}T_{2a}$
48 Γ _{7α}	2947	280	50793		37.66	$10^{6} T_{1a}$	28.32	$5 {}^{6}E_{a}$		-3		-3
01 T.	2.055	256	50910		95.52	$6^{6}T_{-}$	11 60	$\circ E_g$	10.00	$5^{6}T$		
9118g	2.900	200	50054		20.00	10 12g	11.09		10.99	5 12g		
921_{8g}	2.953	265	50854		31.72	$10 \ ^{\circ}T_{1g}$	23.07	$5 E_g$	10.24	$4 \ ^{\circ}A_{1g}$		
$49 \Gamma_{7g}$	2.954	314	50909		32.27	$8 \ ^{o}T_{1g}$	24.72	$4 {}^{o}E_{g}$				
93 Γ_{8q}	2.955	282	50924		20.21	$9{}^{6}T_{1a}$	12.41	$5 {}^{6}T_{2a}$	11.04	$6 {}^{6}T_{2a}$		
45 Γ _{6α}	2.951	235	50965		25.16	$6 {}^{6}T_{2a}$	17.12	$8^{6}T_{1a}$		5		
$0.4 \Gamma_{\odot}$	2 954	272	51008		25.65	$0^{6}T_{1}$	12.80	$5 {}^{6}T_{2}$	12.67	$7 {}^{6}T_{2}$		
05 T	2.304	212	51000		20.00	$5 I_{1g}$	12.03	5 12g	12.07	1 1 2g		
$95 \Gamma_{8g}$	2.957	292	51039		27.20	8^{-1}_{1g}	12.06	$5 1_{2g}$				
$46 \Gamma_{6g}$	2.975	666	51111		56.05	$7 \ {}^{0}T_{2g}$	10.20	$10^{-0}T_{1g}$				
$50 \ \Gamma_{7g}$	2.957	292	51125		20.43	$11 \ {}^{6}T_{1g}$	15.64	$4 {}^{6}A_{1g}$	13.78	$10^{-6}T_{1g}$		
96 Γ_{8a}	2.960	268	51164		18.64	$8^{6}T_{1a}$	13.16	$7^{6}T_{1a}$	12.82	$4^{6}E_{a}$		
97 Г <u>е</u>	2,956	274	51203		2354	$11 {}^{6}T_{2a}$	11 11	$10^{6} T_{2a}$		9		
47 Γ.	2.075	594	51962		20.01	\$ 6T.	10 11	$6^{6}T_{-}$				
41 1 6g	2.910	004	51205		21.09	$7 6 T_{2g}$	15.11	0 12g				
511_{7g}	2.952	287	51297		15.88	$\int I_{1g}$	15.05	$0 \ 1_{2g}$		6-		
$98 \Gamma_{8g}$	2.958	256	51302		19.59	$10^{-0}T_{1g}$	15.63	$5 {}^{0}E_{g}$	10.19	$12 \ {}^{0}T_{1g}$		
99 Γ_{8g}	2.975	575	51419		22.26	$8^{-6}T_{2g}$	16.43	$4^{6}E_{g}$				
$48 \Gamma_{6a}$	2.975	699	51448		30.28	$11 {}^{6}T_{1a}$	12.74	$10 \ {}^{6}T_{2a}$				
100 Γ ₀	2 961	256	51463		42.08	$6^{8}T_{1}^{19}$	17.93	$5 {}^{8}T_{2}$				
59 F	2.001	200	51479		16.40	76T	14.06	26A	10.94	ο ⁶ Τ		
$52 \ 1 \ 7g$	2.940	201	51472		10.49		14.00	$3 A_{1g}$	10.04	8 I _{1g}		
49 Γ _{6g}	2.975	677	51481		15.93	$5 \ {}^{o}T_{2g}$		0				
$101 \ \Gamma_{8g}$	2.956	268	51512		16.58	$6 {}^{8}T_{1g}$	12.07	$11 \ {}^{6}T_{2g}$				
53 Γ_{7a}	2.954	321	51532		27.95	$3^{6}T_{2a}$	22.60	$8^{6}T_{2a}$	12.95	$5^{6}T_{1a}$		
102 Γ _{•-}	2.956	257	51608		23 70	$4^{6}T_{2a}^{-9}$	10.48	$6^{6}T_{2a}^{-3}$		-9		
102 1 8g 50 Γ-	2.000	653	51697		20.10	$\frac{1}{7} \frac{1}{6} \frac{2g}{T_{-}}$	10.20	$10^{-6}T$	10.89	$6^{6}T_{-}$		
100 1 6g	2.310	000	51021		20.10	$1 \ 12g$	10.09	$-10 I_{1g}$	10.02	0 1 2g		
$103 \ \Gamma_{8g}$	2.955	257	91001		24.46	$9 ~I_{1g}$	18.59	$\int I_{2g}$		e.		
$51 \ \Gamma_{6g}$	2.975	612	51698		27.27	$11^{o}T_{2g}$	17.08	$7 \ ^{\circ}E_{g}$	10.26	$12 \ ^{o}T_{2g}$		
$104 \Gamma_{8a}$	2.956	240	51732		18.84	$5 {}^{6}T_{1a}$	17.54	$3^{6}T_{2a}$				
105 Ts-	2.954	242	51758		10.44	$7^{6}T_{1a}$		5				
$52 \Gamma_c$	2 957	213	51820	0.01	24 53	$6 \frac{8}{T_1}$	10.31	$5^{8}T_{2}$				
52 1 6g 106 Γ	2.001	210 925	51920	0.01	24.00 RR ED	5^{-1}	20.74	$6^{8}T$				
	2.904	∠ 3 0	0100Z			$J I_{2g}$	40.74		11.00	11.6~		
$54 \ \Gamma_{7g}$	2.953	306	51848		31.00	$\prod_{c} T_{1g}$	16.70	$T \ E_g$	11.30	11 $^{\circ}T_{2g}$		
$107 \ \Gamma_{8g}$	2.951	250	51849	0.01	12.31	$12 \ ^{o}T_{1g}$						

53 Γ_{6g}	2.957	207	51851		15.18	$7^{6}T_{2g}$	10.65	$4^{6}E_{g}$	10.26	$3^{6}T_{2g}$		
$55 \ \Gamma_{7g}$	2.950	344	51867		23.75	$8\ ^{6}T_{1g}$	15.22	$4^{6}E_{g}$	11.00	$7 {}^{6}T_{1g}$		
56 Γ_{7g}	2.949	366	51878		33.49	$12 \ ^{6}T_{1g}$	14.01	$11 \ ^{6}T_{2g}$				
108 Γ_{8g}	2.950	267	51884		12.03	$6 {}^{6}T_{2g}$	10.00	$7^{6}T_{1g}$				
109 Γ_{8g}	2.952	265	51943		18.28	9 ${}^{6}T_{2g}$						
110 Γ_{8g}	2.954	263	51994		13.83	9 $^{6}T_{2g}$	12.04	$11 {}^6T_{1g}$				
111 Γ_{8q}	2.954	267	52082		11.28	$8 {}^{6}T_{2q}$						
$54 \Gamma_{6a}$	2.975	813	52107		13.70	$6 {}^{6}E_{a}$	11.51	$7^{6}T_{2a}$	10.17	$6 {}^{6}T_{2q}$		
112 Γ_{8a}	2.955	263	52137		23.54	$12 \ {}^{6}T_{1a}$		-3		-3		
57 Γ_{7a}	2.950	298	52183		25.70	$12 \ {}^{6}T_{1a}$	11.07	$10^{-6}T_{2a}$				
58 Γ_{7a}	2.952	306	52236		31.66	$9^{6}T_{1a}$	18.53	$10^{-6}T_{1a}$				
$55 \Gamma_{6a}$	2.975	787	52255		25.08	$10^{-6} T_{1a}$	18.00	$5^{6}E_{a}^{-5}$	11.62	$7^{6}T_{2a}$	10.24	$10^{-6}T_{2a}$
113 Γ_{8a}	2.950	250	52259		11.07	$11 \ {}^{6}T_{2a}$	10.36	$12 {}^{6}T_{2a}$		-9		-9
$114 \Gamma_{8a}$	2.953	257	52293		10.06	$8^{6}T_{1a}$		-9				
59 Γ_{7a}	2.956	310	52297		19.13	$14 \ {}^{6}T_{1a}$	16.06	$14^{-6}T_{2a}$				
56 Γ_{6a}	2.977	819	52301		14.96	$12^{6}T_{2a}$	12.56	$10^{-6}T_{2a}$				
115 Γ _{8α}	2.952	243	52358		11.43	$7^{6}T_{2a}$	11.32	$12^{6}T_{2a}$				
116 Г _{ел}	2.954	260	52367		17.54	$8 {}^{6}T_{2a}$		29				
117 Год	2.952	265	52383		16.29	$9^{6}T_{2a}$						
$60 \Gamma_{7-}$	2 958	309	52415		19.55	$11 \frac{6}{7} T_{1}$						
$118 \Gamma_{0-}$	2.954	254	52455		10.61	$7^{6}T_{2}$						
110 Г <i>ау</i>	2.951	269	52502		11.83	$13 \frac{6}{T_0}$						
$61 \Gamma_{-}$	2.955	315	52502 52514		1/ 33	$10^{-1} \frac{2g}{2g}$ $14^{-6}T_{2}$	12.66	$9^{-6}E$				
$120 \Gamma_{0}$	2.958	267	52554		19.31	$5^{6}T_{1}$	12.00 12.56	$5 L_g$ $7 {}^6T_1$				
$57 \Gamma_{0}$	2.900	611	52579 52579		28.07	$0^{6}T_{2}$	12.00	1 1 1 g				
57 1 _{6g} 191 Г.	2.975	256	52615		20.07	9 12g						
121 1 8g 58 Га	2.958	200 576	52617		28.08	$8^{6}T_{a}$	10/13	9610				
50 Г ₆ 50 Г.	2.975	717	52660		13.08	$13 \ ^{6}T$	19.45	$^{2} A_{2g}$ 10 ^{6}T	10.69	$10^{6}T_{-}$	10.14	8 ⁶ F
69 Г_	2.910	971	52680		16.90	0.6T	16.99	$10 I_{1g}$ $13 ^{6}T$	10.02 10.04	$10 \ 12g$ $10 \ 6T_{-}$	10.14	$0 L_g$
$02 \pm 7g$ 199 Γ_{-}	2.950	271	52720		10.09	$9 I_{1g}$	10.22	$15 \ I_{1g}$	10.04	12 1 _{2g}		
122 I 8g 192 Г	2.908	209	52720		20.25	6 ⁸ T	22 44	5 ⁸ T				
123 1 8g	2.900	240	52701		29.20	$0 I_{1g}$	15 60	$5 1_{2g}$ = 8T				
$03 \pm 7g$ 194 F	2.950	201	02014 50007		20.09	$0^{-1}1g$ 10 $6T$	19.00	$3^{-1}1_{2g}$				
$124 \ 1 \ 8g$	2.975	502 777	52827		11.07	$12 \ 12g$	10.97	9.6 <i>m</i>	11 09	4612		
$00 \Gamma_{6g}$	2.975	111	52845		12.08	$9 {}^{\circ}I_{2g}$	12.37	$3 \ 1_{2g}$	11.03	$4 \ ^{\circ}E_{g}$		
$125 T_{8g}$	2.959	244	52873		00.00	e 8m	20 70	r 8m				
$64 \Gamma_{7g}$	2.949	242	52893		20.80	$0 \ T_{1g}$	20.79	$5 \ ^{\circ}T_{2g}$				
$120 \Gamma_{8g}$	2.957	236	52930		10.38	$12 \ ^{\circ}T_{1g}$	10.1.4	r 8m				
$61\Gamma_{6g}$	2.975	740	52935		18.48	$6 \ ^{\circ}T_{1g}$	13.14	$5 \ ^{0}T_{2g}$				
$127 \Gamma_{8g}$	2.954	251	52960		12.94	$5 \ T_{2g}$	10.66	$6 \ ^{\circ}T_{1g}$				
$128 \Gamma_{8g}$	2.952	250	52990		47.74	$5 \ ^{\circ}T_{2g}$						
$129 T_{8g}$	2.953	263	53011		05 15	e 8m	9 5 00	r 8m				
$62 T_{6g}$	2.975	810	53020		35.15	$6 \ ^{\circ}T_{1g}$	25.88	$5 \ ^{\circ}T_{2g}$				
$130 \ \Gamma_{8g}$	2.951	263	53070		11.06	$13 \ ^{\circ}T_{1g}$	10.42	$14 \ {}^{\circ}T_{1g}$				
$65 \Gamma_{7g}$	2.941	196	53088		58.87	$6 {}^{\circ}T_{1g}$						
$131 \Gamma_{8g}$	2.952	273	53088		10.09	$7^{\circ}T_{2g}$	1 - 0 -	- 6 -				
$63 \Gamma_{6g}$	2.975	731	53121		20.71	$\prod {}^{\circ}T_{2g}$	15.95	$5 \ ^{\circ}E_{g}$				
$66 \Gamma_{7g}$	2.943	203	53124		18.18	$6 \ ^{0}T_{1g}$	13.36	$3 \ ^{\circ}E_{g}$				
$132 \Gamma_{8g}$	2.953	268	53144		11.93	$16 \ {}^{0}T_{1g}$		- 6 -				
133 Γ_{8g}	2.952	262	53191	0.01	14.48	$14 {}^{o}T_{1g}$	10.20	$6 {}^{0}E_{g}$				
$134 \Gamma_{8g}$	2.953	277	53206	0.01	25.12	$14 {}^{o}_{c}T_{1g}$		6 —				
$67 \ \Gamma_{7g}$	2.944	188	53216	0.01	17.27	$12 \ ^{0}T_{1g}$	10.03	$6 \ ^{0}T_{1g}$				
$135 \ \Gamma_{8g}$	2.954	275	53256			C		C				
$64 \ \Gamma_{6g}$	2.975	684	53276		10.62	$11 {}^{\circ}_{c} T_{2g}$	10.38	$8 \ ^{\mathrm{o}}T_{2g}$				
$68 \Gamma_{7g}$	2.942	171	53305		14.98	$12 \ {}^{6}T_{1g}$						
136 Γ_{8g}	2.952	272	53308			2						
69 Γ_{7g}	2.952	220	53322		19.79	9 ${}^{6}T_{1g}$						
137 Γ_{8g}	2.954	281	53323			c		c		2		
$65 \ \Gamma_{6g}$	2.975	654	53335		15.97	$14^{6}T_{2g}$	12.83	$13^{6}T_{2g}$	11.24	9 ${}^{6}T_{2g}$		
138 Γ_{8g}	2.953	288	53347		12.91	$7 {}^{6}T_{2g}$	10.04	9 ${}^{6}T_{1g}$		c.		
$70 \ \Gamma_{7g}$	2.949	217	53366		25.02	$16 \ ^{6}T_{1g}$	14.84	$15 \ ^{6}T_{2g}$	14.34	$5^{6}A_{1g}$		
139 Γ_{8g}	2.952	291	53367			-						
71 Γ_{7g}	2.950	251	53374		17.70	$11 \ {}^{6}T_{1g}$	17.16	$10^{-6}T_{1g}$	12.01	$13 \ ^{6}T_{1g}$		

 $7\ {}^6E_g$ 10.49 $5\ {}^6E_g$

66 F	0.050	207	F0000	10 = 1	1 5 6 7	10.00	10.6 1		
66 Γ_{6g}	2.956	207	53382	13.74	$15 \ {}^{\circ}T_{2g}$	10.89	$10^{\circ}E_{g}$		6 —
$67 \ \Gamma_{6g}$	2.954	214	53430	15.16	$13 \ ^{\mathrm{o}}T_{1g}$	11.94	$5 \ ^{o}E_{g}$	10.39	$11 \ ^{\rm o}T_{2g}$
$68 \Gamma_{6q}$	2.952	227	53447	12.01	$6 {}^{6}T_{1q}$				
140 Γ_{8a}	2.953	277	53466	14.54	$9^{6}T_{2a}$				
72 Fza	2.947	240	53497	18.28	$9{}^{6}T_{1a}$				
$60 \Gamma_c$	2 9/8	252	53503	10.20	5 ± 19				
$141 \Gamma_{-}$	2.040	202	59519						
141 1 8g	2.901	219	00010	10.05	11.67	10.00	10.60		
142 I 8g	2.950	282	53555	10.95	$11 \ 1_{2g}$	10.62	$10 \ \ 1_{1g}$		
$143 \ \Gamma_{8g}$	2.950	286	53569	12.76	$9 {}^{\circ}E_g$				
$73 \ \Gamma_{7g}$	2.948	232	53590	10.07	$6 \ ^{o}E_{g}$				
$70 \ \Gamma_{6g}$	2.948	231	53615						
144 Γ_{8q}	2.952	274	53628	13.25	$10^{-6}T_{2a}$				
$74 \Gamma_{7a}$	2.947	243	53633	14.11	$6^{6}E_{a}$				
145 Γ ₀₋	2 950	287	53634	10.65	$13 \frac{6}{7} T_{1}$				
71 Γ ₀	2.000	201	53677	10.00	10 119				
	2.002	225	53690	91.15	0.6T	12 00	10.6T		
$10 \ 17g$	2.944	240	53080	51.15	9 1_{2g}	15.90	$10 \ I_{2g}$		
140 I 8g	2.951	286	53680		- 6 -		6-		
$147 \ \Gamma_{8g}$	2.951	283	53738	11.27	$6 {}^{\circ}E_g$	10.27	$12 \ {}^{0}T_{1g}$		
$148 \ \Gamma_{8g}$	2.950	284	53764	10.50	$10 {}^{o}T_{2g}$				
149 Γ_{8q}	2.952	281	53801	10.54	$16 {}^{6}T_{2q}$				
$72 \Gamma_{6a}$	2.975	637	53807	18.77	$10^{6}T_{2a}$	14.59	$9^{-6}E_{a}$		
$150 \Gamma_{0}$	2 950	287	53814	15.06	$15 \ {}^{6}T_{1}^{2}$	11 19	$12^{6} T_{1}$		
76 Γ-	2.000	201	59999	15.50	$12 \ ^{6}T$	19 11	$14^{6}T$		
1017g	2.947	224	53633	10.00	$13 I_{1g}$	19.11	14 <i>I</i> 1g		
151 I 8g	2.954	301	53848	10.03	$17^{-1}1_{2g}$		10.67		
$152 \ \Gamma_{8g}$	2.955	313	53871	11.53	$12 \ {}^{0}T_{2g}$	10.14	$10 \ {}^{0}T_{1g}$		
$73 \ \Gamma_{6g}$	2.955	227	53871						
$153 \ \Gamma_{8g}$	2.954	306	53918	13.45	$15 \ ^{6}T_{1g}$				
$154 \Gamma_{8a}$	2.954	303	53955	57.87	$6 {}^{8}T_{1a}$	41.16	$5 \ ^{8}T_{2a}$		
74 Γ _{6α}	2.975	711	53984	15.72	$14 \ {}^{6}T_{1a}$	11.25	$6 {}^{6}E_{a}^{-s}$	10.37	$15^{-6}T_{2a}$
155 To-	2 952	311	53985	10.1.2	11 11g	11.20	• 1 9	10.01	10 129
156 Γ ₀	2.052	316	54007						
150 1 8g	2.952	794	54117	20.02	1467	10.00	19 67	10 55	0.6E
$(5 \ 1 \ 6g$	2.975	(84	34117	20.02	$14^{-1}I_{2g}$	19.00	$13^{-1}1_{2g}$	10.55	$9 E_g$
$157 \Gamma_{8g}$	2.953	299	54119	10.70	$15 \ {}^{\circ}T_{1g}$		6		
$77 \ \Gamma_{7g}$	2.975	797	54122	12.66	$13^{0}T_{1g}$	10.04	$16 {}^{o}T_{1g}$		
$158 \Gamma_{8g}$	2.953	291	54173	46.91	$5 \ ^{8}T_{2g}$	18.93	$6 \ ^{8}T_{1g}$		
78 Γ_{7g}	2.975	845	54188						
76 Γ_{6a}	2.975	679	54237	15.67	$15^{-6}T_{2a}$				
159 Γ _{8α}	2.951	283	54255	13.31	$14^{6}T_{2a}^{-3}$	10.39	$13^{-6}T_{1a}$		
70 Γ-	2 975	753	54284	23.07	$13 {}^{6}T_{1}$	13.81	$5^{6}E$	10 44	$9.6T_{2}$
160Γ	2.050	100	54204	16.96	$10^{1}I_{1g}$	10.01	$0 L_g$	10.11	5 1 1g
$100 \ 1 \ 8g$	2.950	204	54504	15.00	$y I_{1g}$				
101 I 8g	2.951	299	54308	15.30	$10 \ ^{\circ}T_{1g}$		- 8-		
77 Г _{6g}	2.975	643	54309	50.58	$6 \ C^{0}T_{1g}$	45.81	$5 \ {}^{o}T_{2g}$		
$162 \Gamma_{8g}$	2.950	300	54323	16.47	$7 {}^{\circ}T_{2g}$	14.85	9 ${}^{6}T_{1g}$		
$163 \Gamma_{8g}$	2.953	300	54385	18.92	$11 {}^{6}T_{1g}$	11.94	$11 \ {}^{6}T_{2g}$	10.26	$7^{6}E_{g}$
78 Γ_{6a}	2.975	706	54391	22.77	$9^{6}E_{a}$	10.96	$4 {}^{6}A_{2a}$		
80 Γ _{7α}	2.949	211	54419	36.83	$5 {}^{8}T_{2a}$	20.92	$6 {}^{8}T_{1a}^{-s}$		
$164 \Gamma_{0}$	2 952	208	54431	13.89	$10^{-6}E$		• 1 19		
70Γ .	2.902	616	54440	10.00	$10 \ D_g$ $14 \ ^6T_{-}$				
191 _{6g}	2.975	010	54440	19.12	$14 \ 12g$	15 10	10.677	10 50	10.67
$105 \ 1 \ 8g$	2.950	291	54477	17.88	$11 \ ^{\circ}T_{2g}$	15.48	$12 \ ^{\circ}I_{1g}$	13.52	$10 \ ^{\circ}I_{2g}$
$81 \Gamma_{7g}$	2.942	224	54477	13.35	$15 \ ^{0}T_{1g}$	10.09	$5 \ {}^{6}T_{2g}$		
166 Γ_{8g}	2.950	288	54507						
$80 \ \Gamma_{6g}$	2.975	665	54541	50.80	$5 \ ^{8}T_{2g}$	14.97	$6 {}^{8}T_{1g}$		
$167 \ \Gamma_{8q}$	2.953	297	54554	31.40	$16 {}^{6}T_{2a}$	16.68	$17 {}^{6}T_{2a}$		
168 T ₈	2.954	313	54573	18.16	$16 {}^{6}T_{1a}$	10.60	$17 {}^{6}T_{2a}$		
- <i>зу</i> 82 Г-	2.947	215	54578	15 14	$14^{6}T_{1}^{-19}$	13 42	$17 {}^{6}T_{2}$		
5 <u>-</u> - (g 160 Γ-	2 954	203	54676	13 50	$14^{6}T_{-}$	19, 14	 - 2g		
170 T	2.304	⊿უე ეეი	54070	10.04	14 12g 10.677				
$1/0 \Gamma_{8g}$	2.955	322	04/04	10.64	$12 \ T_{2g}$		- 6-		
$81 \Gamma_{6g}$	2.975	775	54710	39.99	9 ${}^{9}T_{1g}$	21.47	$7 {}^{\circ}T_{2g}$		G
83 Γ_{7g}	2.941	197	54711	15.62	$10 \ ^{\circ}T_{1g}$	11.37	$13 \ ^{o}T_{1g}$	11.33	$7 \ ^{\mathrm{o}}E_g$
171 Γ_{8g}	2.955	321	54734	15.83	$12^{-6}T_{2g}$				
82 Γ _{6α}	2.975	867	54842	14.01	$12 {}^{6}T_{2a}$	12.57	$8^{-6}E_{a}$	10.80	$13^{-6}T_{2a}$
84 Γ ₇	2.950	206	54858	14,47	$10^{-6}E_{c}^{-9}$	12.21	$16 {}^{6} T_{2-}$	10.99	$15 {}^{6}T_{1}^{-9}$
					<i></i> g		2g	- 0.00	1g

	0.044	0.04	F 4011	11.00	- 6 4	11 15	1 - 67				
$85 T_{7g}$	2.944	234	54911	11.82	$5 A_{1g}$	11.15	$15 \ ^{\circ}T_{2g}$				
83 Γ_{6g}	2.982	326	54932	46.31	$16 \ ^{o}T_{2g}$	13.70	$17 \ ^{6}T_{2g}$				
172 Γ_{8q}	2.957	284	54943	17.18	$13 \ {}^{6}T_{1a}$	10.54	$14 \ {}^{6}T_{1a}$				
173 Γ ₈ α	2.953	289	55008	46.02	$13 {}^{6}T_{1a}$	19.07	$12^{-6}T_{2a}$				
210 1 8g	2.000	308	55057	25.02	$15 \ ^{6}T_{2}$	10.05	$4^{6} 4_{0}$				
0416g	2,301	000	55057	10.50	$15 \ 12g$	10.55	4 A2g				
$1/4 \ 1 \ 8g$	2.953	288	55062	10.52	$9 E_g$		6-		6-		
86 Γ_{7g}	2.951	223	55131	12.88	$11 \ {}^{o}T_{1g}$	10.77	$12 \ ^{0}T_{2g}$	10.26	$13 \ ^{o}T_{1g}$		
$175 \ \Gamma_{8q}$	2.954	271	55144	13.65	$13 \ {}^{6}T_{1q}$	12.68	$14 \ {}^{6}T_{2q}$	10.50	$13 {}^{6}T_{2q}$		
176 Fs.	2.955	283	55158	13.96	$10^{-6}E_{a}$	10.73	$17 {}^{6}T_{2a}$		5		
$177 \Gamma_{0}$	2 053	211	55175	28 54	$10^{6}T_{1}$	11 57	$13 {}^{6}T_{2}$	10 53	$8^{6}F$		
177 1 8g	2.305	007	55175	10.54	12 11g	14.00	10 12g	10.00	$0 L_g$		
8717_{g}	2.957	227	55216	16.52	$15 I_{1g}$	14.29	$9 E_g$		6-		
$85 \Gamma_{6g}$	2.978	845	55244	12.17	$3 \ ^{o}A_{2g}$	11.65	$11 \ {}^{0}T_{2g}$	11.01	$13 \ {}^{0}T_{2g}$		
178 Γ_{8q}	2.955	298	55273	20.01	$15 \ {}^{6}T_{2q}$	13.98	$14 \ {}^{6}T_{1q}$				
88 F7a	2.955	231	55299	26.59	$13 {}^{6}T_{2a}$	21.00	$14 {}^{6}T_{2a}$	19.84	$13^{6}T_{1a}$		
179 E	2 956	308	55307	19 10	$15 {}^{6}T_{2}^{2}$	11.84	$16^{6}T_{1}^{2}$	11.54	$17 {}^{6}T_{2}^{19}$		
	2.500	767	55501	14.69	$10 \ 12g$ $11 \ 6T$	19.60	$10 \ 1_{1g}$	19.15	$10 \ 6T$		
80 I 6g	2.975	107	55309	14.03	$11^{-1}2g$	13.09	$12^{-1}1_{2g}$	13.15	$13^{-1}1_{2g}$		
$87 \Gamma_{6g}$	2.975	637	55329	22.57	$17 \ {}^{o}T_{2g}$	12.21	$16 {}^{o}T_{2g}$				
$89 \Gamma_{7g}$	2.955	261	55369	45.35	$12 \ ^{6}T_{1g}$	12.16	$8 {}^{6}E_{g}$				
180 Γ_{8a}	2.957	310	55404	23.49	$14 {}^{6}T_{2a}$	10.10	$15 \ ^{6}T_{1a}$				
88 L	2 954	220	55468	21.00	$13 {}^{6}T_{2}^{2}$	16 42	$8^{6}E^{19}$	13 69	$12^{6}T_{2}$	12 52	$11^{6}T_{2}$
$00 \Gamma_{6g}$	2.504	220	55400	21.00	$10 \ 12g$ 146T	10.12	1 = 6T	10.00	17 6T	11.04	11 12g
89 I 6g	2.901	254	00001	20.32	$14^{-1}2g$	18.41	$10 I_{1g}$	12.03	$11 1_{2g}$	11.24	$4 A_{2g}$
$181 \Gamma_{8g}$	2.958	289	55536	15.54	$18 \ {}^{o}T_{2g}$	15.20	$11 \ ^{\circ}E_g$	14.87	$19 \ {}^{o}T_{2g}$		
182 Γ_{8q}	2.958	296	55563	19.46	$18^{-6}T_{2q}$	15.00	$11^{-6}E_{q}$	11.02	$19^{-6}T_{2q}$		
90 Γ _{7α}	2.958	227	55572	28.98	$16 {}^{6}T_{1a}$	17.74	$10^{-6}E_{a}$		5		
90 Γ _α	2 975	595	55648	24.98	$10^{6}T_{2}^{ig}$	21 92	$18^{6}T_{1}^{9}$	19.08	$5^{6} 4_{2}$		
$50 \pm 6g$	2.910	000	55040	24.90	$15 \ 12g$	21.92	10 IIg	10.05	5 A2g		
9117_{g}	2.962	291	22001	37.20	$10^{-1}I_{1g}$	21.92	$13 \ 12g$	19.95	$3 A_{1g}$		
$92 \Gamma_{7g}$	2.960	355	55664	37.22	$16 \ {}^{o}T_{2g}$	31.30	$17 \ {}^{o}T_{2g}$				
93 Γ_{7g}	2.958	392	55669	22.70	$11 {}^{6}E_{g}$	12.36	$19^{-6}T_{1g}$	11.76	$18^{-6}T_{1g}$	10.85	$19^{-6}T_{2g}$
				10.78	$17 {}^{6}T_{1a}$						
183 Eo	2 958	202	55762	29.60	$16^{6}T_{1}^{g}$	23 62	$15^{-6}T_{2}$	13 61	$5^{6}4$		
$100 \ 1 \ 8g$	2.500	400	55702	29.00	$16 \ 1_{1g}$	10 51	$10 \ 12g$	19 50	1 = 6 T		
911_{6g}	2.975	490	00783	28.05	$10^{-1}I_{2g}$	19.51	$10^{-}E_g$	13.30	$13 \ 12g$		
$94 \Gamma_{7g}$	2.960	442	55791	27.68	$11 \ ^{\circ}E_g$	25.74	$19 \ {}^{o}T_{2g}$	10.01	$18 \ {}^{o}T_{1g}$		
$184 \ \Gamma_{8g}$	2.961	292	55834	23.87	$17 {}^{6}T_{2g}$	17.98	$16 {}^{6}T_{2g}$	17.24	$10 {}^{6}E_{g}$	13.10	$4 {}^{6}A_{2g}$
185 Γ_{8a}	2.959	305	55868	21.95	$17 {}^{6}T_{2a}$	16.73	$16^{-6}T_{2a}$	16.19	$15 \ ^{6}T_{2a}$	10.89	$10^{-6}E_{a}$
186 Fo	2 958	322	55934	42.89	$17 {}^{6}T_{0}^{29}$	24.68	$16 {}^{6}T_{0}^{2}$		29		9
100 I 8g	2.000	522	55095	27.61	156T	21.00	$16 \ 6T$	10.29	161		
92 I 6g	2.975	009	22362	57.01	$15 I_{2g}$	22.03	$10 I_{1g}$	19.52	4 A_{2g}		
95 Γ_{7g}	2.961	413	56094	58.15	T_{1g}	13.14	$\prod_{g} E_{g}$		C		c
187 Γ_{8g}	2.963	280	56139	18.71	$19 \ ^{0}T_{2g}$	16.52	$18 \ ^{0}T_{2g}$	14.59	$5 {}^{o}A_{2g}$	10.76	$18 \ ^{0}T_{1g}$
188 Γ_{8q}	2.975	495	56213	22.62	$18 \ {}^{6}T_{2a}$	15.98	$18^{-6}T_{1q}$	14.87	$17 {}^{6}T_{1a}$		
93 Lea	2.975	522	56221	51.41	$17 {}^{6}T_{2}$	14.24	$16^{-6}T_{2}$	13.66	$10^{6}E_{a}$		
180 L.	2.070	308	56270	20.06	$10^{6}T_{-}$	16.90	$17 {}^{6}T$	11 04	$18^{6}T$		
109 1 8g	2.970	0.00	50270	20.90	$19 \ 12g$	10.20	11 11g	12.09	$10 I_{1g}$		
941_{6g}	2.958	200	56302	21.55	$18 \ ^{\circ}I_{2g}$	20.64	$\prod_{g \in E_g} E_g$	13.92	$19 \ ^{\circ}I_{2g}$		6 —
190 Γ_{8g}	2.972	300	56465	25.81	$11 {}^{0}E_{g}$	22.36	$6 {}^{0}A_{1g}$	15.94	$17 \ ^{0}T_{1g}$	12.83	$12 \ ^{0}E_{g}$
$95 \ \Gamma_{6g}$	2.975	410	56483	18.36	$18^{-6}T_{2g}$	12.72	$11^{-6}E_{g}$	11.80	$19^{-6}T_{2g}$	10.19	$20^{-6}T_{2g}$
				10.16	$17 {}^{6}T_{1a}$		-				-
191 Eo	2 968	324	56498	24.77	$17 {}^{6}T_{1}^{19}$	11.00	$19^{-6}T_{1}$	10.53	$20^{-6}T_{2}$		
101 I 8g	2.500	224	56450	16.06	$10 \ 6T$	19.95	17 6T	10.00	$20 \ 12g$	10 19	1165
192 1 8g	2.900	220	50579	10.00	$19 I_{2g}$	15.55	$17 I_{1g}$	10.00	$20 I_{2g}$	10.15	$11 E_g$
96 Γ_{6g}	2.967	314	56587	23.92	$11 \ ^{\circ}E_{g}$	17.66	$20 \ ^{\circ}T_{2g}$	10.96	$13 \ ^{\circ}E_g$	10.17	$12 \ ^{\circ}E_{g}$
96 Γ_{7g}	2.958	370	56615	40.26	$17 {}^{6}T_{1g}$	11.97	$18 {}^{6}T_{1g}$				
193 Γ_{8a}	2.967	313	56701	15.88	$17 {}^{6}T_{1a}$	15.82	$18^{-6}T_{2a}$	11.18	$11 {}^{6}E_{a}$		
97 Γc	2 984	360	56830	17 91	$18^{6}T_{0}^{fg}$	$15 \ 24$	$18^{6}T_{1}^{-9}$	13.09	$5^{6}A_{0}^{j}$		
104 E	2.004	601	57024	10 20	176T	10.21 00.61	116 T	10.00	5 112g		
194 1 8g	4.910 0.000	001	07004	∠ə.0Z		∠ə.01		11.00	10.6-		
98 Γ_{6g}	2.980	696	57039	45.02	$18 \ ^{\circ}T_{2g}$	14.84	$19 \ ^{\circ}T_{2g}$	11.30	$13 \ E_g$		
$195 \ \Gamma_{8g}$	2.975	569	57146	20.08	$17 \ ^{o}T_{1g}$	17.22	$18 \ ^{o}T_{2g}$	13.73	19 ${}^{o}T_{1g}$		
97 Γ ₇₀	2.951	313	57220	31.10	$18^{-6}T_{2a}$	13.41	$19^{-6}T_{1a}$	12.99	$20^{-6}T_{1c}$		
98 Г ~	2.952	316	57296	50.03	$6^{6}A_{1}^{29}$	20.75	$17 {}^{6}T_{1}^{19}$		-9		
106 T	2.056	300	57211	97.99	18 6 T	10 19	196E				
190 I 8g	2.900	00Z	57511	41.44	$10 I_{2g}$	10.12	14 Eg	10.05	10.67	10.00	10.6 -
$99 \ \Gamma_{7g}$	2.955	331	57408	17.43	$17 \ _{g}^{\circ}T_{1g}$	16.43	$0 A_{1g}$	12.95	$18 \ ^{\circ}T_{1g}$	12.80	12 ° E_g
197 Γ_{8g}	2.958	300	57424	12.76	$18 \ ^{o}T_{2g}$	12.57	$6 \ ^{o}A_{1g}$				
198 Γ_{8a}	2.958	294	57503	33.31	$17 \ ^{6}T_{1a}$	12.50	$18^{-6}T_{2a}$				
$100 \Gamma_{72}$	2.950	335	57545	20.56	$18^{6}T_{1c}$	16.65	$13^{-6}E_{2}^{J}$	13.94	$19^{-6}T_{1c}$	13.87	$18^{-6}T_{2c}$
199 Г.	2 955	300	57547	17 15	$6^{6} 4$	12.85	$18 {}^{6}T_{-}$		- 19		- 29
100 I 8a	4.000	000	01011	T1 1 T 0	• • • • 1 g	12.00	10 I 1g				

99 Γ_{6g} 2.9	976	704	57598	23.61	$20^{-6}T_{2g}$	14.94	$18 \ ^{6}T_{2g}$	13.72	$19^{-6}T_{2g}$		
$101 \ \Gamma_{7g} \ 2.9$	951	330	57629	17.79	$18 \ ^{6}T_{1g}$	12.20	$20^{-6}T_{2g}$	11.51	$12^{-6}E_{g}$	10.74	$13^{-6}E_{g}$
200 Γ_{8g} 2.9	955	302	57656	19.89	$19 \ ^{6}T_{1g}$	18.64	$20^{-6}T_{2g}$	11.63	$13^{-6}E_{g}$		
$100 \ \Gamma_{6g} \ 2.9$	975	700	57710	31.77	$19^{-6}T_{2g}$	15.34	$20^{-6}T_{2g}$				
$201 \Gamma_{8g}$ 2.9	956	291	57720	22.32	$19 \ ^{6}T_{2g}$	14.94	$18 \ ^{6}T_{2g}$	12.37	$19^{-6}T_{1g}$		
202 Γ_{8g} 2.9	954	304	57823	17.04	$19^{-6}T_{2g}$	13.31	$19^{-6}T_{1g}$	10.29	$18^{-6}T_{1g}$		
$102 \ \Gamma_{7g} \ 2.9$	951	311	57919	21.13	$19^{-6}T_{1g}$	15.24	$13^{-6}E_{g}$	15.17	$21 \ ^{6}T_{2g}$	11.05	$20^{-6}T_{1g}$
				10.40	$20 \ ^{6}T_{2g}$						
203 Γ_{8g} 2.9	957	298	57929	19.44	$12^{-6}E_{g}$	10.60	$20^{-6}T_{2g}$				
$103 \ \Gamma_{7g} \ 2.9$	956	365	57932	32.20	$18 \ ^{6}T_{1g}$						
$101 \ \Gamma_{6g} \ 2.9$	952	263	57946	49.06	$17 {}^{6}T_{1g}$						
204 Γ_{8g} 2.9	957	319	57995	49.58	$20^{-6}T_{2g}$	14.51	$13^{-6}E_{g}$				
205 Γ_{8g} 2.9	957	328	58029	20.82	$19 \ ^{6}T_{1g}$	14.74	$20^{-6}T_{2g}$	10.54	$21 \ {}^{6}T_{2g}$	10.41	$13 \ {}^{6}E_{g}$
206 Γ_{8g} 2.9	957	346	58047	20.67	$13^{6}E_{g}$	15.53	$18 \ ^{6}T_{1g}$	11.11	$19\ ^{6}T_{2g}$		
$104 \ \Gamma_{7g} \ 2.9$	954	395	58074	23.50	$19 \ ^{6}T_{1g}$	18.98	$21 \ {}^{6}T_{2g}$	10.19	$20^{-6}T_{1g}$		
$102 \Gamma_{6g} 2.9$	958	237	58131	41.19	$12^{-6}E_{g}$	10.59	$18 \ ^{6}T_{2g}$				
207 Γ_{8g} 2.9	955	347	58146	21.62	$18 \ ^{6}T_{1g}$	14.18	$21 \ {}^{6}T_{2g}$	12.62	$19\ ^{6}T_{2g}$		
$103 \ \Gamma_{6g} \ 2.9$	954	303	58183	16.92	$20^{-6}T_{2g}$	15.86	$21 \ {}^{6}T_{2g}$				
$105 \ \Gamma_{7g} \ 2.9$	955	396	58249	54.72	$19 \ ^{6}T_{1g}$	14.16	$12^{-6}E_{g}$	10.87	$18 \ ^{6}T_{1g}$		
208 Γ_{8g} 2.9	956	340	58276	17.29	$18 \ ^{6}T_{1g}$	15.35	$21 \ ^6T_{2g}$	14.07	$13^{-6}E_{g}$		
106 Γ_{7g} 2.9	951	456	58328	32.25	$21 \ ^{6}T_{2g}$	20.28	$20^{-6}T_{2g}$	15.77	$18 \ ^{6}T_{1g}$	10.15	$20 \ ^{6}T_{1g}$
209 Γ_{8g} 2.9	956	345	58363	36.10	$19^{-6}T_{1g}$	12.65	$18^{-6}T_{1g}$	10.08	$20^{-6}T_{1g}$	10.02	$21 \ {}^{6}T_{2g}$
$104 \ \Gamma_{6g} \ 2.9$	955	281	58375	19.38	$18 \ ^{6}T_{1g}$	17.46	$19^{-6}T_{2g}$	15.80	$6 {}^{6}A_{2g}$		
210 Γ_{8g} 2.9	955	337	58498	25.05	$19^{6}T_{1g}$	16.90	$20 \ ^{6}T_{1g}$	11.23	$6 {}^{6}A_{2g}$	10.55	$12^{-6}E_{g}$
$105 \Gamma_{6g} 2.9$	953	295	58524	51.35	$19 \ ^{6}T_{1g}$	17.11	$18 \ ^{6}T_{1g}$				
$211 \Gamma_{8g}$ 2.9	953	333	58622	19.2^{2}	$19 \ ^{6}T_{1g}$	15.75	$20 \ ^{6}T_{1g}$	15.26	$18^{-6}T_{1g}$		
212 Γ_{8g} 2.9	954	347	58708	27.01	$20 \ ^{6}T_{1g}$	20.41	$19^{-6}T_{1g}$	18.21	$18 \ ^{6}T_{1g}$	10.76	$21 \ {}^{6}T_{2g}$
$106 \Gamma_{6q} 2.9$	958	268	58790	24.13	$21 \ {}^{6}T_{2q}$	21.96	$13^{6}E_{q}$		5		5
$107 \Gamma_{6q} 2.9$	955	325	58829	41.84	$20 \ ^{6}T_{1q}$	33.20	$21 \ {}^{6}T_{2q}$				
213 Γ_{8q} 2.9	953	338	58834	31.38	$20 \ ^{6}T_{1a}$	18.44	$21 \ {}^{6}T_{2a}$	11.08	$18 \ ^{6}T_{1a}$		
214 Γ_{8q} 2.9	952	352	58893	47.27	$20 \ ^{6}T_{1q}$	12.95	$20^{-6}T_{2q}$		5		
$108 \Gamma_{6q} 2.9$	952	349	58942	34.37	$6^{6}A_{2q}$	14.24	$21 \ {}^{6}T_{2q}$	11.56	$20^{-6}T_{2q}$	11.29	$20^{-6}T_{1q}$
215 Γ_{8g} 2.9	954	347	59006	36.89	$20 \ ^{6}T_{1a}$	18.19	$21 \ {}^{6}T_{2a}$	11.97	$13^{6}E_{q}$		5
$109 \Gamma_{6a} 2.9$	954	376	59015	32.50	$21 \ {}^{6}T_{2a}$	19.33	$20^{-6}T_{2a}$	14.06	$13 \ {}^{6}E_{a}$		
110 Γ_{6q} 2.9	959	483	59039	52.25	$21 \ {}^{6}T_{1q}$	26.80	$22 \ ^{6}T_{2q}$		5		
216 Γ_{8g} 2.9	953	354	59105	28.63	$21 \ {}^{6}T_{2a}$	21.25	$20 \ ^{6}T_{1a}$	16.64	$6^{6}A_{2q}$		
$107 \Gamma_{7q} 2.9$	954	327	59108	54.71	$20 \ ^{6}T_{1q}$		5		5		
$108 \Gamma_{7q} 2.9$	955	338	59149	50.30	$20^{6}T_{1q}$	20.14	$13^{-6}E_{q}$				
217 Γ_{8g} 2.9	955	361	59167	69.72	$21 \ ^{6}T_{2g}$						
218 Γ_{8q} 2.9	957	465	59287	44.77	$22 \ ^{6}T_{2q}$	35.24	$21 \ ^{6}T_{1q}$				
219 Γ_{8q} 2.9	959	497	59432	33.90	$22 \ {}^{6}T_{2q}$	23.95	$21 \ ^{6}T_{1q}$	20.87	$7^{6}A_{2q}$		
$111 \Gamma_{6q} 2.9$	961	507	59472	63.38	$7^{6}A_{2q}$	14.46	$20^{-6}T_{2q}$		5		
$109 \Gamma_{7g} 2.9$	960	491	59493	68.66	$21 \ ^{6}T_{1g}$						
220 Γ_{8q} 2.9	960	511	59507	58.09	$7^{6}A_{2q}$	13.84	$20^{-6}T_{2q}$	11.59	$22 \ ^{6}T_{2q}$		
110 Γ_{7q} 2.9	959	527	59593	69.19	$21 \ {}^{6}T_{1q}$						
221 Γ_{8q} 2.9	960	520	59612	62.76	$21 \ {}^{6}T_{1q}$	15.73	$22^{-6}T_{2q}$				
$222 \Gamma_{8g} 2.9$	961	496	59875	63.67	$21 \ ^{6}T_{1q}$	21.11	$22 \ {}^{6}T_{2q}$				
$111 \Gamma_{7g}$ 2.9	961	518	59887	74.46	$22 \ {}^{6}T_{2q}$	23.11	$21 \ {}^{6}T_{1q}$				
112 Γ_{6q} 2.9	962	510	59936	54.62	$22 \ ^{6}T_{2a}$	23.82	$21 \ {}^{6}T_{1a}$				
223 Γ_{8g} 2.9	961	507	59960	43.92	$22 \ ^{6}T_{2q}$	37.61	$21 \ {}^{6}T_{1q}$				
224 Γ_{8g} 2.9	961	518	59976	69.80	$22 \ {}^{6}T_{2q}$	18.47	$21 \ {}^{6}T_{1q}$				
113 Γ_{6g} 2.9	961	522	60005	78.08	$22 \ {}^{6}T_{2q}$		5				
-											

$4f^{7}(^{6}P_{3}$	(2,5/2,7/2) c		
$2 \Gamma_{7u}$	2.969	267	30115
$2 \Gamma_{8u}$	2.969	267	30140
$3 \Gamma_{8u}$	2.969	267	30502
$2 \Gamma_{6u}$	2.969	267	30767
$4 \Gamma_{8u}$	2.969	267	30783
$3 \Gamma_{7u}$	2.969	267	30807

 $4f^7$ excited states

$A f^{7} (^{6}I_{-})$	/ /) c								
4J (17/2) 5 Γ_{0}	2,9/2,11/2,13/ 2 969	$^{\prime 2,15/2},$	34662	75-31	$1^{6}T_{2}$	13 77	$1^{6}E$				
$3 \Gamma_a$	2.969	265	34663	75.20	$1 \frac{1}{6}T_{0}$	19.11	$1 \frac{D_u}{16E}$				
$5\Gamma_{6u}$	2.303	200	34701	45.13	$2^{6}T_{1}$	24.63	$2^{6}T_{0}$	21.83	164.		
$f \Gamma_u$	2.303	200	34701	40.10	$\frac{2}{1} \frac{1}{6} T_{2}$	11 54	$\frac{2}{1} \frac{12u}{F}$	21.00	1 A1u		
4Γ	2.909	205	34701	84.83	$1 \frac{1}{2u}$ $1 \frac{6}{T}$	11.04	1 Lu				
416u 7Γ	2.909	200	24790	04.00	$1 \frac{1}{2u}$ $1 \frac{6}{T}$						
11 _{8и} 9 Г	2.909	200	24742	91.JO 20.97	$1 1_{2u}$ 0 6T	95 79	161	92.07	9.6T		
ο 1 8u 5 Γ	2.909	200	24750	59.27 85.04	$\begin{array}{c} 2 & I_{1u} \\ 1 & 6T \end{array}$	20.10	$\mathbf{I} A_{1u}$	23.97	$2 \ 12u$		
$0 \ 1 \ 7u$	2.900	202	34730	00.94	1 12u 0.6T	20 55	a 677	15 02	161		
$9 \ 1 \ 8 u$	2.909	204	04/94 94017	43.91	$2 I_{1u}$ 2 6T	30.33 40.64	$2 1_{2u}$ 2 6T	10.95	$I A_{1u}$		
01 _{6и} с Г	2.909	205 965	34017	32.44	$\begin{array}{ccc} 2 & I_{2u} \\ 1 & 6 & A \end{array}$	40.04	$2 I_{1u}$ 2 6T	26 60	9.6T		
$0 \ 1 \ 7u$	2.909	200	04042 04061	50.00	$1 A_{1u}$	01.02 01.49	$2 1_{2u}$	20.09	$2 I_{1u}$		
$10 \ 1 \ 8u$	2.909	204	34801	09.00	$2 I_{1u}$	21.43	$2^{-1} I_{2u}$				
$0 \ 1 \ _{6u}$	2.969	203	34892	84.70	$2 \ T_{2u}$	10.03	$2 \ ^{\circ}T_{1u}$	15 50	164	11.00	<u>а б</u> <i>т</i>
(1_{7u})	2.969	205	34904	38.20	$2 T_{1u}$	34.71	$1 \ ^{\circ}E_u$ $1 \ ^{\circ}E$	10.70	$1 \ A_{1u}$	11.20	$2 \ ^{\circ}I_{2u}$
111_{8u}	2.909	204	34930	44.95	$\frac{2}{16}\frac{1}{2u}$	17.03	$1 L_u$	10.79	$2 I_{1u}$	12.79	$1 A_{1u}$
$25 T_{7g}$	2.937	263	34930	48.50	$1 \ A_{1g}$	40.93	$3 \ ^{\circ}I_{1g}$	1 4 50	160	10 70	164
$12 \ 1_{8u}$	2.969	205	34945	37.00	$2 \ ^{\circ}I_{1u}$	28.41	$2 \ ^{\circ}I_{2u}$	14.78	$1 \ L_u$	13.79	$1 \ ^{\circ}A_{1u}$
49 Γ_{8g}	2.937	263	34951	46.40	$1 \circ A_{1g}$	41.99	$3 \circ T_{1g}$				
$13 \Gamma_{8u}$	2.969	265	34960	68.50	$1^{\circ}E_u$	15.10	$2 \ ^{o}T_{2u}$				
$8 \Gamma_{7u}$	2.969	265	34965	59.86	$1^{\circ}E_{u}$	35.11	$2 {}^{o}T_{1u}$	10.15	2.677		
$14 \Gamma_{8u}$	2.969	264	34988	56.38	$1 {}^{o}E_{u}$	13.13	$2 {}^{0}T_{1u}$	12.15	$2 \ {}^{o}T_{2u}$		
$7 \Gamma_{6u}$	2.969	265	35000	59.73	$1 {}^{o}E_{u}$	13.35	$1 {}^{o}T_{2u}$	10.87	$1 {}^{o}A_{2u}$		
$9 \Gamma_{7u}$	2.969	265	35044	53.10	$2 {}^{0}T_{1u}$	23.30	$1 {}^{o}A_{1u}$	22.27	$2 {}^{o}T_{2u}$		6.4
$8 \Gamma_{6u}$	2.969	264	35048	30.67	$2 {}^{0}T_{2u}$	26.82	$2 {}^{0}T_{1u}$	18.43	$1 {}^{o}E_{u}$	15.74	$1 {}^{0}A_{2u}$
$15 \Gamma_{8u}$	2.969	264	35054	35.88	$2 {}^{o}_{c} T_{1u}$	27.22	$2 {}^{0}_{c}T_{2u}$	14.08	$1 \ ^{o}E_{u}$	12.78	$1 {}^{0}A_{1u}$
$16 \Gamma_{8u}$	2.969	262	35078	69.86	$2 {}^{o}_{c} T_{2u}$	20.05	$2 {}^{0}T_{1u}$				
$17 \Gamma_{8u}$	2.969	267	35081	74.24	$1 {}^{o}A_{2u}$		C		C		
9 Γ_{6u}	2.969	266	35084	64.50	$1 {}^{6}A_{2u}$	18.15	$2 {}^{6}T_{2u}$	10.02	$2 {}^{o}T_{1u}$		
$4f^{7}(^{6}D)$) c									
$4J (D_{1})$	$\binom{2,3}{2,5}, \binom{2,7}{2}$	2) - 965	27409	04.87	2 6 T						
$10 \ 1 \ 6u$ $10 \ \Gamma$	2.900	200	37400	94.07	3 12u 26T	21.05	9.6E				
$10 \ 1 \ 8u$ $10 \ \Gamma$	2.900	200	27695	00.07	$3 1_{2u}$ 26T	97.00 97.00	$2 L_u$ 3 6 F				
$19 \ 18u$	2.900	200	37023	10.00	$3 I_{2u}$ 3 6 F	20.00	$2 L_u$ 2 6T				
111_{6u}	2.908	208	37029	89.42	$2^{\circ}E_u$	10.34	$3^{-1}2u$				
$20 \ 1 \ 8u$	2.908	207	37910	47.49	$3^{-1}2u$	40.71	$2^{-}E_{u}$				
$10 \ 1 \ 7u$	2.968	200	38271	80.33	$3^{-1}2u$	10.00	$1 \ 1 \ 1_{1u}$	10.90	1 6 T		
211_{8u}	2.908	200	38303	50.60	$3^{-1}2u$	39.07	$2^{-}E_u$ 16 T	10.29	$1 I_{1u}$		
$12 \Gamma_{6u}$	2.968	205	384/3	82.55	$3 \ T_{2u}$	12.28	$1 \ ^{\circ}I_{1u}$	11 74	1.677		
$22 \Gamma_{8u}$	2.968	207	38503	48.02	$2 \ E_u$	39.45	$3 \ ^{\circ}I_{2u}$	11.74	$1 \ I_{1u}$		
$11 \ 1^{-}_{7u}$	2.968	268	38527	85.48	$2 \ ^{\circ}E_u$	11.57	$1 \circ T_{1u}$				
				Eu ³⁺ -doped	l SrS						
				Ē							
$4f^{6}(^{7}F_{0})$	-6)										
$1 A_{1g}$	2.800	286	0	47.13	$1 \ 7T_{1g}$	36.92	$1 \ 7T_{2g}$	10.12	$1 \; 7A_{2g}$		
$1 T_{1g}$	2.800	286	373	49.18	$1 \ 7T_{1g}$	36.47	$1 \ 7T_{2g}$				
$1 E_g$	2.799	285	963	67.33	$1 \ 7T_{1g}$	29.01	$1 \ 7T_{2g}$				
$1 T_{2g}$	2.800	287	1137	42.70	$1 \ 7T_{1g}$	39.80	$1 \ 7T_{2g}$	13.86	$1 \; 7A_{2g}$		
$1 A_{2g}$	2.799	285	1956	54.65	$1 \ 7T_{1g}$	42.86	$1 \ 7T_{2g}$				
$2 T_{2g}$	2.800	287	2017	46.15	$1 \ 7T_{1g}$	32.05	$1 7T_{2g}$	19.23	$1 \; 7A_{2g}$		
$2 T_{1g}$	2.800	287	2066	46.60	$1 \ 7T_{2g}$	36.54	$1 \ 7T_{1g}$	14.32	$1 \; 7A_{2g}$		
$3 T_{2g}$	2.799	286	2951	70.46	$1 \ 7T_{1g}$	23.92	$1 \ 7T_{2g}$				
$2 E_g$	2.800	285	3170	74.60	$1 7 T_{2g}$	23.36	$1 7 T_{1g}$	0.1.5.			
$3 T_{1g}$	2.800	288	3190	43.79	$1.7T_{2g}$	29.53	$1 \ 7T_{1g}$	24.61	$1 \ 7A_{2g}$		
$2 A_{1g}$	2.800	291	3211	50.44	$1 7 A_{2g}$	37.56	$1 \ 7T_{1g}$				
$4 T_{1g}$	2.799	286	4184	52.40	$1.7T_{1g}$	42.78	$1.7T_{2g}$				
$3 E_g$	2.799	285	4216	51.01	$1.7T_{2g}$	46.64	$17T_{1g}$				
$4 T_{2g}$	2.800	288	4247	62.26	$1.7T_{1g}$	25.79	$17A_{2g}$	11 4-	1 17 4		
$5 T_{1g}$	2.800	287	4400 5207	74.15	$17T_{2g}$	12.01	$17T_{1g}$ 17T	11.47	$1 \ 7 A_{2g}$		
$4 E_g$	2.799	285	5387	56.56	$1 \ (T_{1g}$	40.14	$1 \ (T_{2g}$				

$5 T_{2g} 2 A_{2g}$	$2.799 \\ 2.799$	$\frac{286}{285}$	$5407 \\ 5457$	$\begin{array}{c} 52.28\\ 54.22\end{array}$	$\begin{array}{c} 1 & 7T_{1g} \\ 1 & 7T_{2g} \end{array}$	$43.48 \\ 42.46$	$\begin{array}{c} 1 & 7T_{2g} \\ 1 & 7T_{1g} \end{array}$				
$6 T_{2q}$	2.800	289	5619	45.05	$1.7T_{2q}$	33.67	$1 7 A_{2q}$	17.99	$1 \ 7T_{1q}$		
$6 T_{1g}$	2.800	289	5650	47.57	$1 \ 7T_{2g}$	34.76	$1 \ 7A_{2g}$	14.36	$1 \ 7T_{1g}$		
$3 A_{1g}$	2.800	290	5676	48.77	$1 \ 7T_{2g}$	36.45	$1 \ 7A_{2g}$	11.47	$1 \ 7T_{1g}$		
$4f^{6}(^{5}D_{0}$	_3)										
$4 A_{1g}$	2.798	285	19973	57.46	$1 \ 5T_{2g}$	36.83	$1 5 E_g$				
$7 T_{1g}$	2.798	285	20781	58.04	$15T_{2g}$	36.80	$1.5E_{g}$				
$\begin{array}{c} (\ 1_{2g} \\ 5 \ F \end{array}$	2.797	285	22428	70.30 54.04	151_{2g} 15F	25.21	$1.5E_g$ $1.5T_c$				
$5 E_g$ 8 T ₁	2.790	204 285	22021	85.65	$1.5E_g$ $1.5T_2$	41.47	$1.5I_{2g}$ 1.5E				
$\frac{0}{8} \frac{1}{T_{2}}$	2.797	$\frac{200}{285}$	25153	49.90	$15F_{2g}$ $15E_{-}$	45.77	$1.5T_{2}$				
$3 A_{2g}$	2.797	284	25190	95.44	$15E_g$	10.111	1 0 1 2y				
$4f^{6}(^{5}D_{4}$	$^{5}L_{6-10}^{5}$	Ga e)									
9 T_{2a}	2.797	285	28323	21.94	$1 \ 5T_{1a}$	20.69	$2 5E_a$	16.46	$4 \ 5T_{2a}$	14.24	$2 5T_{1a}$
$5 A_{1q}$	2.797	284	28343	51.00	$3 5T_{2q}^{1g}$	34.25	$3 5 E_q$	11.53	$4\ 5T_{2a}^{-g}$		-9
$4 A_{2g}$	2.797	285	28345	36.80	$1 \; 5T_{1g}$	35.07	$2 5 E_g$	14.96	$2 5 T_{1g}$		
9 T_{1g}	2.797	284	28362	31.55	$3 \ 5T_{2g}$	14.41	$3 5E_g$	13.19	$2 \ 5T_{1g}$	11.83	$1 5T_{1g}$
				10.75	$4 5T_{2g}$						
$10 \ T_{2g}$	2.797	284	28494	43.66	$1 \ 5T_{1g}$	16.42	$2 5E_g$	10.07	$4 \ 5T_{1g}$		
$11 T_{2g}$	2.797	285	28495	42.72	$1 \ 5T_{1g}$	25.53	$1 \ 5A_{1g}$	1014	0 F F		
$b E_g$	2.797	285	28536	45.16	$1 5T_{1g}$	22.35	$1 5A_{1g}$ 1 5T	18.14	$2.5E_g$		
$12 \ T_{2g}$ 10 T	2.797	280 285	28072 28618	32.40 43.04	$4 \ 5I_{2g}$ 1 5T.	10.97	$1 \ 5 I_{1g}$ $2 \ 5 T_{-}$	14.79	$2 \ 5 E_g$		
7 E	2.191	280	28625	43.04 21.65	$\frac{1}{3}\frac{5T_{1g}}{5T_{2}}$	$\frac{23.40}{17.94}$	$\frac{2}{3} \frac{5T_{2g}}{5T_1}$	16.86	$2.5T_{2}$	13 51	4.5E
L_g	2.151	201	20020	13.26	$45T_{2g}$	11.21	0.011g	10.00	2 01 1g	10.01	4 0 L g
$13 T_{2a}$	2.797	283	28629	22.30	$3 5T_{2a}$	17.04	$2 5T_{1a}$	16.91	$3 5T_{1a}$	13.25	$4 5E_a$
-9				12.24	$4 5 T_{2q}^{-g}$		-9		-9		9
$6 A_{1g}$	2.797	281	28703	61.44	$2 5 E_g$	14.13	$2 5T_{2g}$	13.04	$5 5T_{2g}$		
$8 E_g$	2.798	284	28706	32.23	$3 5T_{1g}$	17.07	$4 5T_{2g}$	17.02	$4 5 E_g$	11.43	$2 \ 5A_{1g}$
$5 A_{2g}$	2.798	284	28715	42.37	$2 5T_{1g}$	20.16	$4 5E_g$	11.33	$2 5 E_g$	10.61	$3 5E_g$
$14 T_{2g}$	2.798	284	28825	75.92	$2 5T_{2g}$					10.00	
$11 T_{1g}$	2.797	285	28934	19.48	$3 5T_{2g}$	19.11	$2 \ 5T_{1g}$	11.08	$1.5E_g$	10.83	$1 \ 5T_{2g}$
A_{1g}	2.797	284	28954	55.22 20.26	$15E_g$ 25E	35.33	$1.5T_{2g}$	19.75	9.577	11.00	4 577
$9 L_g$ 19 T.	2.797	204	29001	29.30	$5 \ \partial E_g$ 1 5 E	20.87	$2 \ 5T_{2g}$ 1 $5T_{2g}$	12.70	$2.5T_{1g}$ $2.5T_{2}$	11.60	$4 \ 31_{2g}$
$12 T_{1g}$ 15 T ₂₋	2.797	$\frac{285}{284}$	29015	28.53	$\frac{1}{3} \frac{5E_g}{5T_{2-}}$	29.87	$25T_{1-}$	12.00 12.61	$\frac{2}{4} \frac{5T_{2g}}{5T_{2-}}$	11 17	$4.5E_{-}$
$10 \ E_{a}$	2.797	284	29066	38.73	$15T_{2a}$	29.03	$1.5E_{a}$	12.01 12.20	$25E_{a}$	11.11	10129
$16 T_{2a}$	2.798	285	29110	51.85	$1 5T_{2a}$	13.39	$1 5E_a$	11.34	$\frac{1}{2} 5T_{2a}$		
$17 T_{2q}^{-3}$	2.797	285	29122	33.57	$2 5 E_q^{-s}$	22.85	$1 \ 5T_{1q}^{j}$	10.95	$2 5 T_{2q}^{-3}$	10.05	$5 5T_{2q}$
$18 T_{2g}$	2.797	285	29131	21.75	$1 \; 5T_{1g}$	20.33	$1 \ 5A_{1g}$	15.08	$2 5 T_{2g}$		0
$13 T_{1g}$	2.797	283	29188	25.95	$4 \ 5T_{2g}$	23.24	$4 5E_g$	19.51	$3 5T_{1g}$		
$6 A_{2g}$	2.797	285	29207	44.48	$3 \ 5T_{1g}$	23.59	$3 5E_g$	22.51	$4 5 E_g$		
$11 E_{g}$	2.797	284	29226	46.55	$2 5T_{2g}$	12.68	$3 5 E_g$				
$14 T_{1g}$	2.798	285	29239	39.81	$25T_{2g}$	11.93	$1 \ 5T_{1g}$	10.00	о г <i>т</i>	10 79	9 F F
$19 \ T_{2g}$ 19 F	2.798	284	29250	29.07	$3 5 I_{1g}$ 2 5 T	19.79	$2 \ 5A_{1g}$ $2 \ 5T$	19.09	$2 \ 5I_{1g}$ $4 \ 5T$	10.73	$3 \ 5 E_g$
$12 E_g$ 20 T ₂	2.797	200	29090	30.40 30.57	$5 51_{2g}$ 2 5 T_{2}	20.00	$2 \ 5I_{1g}$ $3 \ 5F$	11.21 13.69	$4.5T_{2g}$ 4.5T ₂		
$15 T_{1a}$	2.797	$\frac{280}{284}$	29792	25.37	$\frac{2}{3} \frac{5T_{1g}}{5T_{2g}}$	25.05 21.47	$\frac{5}{5} \frac{5}{2a}$	13.02 13.16	$\frac{4}{2} \frac{5T_{2g}}{5T_{1g}}$	12.96	$3.5E_{a}$
10 119		201	_0.0_	12.61	$4 5E_{q}$		1 0 1 29	10,10	_ 0 1 19	12.00	0 0 1 9
$21 T_{2g}$	2.797	285	29886	37.77	$3 \ 5T_{1g}$	13.78	$4 5T_{2g}$	12.81	$4 5 E_g$	10.21	$3 5T_{2g}$
$16 T_{1g}$	2.798	284	29907	45.98	$3 \ 5T_{1g}$	25.36	$2 5 T_{1g}$	17.30	$4 \ 5T_{2g}$		
$8 A_{1g}$	2.797	285	29956	55.57	$4 5E_g$	21.20	$4 5T_{2g}$	16.77	$3 5T_{2g}$		
$13 E_g$	2.797	283	30010	20.58	$1 \ 5T_{1g}$	15.63	$2 5A_{1g}$	12.25	$4 5 E_g$		
$22 T_{2g}$	2.797	284	30049	14.01	$1 \ 5T_{1g}$	13.06	$2 5A_{1g}$	12.20	$1 5 A_{1g}$	11.63	$2 5T_{1g}$
$14 E_g$	2.797	285	30050	35.89	$15T_{1g}$	23.50	$2 5E_g$	13.78	$1 5A_{1g}$		
(A_{2g})	2.191 2.707	285 294	30087 30900	38.07 50.14	$1 \ \partial T_{1g}$ $2 \ 5 T_{-}$	55.69 15.19	∠ 5 <i>Eg</i> 5 5 5	12.27 14.01	4 01 _{1g} 9 5 5		
э A11g 17 Т.	2.191	∠04 985	30209 30209	53.14 53.06	$\frac{2}{2} \frac{512g}{5T_2}$	19.19	$O O E_g$	14.91	2 0 Eg		
$\frac{1}{23} \frac{1}{T_{2a}}$	2.798	$\frac{200}{284}$	30233	46.73	$\frac{2}{2} \frac{5}{5T_{2c}}$	12.48	$1.5T_{1a}$	12.34	$5 5T_{1a}$		
$8 A_{2q}$	2.797	285	30652	42.03	$3 5T_{2q}$	24.71	$4 5T_{2q}$	22.18	$2 5T_{1q}$		
-					-		-		-		

$18 T_{1g}$	2.797	285	30653	42.08	$3 5T_{2g}$	24.69	$4 5T_{2g}$	22.13	$2 5T_{1g}$		
$24 T_{2q}$	2.797	285	30656	28.86	$2 5 T_{1q}$	27.16	$3 5 T_{2q}$	22.27	$4 \; 5T_{2q}$	10.84	$3 5 E_q$
$10 A_{1q}$	2.797	284	30738	32.22	$3 5 E_q$	29.71	$4 5 E_q$	28.59	$3 5 T_{2q}$		
19 T_{1q}	2.797	285	30751	40.27	$3 \ 5T_{1q}$	21.82	$4 5 T_{2q}$	13.84	$3 5 E_q$	10.86	$3 5T_{2q}$
$15 \ E_q$	2.797	285	30819	28.81	$4 5 E_q$	25.41	$4 5 T_{2q}$	18.20	$2 5 A_{1q}$		0
$25 T_{2q}$	2.798	284	30895	27.89	$2 5 A_{1q}$	23.94	$2 5 T_{1q}$	18.43	$4 \; 5T_{2q}$	12.98	$4 5 E_q$
0				10.47	$3 5 T_{1q}$		5		0		5
20 T_{1q}	2.798	284	30926	42.40	$3 5 T_{1q}$	38.25	$4 5 E_q$				
$21 T_{1g}$	2.797	285	31709	56.79	$3 5 T_{2g}$	20.63	$3 5 E_g$	11.73	$2 5T_{1g}$		
$16 E_g$	2.797	285	31757	30.99	$3 5 T_{2g}$	29.07	$2 \ 5T_{1g}$	28.90	$3 5 E_g$		
22 T_{1g}	2.797	285	31772	35.81	$2 5 T_{1g}$	26.96	$3 5 E_g$	17.68	$3 \ 5T_{2g}$	10.42	$4 5T_{2g}$
$11 A_{1q}$	2.797	285	31812	61.93	$4 5 T_{2q}$	26.16	$3 5 E_q$	10.33	$4.5E_q$		
23 T_{1q}	2.797	285	31856	38.21	$4 5 T_{2q}$	24.23	$2 5 T_{1q}$	14.89	$4 5 E_q$	13.27	$3 5T_{1q}$
26 T_{2q}	2.797	285	31897	34.64	$4 5 T_{2q}$	29.53	$3 5 T_{1q}$	11.77	$4 5 E_q$		0
9 A_{2q}	2.798	284	32058	51.10	$4 5 E_q$	36.67	$3 5 T_{1q}$	11.99	$2 5 T_{1q}$		
27 T_{2q}	2.798	284	32094	40.56	$3 \ 5T_{1q}$	26.56	$4 5 E_q$	24.33	$2 5 A_{1q}$		
$17 E_q$	2.798	284	32106	40.50	$3 5 T_{1q}$	30.54	$2 5 A_{1q}$	21.63	$4.5E_q$		
5					5		5		5		

^a Absorption oscillator strengths for 1 $\Gamma_{6u,8u,7u} \rightarrow i$ transitions are calculated at $d_{Eu-F}=2.950$ Å; the reference value is $f_{ref}=1.906\times10^{-3}$. Emission oscillator strengths for 1 $\Gamma_{8g}\rightarrow1$ Γ_{6u} ,1 Γ_{8u} ,1 Γ_{7u} and radiative emission lifetime are calculated at $d_{Eu-F}=2.900$ Å; the reference value is $f_{ref}=9.517\times10^{-4}$. ^b The analyses of the wave functions have been done at $d_{Eu-F}=2.900$ Å ($4f^{7}$), 2.900 Å ($4f^{6}(5d^{1}+6sa_{1g}^{1})$), 2.800 Å ($4f^{6}$). ^c C.f. Table S7. ^d C.f. Table S8.

TABLE S14: Spectroscopic constants and analyses of the spin-orbit wave functions of the ground and lowest lying excited states of Eu²⁺ and Eu³⁺ -doped BaS octahedral defects. Eu–S bond distances ($d_{\text{Eu-S},e}$ in Å), EuS₆ breathing mode harmonic vibrational frequencies ($\omega_{a_{1g}}$ in cm⁻¹), minimum-to-minimum energy differences (T_e in cm⁻¹), and relative absorption and emission oscillator strengths (f_i^{abs}/f_{ref} and f_i^{emi}/f_{ref}) are given. Calculated radiative emission lifetime for the $4f^6(^7F_J)5de_g^1 - 1 \Gamma_{8g}$ excited state is 0.263 μs . Local distortion around the Eu²⁺ impurity, relative to experimental crystal structure $d_{Ba-F} = 3.187$ Å, is $d_{\text{Eu-S},e}(1\Gamma_{6u}) - d_{\text{Ba-S}} = -0.100$; ionic radii mismatch is +0.17 Å³¹. See Fig. 3, S3 and text for details.

State	$d_{\mathrm{Eu-S},e}$	$\omega_{a_{1g}}$	T_e	f_i^{abs}/f_{ref} a	f_i^{emi}/f_{ref} a	ı	W	veights	of terms	larger t	han 10%	Ь	
					Eu^{2+}	-doped I	BaS						
-7 (9 -													
$4f'(^{\circ}S_{7})$	(2) ^C				1.0.0		- 8 -						
$1 \Gamma_{6u}$	3.087	204	0		1.00	97.73	$1 {}^{\circ}A_{1u}$						
$1 \Gamma_{8u}$	3.087	204	0		0.42	97.73	$1 {}^{\circ}A_{1u}$						
$1 \Gamma_{7u}$	3.087	204	0		0.07	97.74	$1 \ ^{\circ}A_{1u}$						
				4	$f^6(5d + ITE)$	$(z_{a_{1g}})^1 $ ex	cited sta	tes					
$4f^{6}(^{7}F_{1}$)5 <i>dt</i> ¹ High	-Spin	couplin	o d									
$1 \Gamma_{8a}$	3.037	196	20356	° 1.00		37.31	$1^{-8}T_{1a}$	24.88	$1^{-8}T_{2a}$	22.01	$1^{-8}E_{a}$	12.70	$2^{-8}T_{1a}$
$2 \Gamma_{e_a}$	3.036	196	20624	0.64		34.34	$1 {}^{8}T_{2a}$	32.70	$1 {}^{8}T_{1a}$	20.38	$1^{8}E_{a}$	12110	2 1 1 <i>g</i>
$1 \Gamma_{7-}$	3 035	196	20837	1.28		55.81	$1 {}^{8}T_{2}$	30.04	$2^{8}T_{1}$	20.00	1 <i>Dg</i>		
$3 \Gamma_{\circ}$	3 035	196	20001 21115	1.20 1.52		40.40	$1 {}^{8}T_{2}$	22.77	$1^{8}E_{-}$	19.82	$1^{8}T_{1}$	1255	$2^{-8}T_{1-}$
$1 \Gamma_c$	3.035	196	21110	0.36		51 49	$1 \frac{1}{8}T_1$	22.58	$1 \frac{E_g}{18E}$	11.58	$1 {}^{8}T_{0}$	10.33	$2^{8}T_{1}$
$2 \Gamma_{\pi}$	3.035	196	21111	2 41		40.89	$2^{8}T_{1}$	33.02	$1 \frac{2g}{18T_0}$	15 13	$1 \frac{1}{8} \frac{2g}{E}$	10.00	2 1 1g
$\frac{2}{4}\Gamma_{0}$	3.035	196	21689	1.60		33.38	$\frac{1}{1} \frac{8}{T_0}$	31.69	$1 \frac{1}{8}T_1$	15.10 15.40	$2^{8}T_{1}$	14.06	$1^{-8}E$
$2 \Gamma_c$	3.035	196	21760	0.53		49 72	$1 \frac{1}{8}T_1$	26.38	$1 {}^{8}E$	10.10	2 1 1g	11.00	1 Lg
5 Γ ₀	3.034	196	21963	5.61		44 20	$2^{8}T_{1}$	20.00 27 44	$1 \frac{2}{8}T_{2}$	21 53	$1^{-8}T_{1}$		
6 Γο	3 034	195	22410	2.07		49 45	$\frac{1}{1} \frac{8}{T_1}$	19 11	$1 {}^{8}E$	13 63	$2^{8}T_{1}$	10 14	$1^{8}T_{2}$
$3 \Gamma_{7-}$	3 034	196	22529	2.01		39.36	$2^{8}T_{1}$	22 32	$1 {}^{8}E_{-}$	14.85	$\frac{2}{1} \frac{1}{8} T_{2}$	10.11	$1 \frac{1}{2g}$
$7 \Gamma_{0}$	3 034	196	22023	3 79		48.22	$\frac{2}{1} \frac{1}{8} T_{0}$	20.02	$2^{8}T_{1}$	16 72	$1 \frac{1}{8}T_1$	10.00	1 1 1g
1 1 8g 3 Γα	3 034	196	22040	1.81		40.22	$2^{8}T_{1}$	36.97	$\frac{2}{1} \frac{1}{8} T_{2}$	18 16	$1 \ ^{1}T_{1}$		
$4 \Gamma_{a}$	3 0 3 2	196	22110	0.08		23 12	$2^{8}T_{2}$	22 30	$3 \frac{8}{7}$	20.54	$2^{8}E$	10.38	$2^{8}T_{1}$
-16g 4Γ-	3.032	105	23001	1 1 3		51 47	$\frac{2}{18T_{c}}$	17.70	$1 \frac{8}{T_2}$	19 79	$\frac{2}{2} \frac{L_g}{8E}$	10.00	2 1 1g
41 _{7g} 8Γο	3.033	105	23112	0.87		94 36	$2^{8}T_{2}$	18 70	$2^{8}E$	13 50	$\frac{2}{3} \frac{D_g}{T_1}$	19/11	$2^{8}T_{1}$
$0 \Gamma_{8g}$	3.034	195	23119	1 15		24.50	$\frac{2}{18} \frac{12g}{T_2}$	10.70	$\frac{2}{18}E$	15.00	$\frac{5 R_{1g}}{2 R_{1}}$	12.41	$\frac{2}{18} \frac{11g}{T_1}$
5 I 8g	0.001	101	20192	1.10		12.48	$2 {}^{8}T_{2a}$	15.00	1 <i>Dg</i>	10.50	2 1 1g	10.02	1 1 1g
$5 \Gamma_{7a}$	3.031	195	23269	0.76		30.43	$2^{8}T_{2a}^{2g}$	16.47	$3^{-8}T_{1a}$	11.26	$1^{8}T_{2a}$	10.34	$1^{8}T_{1a}$
$5 \Gamma_{6a}$	3.033	195	23417	1.34		40.00	$1 {}^{8}T_{2a}^{2g}$	15.36	$2^{8}T_{1a}^{1g}$	13.54	$2 {}^{8}T_{2a}^{2g}$	10.80	$2^{8}E_{a}^{19}$
$6 \Gamma_{7a}$	3.034	196	23578	2.45		34.98	$1 {}^{8}T_{1a}$	22.56	$1 {}^{8}E_{a}^{19}$	22.50	$2 {}^{8}T_{1a}^{2g}$	12.17	$1 {}^{8}T_{2a}^{g}$
$10 \Gamma_{8a}$	3.033	195	23669	3.68		23.93	$2^{8}T_{2a}^{1g}$	18.59	$2^{8}E_{a}^{g}$	13.95	$2^{8}T_{1a}^{1g}$	11.50	$1 {}^{8}T_{2a}^{2g}$
09						11.04	$3 \ {}^{8}T_{1a}^{-g}$	10.13	$1 {}^{8}E_{q}^{s}$		19		-9
$11 \Gamma_{8a}$	3.034	197	23735	0.85		22.13	$2^{8}T_{1a}$	21.50	$1 {}^{8}E_{a}$	17.69	$2^{-8}E_{a}$	17.62	$2^{8}T_{2a}$
$12 \Gamma_{8q}$	3.032	196	23894	0.77		33.80	$2^{8}E_{a}$	27.70	$3 \ ^{8}T_{1a}$	13.67	$2^{8}T_{2q}$		5
$6 \Gamma_{6a}$	3.032	195	23899	0.50		33.11	$2^{8}T_{2a}$	19.09	$1 {}^{8}T_{1a}$	10.58	$3 \ ^{8}T_{1a}$		
$7 \Gamma_{7a}$	3.032	196	23957	0.88		23.37	$2^{-8}T_{1a}^{-3}$	23.19	$1 {}^{8}T_{2a}$	17.70	$3 {}^{8}T_{1a}$	15.97	$2^{-8}T_{2a}$
$7 \Gamma_{6q}$	3.033	196	24213	4.43		28.21	$2^{8}T_{1q}$	24.98	$1 {}^{8}T_{2a}$	18.07	$1 {}^{8}T_{1q}$	13.46	$1^{8}E_{q}^{5}$
- 5						11.13	$3 \ ^{8}T_{1g}$		5		5		5
$13 \ \Gamma_{8q}$	3.032	196	24271	5.78		24.45	$1 \ {}^{8}T_{2q}$	24.07	$2^{8}T_{1q}$	17.79	$1 {}^{8}T_{1q}$	13.05	$3 \ ^8T_{1q}$
$14 \Gamma_{8a}$	3.034	196	24400	0.77		30.15	$2^{8}T_{2a}$	25.16	$1 {}^{8}T_{2a}$	13.30	$1^{8}E_{a}^{5}$	13.18	$2^{8}E_{a}^{3}$
$15 \Gamma_{8q}$	3.034	197	24511	3.43		21.04	$1 {}^{8}E_{a}^{-s}$	19.68	$2^{8}T_{1q}^{-3}$	18.92	$2^{8}E_{q}^{3}$	17.57	$1 \ {}^{8}T_{1q}^{3}$
8 Γ _{7α}	3.033	196	24722	1.37		29.60	$3^{8}T_{1q}$	10.02	$2^{8}T_{1q}$		0		5
$16 \Gamma_{8a}$	3.034	196	24746	1.34		21.68	$1 {}^{8}E_{a}^{-3}$	13.70	$1 \ {}^{8}T_{1a}$	13.44	$2^{-8}E_{a}$	10.95	$2^{-8}T_{2\sigma}$
-9						10.91	$1 \ {}^{8}T_{2a}$		-3		Э		-3
9 Γ_{7a}	3.033	196	24943	0.91		24.61	$3 \ ^{8}T_{1a}^{-s}$	14.64	$2^{-8}E_{a}$	14.10	$2^{-8}T_{1o}$	11.41	$1 {\ }^{8}T_{1o}$
$17 \Gamma_{8a}$	3.033	196	24985	1.13		23.16	$2 \ ^{8}T_{2a}^{-3}$	18.93	$3 \ ^{8}T_{1a}^{'}$	10.93	$2 \ ^{8}T_{1o}^{-s}$		-3
8 Γ _{6a}	3.032	196	25047	0.16		48.99	$2 {}^{8}T_{2a}^{-3}$	10.36	$3 {}^{8}T_{1a}$		-3		
$18 \Gamma_{8a}$	3.033	196	25072	2.94		25.49	$3 {}^{8}T_{1a}^{-g}$	24.37	$2^{8}T_{1a}^{1g}$	17.09	$1 {\ }^{8}T_{1a}$	14.69	$2^{-8}T_{2\sigma}$
$9 \Gamma_{6g}$	3.034	196	25425	0.04		34.63	$1 \ {}^{8}T_{2g}^{-g}$	25.84	$2 \ {}^{8}E_{g}^{-3}$	14.80	$1 {}^{8}E_{g}^{-g}$		-3

10 5	0.004	100	05440	0.00	2= 42	1.80	10 11	0.8 1	10.00	1.80		1 8 1
$19 \Gamma_{8g}$	3.034	196	25443	0.60	27.62	$1 \ {}^{\circ}T_{2g}$	19.11	$2 \ ^{\circ}E_{g}$	16.06	$1 \ ^{o}T_{1g}$	15.70	$1 \ ^{\circ}E_g$
					11.65	$3 \ ^{\circ}T_{1g}$						
$10 \Gamma_{7g}$	3.034	196	25550	0.13	27.27	$1 {}^{8}T_{1g}$	20.18	$1 {}^{8}T_{2g}$	17.45	$2 {}^{8}E_{g}$	15.75	$1 {}^{8}E_{g}$
$10 \ \Gamma_{6q}$	3.033	196	25755	5.45	63.77	$2^{-8}T_{1q}$	21.50	$1 {\ }^{8}T_{2q}$				
$20 \Gamma_{8q}$	3.033	196	25784	11.17	51.65	$2^{8}T_{1a}$	15.11	$1 \ ^{8}T_{2a}$	10.92	$1^{8}T_{1q}$		
21 T _{8a}	3.033	196	25803	10.07	42.34	$2^{8}T_{1a}$	18.96	$1^{8}T_{1a}$		5		
22 Fo	3.031	195	25989	0.25	51.27	$\frac{2}{2} \frac{1}{8} T_{0}$	22.50	$3^{8}T_{1}$				
11 Γ_	3 031	105	25007	0.03	64.46	$2^{8}T_{2}^{2g}$	22.00	5 I 1g				
11 1 7g	0.001	190	20991	0.03	04.40	2 12g 3 8T	14.04	0 8 E	10.00	9.8m		
23 I 8g	3.032	190	20004	0.37	35.77	$2^{-1} I_{2g}$	14.84	$2^{-}E_{g}$	12.82	$3^{-1}I_{1g}$		
$\prod \Gamma_{6g}$	3.032	195	26165	0.41	32.05	$3 \ T_{1g}$	20.58	$2 \ ^{\circ}T_{2g}$	10.04	$\Gamma \ ^{\circ}T_{1g}$		
$12 \Gamma_{6g}$	3.033	196	26223	0.91	21.92	$3 \ ^{\circ}T_{1g}$	15.94	$2 \ C_g$				
$24 \Gamma_{8g}$	3.033	195	26370	0.94	43.60	$3 \ ^{8}T_{1g}$	17.22	$1 {}^{8}T_{1g}$				
$12 \Gamma_{7q}$	3.034	195	26451	0.44	46.21	$3 {}^{8}T_{1q}$	17.93	$1 {}^{8}T_{1q}$				
25 Γ_{8a}	3.034	194	26802		85.62	$1 {}^{6}T_{1a}$,				
26 Γ _{8α}	3.032	196	27106	0.39	39.30	$2^{8}T_{2a}^{-3}$	25.68	$2^{-8}E_{a}$	13.08	$3^{-8}T_{1a}$		
$13 \Gamma_{\pi}$	3 0 3 2	106	27284	0.01	43.71	$\frac{2}{2} \frac{2}{8} T_{0}$	15 44	$\frac{2}{2} \frac{2g}{E}$	10.00	5 ± 19		
10 Г /g 97 Г.	3 0 3 2	105	27204	0.01	38.04	$\frac{2}{2} \frac{12g}{8T}$	10.44 98.45	$2^{-}L_{g}$	15 74	98F		
27 1 8g	3.032	190	27410	0.71	30.94	$3 I_{1g}$ 3 8T	20.40	2 12g 2 8T	10.74	$_{L_g}$		
13 I 6g	3.030	195	2/48/	0.21	38.95	$2^{-1} I_{2g}$	30.50	$3^{-1}I_{1g}$	1 = 00	a 8m		
$28 \Gamma_{8g}$	3.032	195	27538	0.87	49.13	$3 \ T_{1g}$	20.70	$2 \ ^{\circ}E_{g}$	17.22	$2 \ ^{\circ}T_{2g}$		
$14 \Gamma_{7g}$	3.032	196	27926	0.42	40.25	$3 \ ^{\circ}T_{1g}$						
$29 \Gamma_{8g}$	3.032	196	28010	0.88	44.19	$3 {}^{8}T_{1g}$						
$14 \Gamma_{6q}$	3.032	196	28036	0.45	44.72	$3^{8}T_{1q}$						
- 5						5						
$4f^{6}(^{7}F_{I}$	$)5dt_{2a}^{1}$ L	ow-Spin	coupling	d								
30 Го-	3033	194	28106	0.01	80.13	$1^{6}T_{1}$						
15 Г-	3 033	10/	28146	0.01	70.76	$1 \frac{6}{T_1}$						
16 F	2.000	109	20140	0.01	27.16	$1 1_{1g}$ 2 6T	9479	16 F	99.40	$1^{6}T$		
$10 \ 1 \ 7g$	3.020	192	29097	0.05	57.10	$2 I_{1g}$	34.73	$1 L_g$ 1 6 T	22.40	$I I_{1g}$		
311_{8g}	3.030	194	29946	0.19	54.30	$1 \ ^{\circ}I_{1g}$	27.52	$1 \ ^{\circ}I_{2g}$				
$15 \ \Gamma_{6g}$	3.027	190	29952	0.11	53.76	$1 {}^{o}T_{1g}$	27.27	$1 {}^{o}T_{2g}$		C		
$32 \Gamma_{8g}$	3.025	193	30088	0.03	50.25	$2 {}^{6}T_{1g}$	24.68	$1 \ ^{\mathrm{o}}E_g$	10.15	$1 {}^{6}T_{2g}$		
$17 \Gamma_{7g}$	3.027	192	30182	0.07	29.22	$1 {}^{6}T_{2g}$	28.62	$1 {}^{6}T_{1g}$	26.56	$2^{6}T_{1g}$		
$16 \Gamma_{6q}$	3.025	192	30263	0.01	28.32	$2^{6}T_{1q}$	19.53	$1^{6}T_{2q}$	16.57	$1^{6}E_{q}$	15.18	$2^{6}T_{2q}$
$33 \Gamma_{8a}$	3.024	191	30617	0.05	23.56	$2^{6}T_{1a}$	21.26	$2^{6}T_{2a}$	20.97	$1 {}^{6}E_{a}$	15.47	$1 {}^{6}A_{2a}$
18 Г ₇₋	3 028	193	30810	0.06	37.62	$1 {}^{6}T_{1}^{1}$	25,99	$2^{6}T_{1}^{2g}$	17 14	$1^{6}T_{2}^{9}$		29
$17 \Gamma_{\circ}$	3 0 25	101	30024	0.00	36.01	$1 \frac{6}{T_{2}}$	35.72	$2^{6}T$	11 70	$1^{6}F$		
1116g 24Γ	2.020	101	01100	0.04	10.21	1 6 A	10.12	2^{-1}	19.09	1 6T	19 10	0.6T
5418g	3.024	191	91199	0.04	19.52	1 A2g	10.00	2 12g	12.92	$1 \ 12g$	12.10	$2 I_{1g}$
10 5					11.36	$1 T_{1g}$	10.12	$1 \ E_g$	10.00	a 6 m		
$18 \Gamma_{6g}$	3.023	191	31327	0.01	38.08	$1 {}^{o}A_{2g}$	25.02	$2 {}^{o}T_{2g}$	10.90	$2 {}^{o}T_{1g}$		
$35 \ \Gamma_{8g}$	3.026	192	31397	0.20	33.91	$2 {}^{6}T_{1g}$	29.00	$1 {}^{6}T_{2g}$	20.01	$1 {}^{\mathbf{b}}E_g$		
$36 \Gamma_{8g}$	3.024	191	31520	0.17	25.27	$1^{6}E_{g}$	23.29	$1 {}^{6}T_{2g}$	21.36	$2^{6}T_{1g}$		
$19 \Gamma_{6q}$	3.026	191	31949	0.16	34.03	$1 {}^{6}E_{q}$	33.10	$1 {}^{6}T_{2a}$	19.87	$2^{6}T_{2q}$		
$37 \Gamma_{8a}$	3.021	190	32023	0.24	21.47	$3^{6}T_{1a}$	19.56	$1^{6}E_{a}$	16.32	$2^{6}T_{1a}$	15.58	$2^{6}T_{2a}$
0 0g	0.011		0-0-0	0.2.2	10 79	$2^{6}E_{-}$				1 <i>g</i>		29
38 Eo	3 0 2 3	102	391/13	0.10	24.60	$\frac{2}{2} \frac{2g}{6T_0}$	21 38	$1^{6}T_{2}$	1/1.87	$2^{-6}E$	19 11	$2^{6}T_{1}$
5 0 1 8g	0.020	1.52	02140	0.10	24.00	2^{-12g}	21.00	1 12g	14.01	$L L_g$	12.11	2 1 1g
10 11	0.000	100	00000		11.50	$3 I_{1g}$	00 74	1.677				
$19 \Gamma_{7g}$	3.026	190	32389	0.10	52.06	$2 T_{1g}$	29.74	$1 I_{2g}$	14.00	164	10.01	a. 6 m
$20 \Gamma_{7g}$	3.020	192	32540	0.16	36.93	$3 {}^{o}_{g}T_{1g}$	16.60	$2 \overset{o}{} E_g$	14.26	$1 {}^{o}_{c} A_{1g}$	12.84	$2 \ {}^{o}T_{1g}$
$20 \Gamma_{6g}$	3.022	190	32565	0.02	35.76	$2 \ ^{\circ}E_{g}$	24.27	$2 {}^{o}T_{2g}$	20.02	$1 \ ^{\circ}E_{g}$		
$39 \ \Gamma_{8g}$	3.021	191	32827	0.05	24.09	$2^{-6}E_{g}$	19.59	$2^{-6}T_{2g}$	15.85	$1 {}^{6}A_{2g}$	15.59	$3^{-6}T_{1g}$
$21 \Gamma_{6g}$	3.026	192	32932	0.17	48.13	$1 {}^{6}T_{2g}$	13.18	$3^{6}T_{1g}$	10.38	$2^{6}T_{1g}$		
40 Γ_{8a}	3.026	191	33040	0.13	39.50	$2^{6}T_{1a}$	22.71	$1^{6}T_{2a}$	12.30	$2^{6}T_{2a}$		
$21 \Gamma_{77}$	3.025	190	33195	0.04	37.62	$2^{6}T_{1c}^{1}$	29.05	$1 {}^{6}E_{2}$	13.94	$3 {}^{6}T_{12}$	12.82	$2^{-6}T_{2a}$
41 Γ ₀	3 021	101	33197	0.19	33.80	$2^{6}T_{2}$	22 44	$\frac{-2^{g}}{3}$	14 91	$1^{6}T_{2}$	13 35	$1^{6}A_{1}$
лт т 8g Д 9 Г.	3 0.021	101	33449	0.15	24.00	$\frac{2}{9} \frac{12g}{6T}$	21.11	$1^{6}T_{-}$	16 00	$1^{6}F$	T0.00	1 2 1 1g
+⊿ ⊥ 8g ԴԴ ୮	0.040 2.041	101	00444 00444	0.20	04.00	$2^{-1}1g$ $3^{6}E$	01.40 90.69	1 12g 2677	19 00	16E		
$42 \Gamma_{7g}$	ე.021 ე.022	191	00499 00750	0.00	33.03	$2 L_g$	∠9.03 10.15	$3 I_{1g}$	10.08	$1 L_g$		
$43 \Gamma_{8g}$	3.026	191	33772	0.51	57.85	$1 \ T_{2g}$	16.17	$1 \ E_g$	13.22	$2 \ T_{1g}$		
$23 \Gamma_{7g}$	3.021	191	34051	0.10	57.39	$2 \ CT_{2g}$	22.75	$1 {}^{\circ}_{c} A_{1g}$		c		c
44 Γ_{8g}	3.021	190	34173	0.15	25.73	$2 {}^{\circ}T_{2g}$	20.05	$1 \ ^{\mathrm{o}}A_{1g}$	15.19	$2 \ ^{\mathrm{o}}E_g$	12.24	$1 \ ^{\mathrm{o}}A_{2g}$
					11.23	$3^{-6}T_{1g}$						
$22 \Gamma_{6a}$	3.021	191	34240	0.02	28.58	$3^{6}T_{1a}$	24.74	$1^{-6}A_{2\sigma}$	22.61	$2^{6}T_{2a}$	16.44	$1^{6}T_{2a}$
45 Γ_{8a}	3.022	189	34357	0.01	59.49	$3^{6}T_{1a}$	10.92	$2^{6}T_{2a}$		3		3
46 Γ°-	3.021	192	34385	0.09	32.73	$3^{6}T_{1}^{1}$	26.42	$2^{6} E_{2}^{29}$	18.79	$2^{-6}T_{2c}$	10.75	$1^{-6}T_{2c}$
0g					5=10	- 19		-9		- 49		-49

$23 \Gamma_{6g}$	3.021	190	35443	0.10	38.85	$3^{6}T_{1g}$	36.07	$2^{6}T_{2g}$	13.46	$1^{6}A_{2g}$		
$47 \Gamma_{8q}$	3.021	190	35494	0.07	41.46	$2^{6}T_{2a}$	25.71	$2^{6}E_{a}$	15.23	$1^{6}A_{2q}$		
$24 \Gamma_{7a}$	3.020	190	35665	0.12	51.29	$3^{6}T_{1a}$	34.07	$2^{6}E_{a}^{'}$		5		
48 Γ _{8α}	3.020	190	35668	0.13	34.46	$3^{6}T_{1a}^{1}$	33.72	$2^{6}E_{a}^{g}$	23.18	$2^{6}T_{2a}$		
24 Fea	3.020	190	35701	0.02	44.25	$2^{6}E_{a}$	39.55	$2^{6}T_{2a}^{g}$		29		
$25 \Gamma_{\pi}$	3 0 1 9	180	35974	0.13	47.51	$1^{6}A_{1}$	40.03	$\frac{2}{3} \frac{1}{6} \frac{2g}{T_1}$				
$20 \Gamma \gamma_g$ $40 \Gamma_{-}$	3.013	199	35007	1.07	45.03	1 6 A	40.05	$3^{6}T$				
4518g	$(5d_0^1 + I^2)$	ΓE^{1}	Uigh Spin	acupling d	40.00	1 A1g	40.00	J I_{1g}				
4J (<i>Г</i> J	$(3ae_g + 11)$	$(L_{a_{1g}})$	nign-spin	coupling	FF 79	a. 877	94.05	4.87				
$50 T_{8g}$	3.054	164	36508	5.73	55.73	$3 \ ^{\circ}I_{2g}$	34.05	$4 \ 1_{1g}$				
$26 \Gamma_{7g}$	3.057	172	36598	3.24	63.36	$3 \ ^{\circ}T_{2g}$	30.82	$4 \circ T_{1g}$				
$51 \Gamma_{8g}$	3.054	162	36834	1.30	78.38	$3 {}^{\circ}T_{2g}$		<u>ه</u>				
$27 \ \Gamma_{7g}$	3.050	172	37166	6.84	59.11	$4 \ {}^{\circ}T_{1g}$	29.74	$3 \ ^{\circ}T_{2g}$				
$52 \Gamma_{8g}$	3.051	176	37524	9.53	42.93	$3 \ ^{\circ}T_{2g}$	42.07	$4 \ ^{\circ}T_{1g}$		0		
$25 \Gamma_{6g}$	3.051	172	37614	2.80	48.32	$3 {}^{8}T_{2g}$	28.76	$4 {}^{8}T_{1g}$	11.01	$5 \ ^{8}T_{1g}$		
$53 \Gamma_{8g}$	3.051	171	38009	10.16	45.98	$4 {}^{8}T_{1g}$	38.45	$3 \ ^{8}T_{2g}$				
$26 \Gamma_{6g}$	3.051	182	38176	3.92	32.89	$4 {}^{8}T_{1g}$	29.22	$3 \ ^{8}T_{2g}$	14.74	$3 \ ^{8}E_{g}$	11.11	$4 {}^{8}T_{2g}$
$28 \Gamma_{7g}$	3.052	175	38422	3.75	48.89	$3 \ ^{8}T_{2g}$	33.66	$4 \ ^{8}T_{1g}$	12.48	$3^{-8}E_{g}$		
$54 \Gamma_{8q}$	3.050	182	38573	4.13	31.72	$4^{8}T_{2a}$	30.73	$3^{8}T_{2q}$	16.50	$3^{8}E_{q}$	14.60	$4^{8}T_{1a}$
$55 \Gamma_{8a}$	3.048	164	38835	4.52	28.88	$4^{8}T_{2a}$	25.83	$4^{8}T_{1a}$	24.82	$5 \ ^{8}T_{1a}$	14.91	$3 {}^{8}T_{2a}$
$27 \Gamma_{6a}$	3.046	158	38836	2.45	49.01	$4 {}^{8}T_{2a}^{-9}$	29.89	$4 {}^{8}T_{1a}$	12.78	$5 \ ^{8}T_{1a}$		-9
	3 0 5 3	193	39036	1 18	48.62	$5 {}^{8}T_{1}$	40.97	$3^{8}E_{-}$		19		
57 Γο	3 0 5 1	160	30311	9 59	47.01	$4 \ {}^{8}T_{1}$	30.63	$3 \frac{8}{T_0}$	15.67	$5^{8}T_{1}$		
07 I 8g 20 Γ-	3.051	164	30300	7.58	64.54	$\frac{1}{4} \frac{1}{8}T_{1}$	94.85	$3^{8}T_{2}$	10.01	0 1 1g		
2917g 98Γ.	3.031	156	39399	1.08	25.92	$4^{-1}1g$	24.00	5^{-12g} 5^{-8T}	18.92	$3^{8}T$	10.60	1 8T.
201 _{6g}	3.043	100	39390	1.00	00.20 00.70	4 12g	00.27 01.00	$5 I_{1g}$	16.20	$3 1_{2g}$ 3 8 F	10.09	$4 I_{1g}$
38 1 8g	5.050	162	39020	1.00	30.78	$4 I_{2g}$	21.05	$5 I_{1g}$	10.00	$S L_g$	12.07	$4 I_{1g}$
00 F	0.051	101	0.0.60.1	0.00	11.07	$3 \ ^{\circ}I_{2g}$	22.04	0.8 17	10.10	× 8 m	10.10	o. 8 m
$30 \Gamma_{7g}$	3.051	194	39691	0.02	41.02	$4 \ ^{\circ}T_{2g}$	23.94	$3 \ E_g$	19.10	$5 \ ^{\circ}T_{1g}$	13.16	$3 \ ^{\circ}T_{2g}$
29 Γ_{6g}	3.054	164	39817	1.85	62.86	$3 \ ^{\circ}T_{2g}$	19.45	$5 \ ^{\circ}T_{1g}$	11.09	$4 \ {}^{\circ}T_{1g}$		
$59 \ \Gamma_{8g}$	3.052	180	40123	9.44	48.20	$4 {}^{\circ}T_{1g}$	18.20	$3 \ ^{\circ}T_{2g}$	16.02	$3 \ ^{\circ}E_{g}$	10.41	$5 \ ^{\circ}T_{1g}$
$30 \ \Gamma_{6g}$	3.051	236	40215	0.72	37.70	$4 {}^{8}T_{2g}$	32.61	$3 \ ^{\circ}E_{g}$	16.76	$5 \ {}^{\circ}T_{1g}$		0
$60 \ \Gamma_{8g}$	3.051	204	40237	2.46	32.11	$4 {}^{8}T_{2g}$	29.70	$3 {}^{8}E_{g}$	22.28	$5 {}^{8}T_{1g}$	10.31	$4 {}^{8}T_{1g}$
$61 \ \Gamma_{8g}$	3.052	229	40726	3.50	39.03	$3 \ ^{8}T_{2g}$	22.22	$4 {}^{8}T_{1g}$	15.62	$3 \ ^{8}E_{g}$	12.49	$4 {}^{8}T_{2g}$
$31 \Gamma_{7g}$	3.047	163	40807	0.01	57.72	$5 \ ^{8}T_{1g}$	24.83	$4 {}^{8}T_{2g}$				
$31 \Gamma_{6g}$	2.954	228	40866	7.45	70.37	$4 {}^{8}T_{1g}$	23.13	$3^{-8}T_{2g}$				
$62 \Gamma_{8q}$	3.051	232	40923	4.65	30.09	$5 \ ^{8}T_{1q}$	24.25	$3^{8}E_{a}$	21.33	$4 {}^{8}T_{2a}$	16.81	$4 {}^{8}T_{1a}$
$63 \Gamma_{8a}$	3.051	229	41035	10.86	43.91	$4 \ ^{8}T_{1a}$	21.34	$5 \ ^{8}T_{1a}$	14.93	$4 \ ^{8}T_{2a}$	13.98	$3^{8}E_{a}$
$32 \Gamma_{6a}$	3.000	464	41101	0.87	48.91	$6^{8}T_{1a}$	41.16	$5 \ ^{8}T_{2a}$		5		5
64 Γ _{8α}	3.000	295	41349	1.09	53.28	$4 {}^{8}T_{2a}^{19}$	23.08	$5 {}^{8}T_{1a}^{-g}$	17.29	$3^{-8}E_{a}$		
32 F _{7a}	3.050	295	41479	0.01	54.24	$4 {}^{8}T_{2a}$	33.19	$3^{8}E_{a}$		9		
33 Γ _{6α}	3.044	171	41658	0.01	51.39	$4 {}^{8}T_{2a}$	39.22	$5 {}^{8}T_{1a}$				
65 Г _{е-}	2 969	151	41681	0.03	51.80	$6 \frac{8}{7_{1}}$	39.99	$5 {}^{8}T_{2}$				
66 Го	3,000	101	41810	3 37	59 53	$6 \ {}^{8}T_{1}$	35 55	$5 \ {}^{8}T_{2}$				
00 I 8g 33 Г_	2 9 9 2	163	42004	0.04	55.00	$5 \frac{8}{7}$	24.75	$6 \ {}^{8}T_{-}$				
$67 \Gamma_{0}$	2.992	100	42004	0.63	47 11	$5^{-1}2g$ $5^{-8}T$	24.70 37.01	$2^{8}F$				
0718g 24Γ	2.050	409	42222	0.03	56.99	5^{-1}	20.17	$3 E_g$ 3 E				
341_{6g}	3.032	271	42201	0.29	72.80	$5 I_{1g}$ = $8T$	14.06	$3 E_g$ 3 8 E				
341 _{7g} со г	2.945	230 149	42323	0.01	13.80	$5 I_{1g} = 8T$	14.00	$3 E_g$ 3 8 E				
08 I 8g	3.047	143	42021	0.10	00.80	$\frac{3}{5} \frac{1}{1g}$	23.02	$3^{-}E_{g}$				
$35 T_{6g}$	3.000	453	42604	0.01	60.16	$5 \ ^{\circ}I_{2g}$	34.48	$0 \ I_{1g}$				
$69 \Gamma_{8g}$	3.000	518	42722	0.18	47.44	$0 \ ^{\circ}T_{1g}$	37.13	$5 \ ^{\circ}T_{2g}$				
$35 \ \Gamma_{7g}$	3.006	202	42806	0.02	54.03	$5 \ ^{\circ}T_{2g}$	33.26	$6 \ ^{\circ}T_{1g}$				
$70 \Gamma_{8g}$	3.049	337	43072	0.10	75.37	$4 \ {}^{\circ}T_{2g}$	12.16	$3 \ ^{\circ}E_{g}$				
$71 \ \Gamma_{8g}$	3.050	299	43233	0.03	67.40	$4 \ ^{\circ}T_{2g}$	28.43	$5 \ ^{\circ}T_{1g}$				
$36 \Gamma_{7g}$	3.042	161	43245	0.01	70.53	$4 {}^{\circ}T_{2g}$	26.37	$5 \ {}^{\circ}T_{1g}$				
$72 \ \Gamma_{8g}$	2.990	188	43446	0.05	58.07	$6 {}^{8}T_{1g}$	40.93	$5 {}^{8}T_{2g}$				
$36 \Gamma_{6g}$	2.938	187	43495	0.02	38.54	$6 {}^{8}T_{1g}$	18.85	$5 \ ^{8}T_{2g}$				
73 Γ_{8g}	2.993	187	43573	0.02	65.66	$5 \ ^8T_{2g}$	22.06	$6 \ ^8T_{1g}$				
$37 \Gamma_{6q}$	2.900	196	44146	0.03	64.00	$6 \ ^8T_{1q}$	33.66	$5 \ ^{8}T_{2q}$				
$74 \Gamma_{8a}$	2.923	165	44269	0.05	51.39	$5 \ ^{8}T_{2a}$	48.21	$6 \ ^{8}T_{1a}$				
75 Γ_{8a}	2.900	196	44366	0.03	47.21	$5 \ {}^{8}T_{2a}$	30.26	$6 \ ^{8}T_{1a}$				
$37 \Gamma_{7c}$	2.900	196	44393	0.03	62.84	$6 {}^{8}T_{1c}$	-	-9				
76 Γ _{8α}	2.900	196	45483	0.07	63.24	$6 \ {}^{8}T_{1a}$	36.74	$5^{-8}T_{2a}$				
· 09	-		-			- 19		<u>-</u> 29				

_						°		°				
$38 \Gamma_{7g}$	2.900	196	45497	0.03	54.77	6 ° T_{1g}	45.16	$5 \ ^{\circ}T_{2g}$				
$39 \Gamma_{7q}$	2.900	196	45767	0.01	39.37	$5 \ ^{8}T_{2a}$	24.16	$6 {}^{8}T_{1q}$				
77 Γ.	2.900	196	45796	0.02	44.11	$5 {}^{8}T_{2a}$	17.93	$6^{8}T_{1a}$				
28 Г.	2,000	106	45833	0.01	45.67	$5 \frac{8}{T}$	13 59	$6 \frac{8T}{1}$				
38 I 6g	2.900	190	40000	0.01	40.07	$5 \ 12g$	10.02	$0 I_{1g}$				
					4.67							
					4f excited st	ates						
7.6 -												
$4f'({}^{o}P_{3}$	$_{/2,5/2,7/2})^{c}$											
$2 \Gamma_{7u}$	3.080	203	30281		88.99	$1 {}^{6}T_{1u}$						
$2 \Gamma_{8u}$	3.080	203	30304		89.34	$1^{6}T_{1u}$						
$3 \Gamma_{8u}$	3.080	203	30683		93.91	$1^{6}T_{1u}$						
2 Te.	3 080	203	30916		84 52	$1^{6}T_{1}$	12.66	$3^{6}T_{2}$				
$4 \Gamma_{\circ}$	3.080	203	30035		84.77	$1^{6}T$	12.00	0 1 2 u				
4 1 8u 9 Γ	2.000	200	20052		04.17	1 6T	10.06	0.6E				
$5 1 _{7u}$	3.080	205	20220		89.07	$I I_{1u}$	10.90	$2 L_u$				
л £7/6 т) c									
4J (1 _{7/}	2,9/2,11/2,13	$^{/2,15/2}$,17/2)		70.07	1.677	14.00	165				
$5 \ 1 \ 8u$	3.079	202	34795		79.07	$1 T_{2u}$	14.66	$1 \ E_u$				
$3 \Gamma_{6u}$	3.079	202	34796		78.81	$1 {}^{o}T_{2u}$	19.44	$1 \ ^{\circ}E_u$				
$6 \Gamma_{8u}$	3.078	202	34800		86.14	$1 {}^{o}T_{2u}$						
$4 \Gamma_{6u}$	3.078	202	34809		87.45	$1 {}^{6}T_{2u}$						
$7 \Gamma_{8u}$	3.078	202	34812		91.39	$1^{6}T_{2u}$						
$4 \Gamma_{7u}$	3.079	202	34812		87.59	$1^{6}T_{2u}$						
8 Γ ₀	3 080	202	3/873		18.84	$2^{6}T_{1}$	38 40	$1^{6} 4$				
5 T 8 <i>u</i>	2 0 8 0	202	94974		49.10	$\frac{2}{9} \frac{1}{6}$	97 52	1 6 A	92 10	0.6T		
$0 \Gamma_{7u}$	3.080	202	04014		42.19	$2 I_{1u}$	41.00	$1 A_{1u}$	20.10	2 12u		
$9 1_{8u}$	3.080	202	34909		51.85	$2 \ I_{1u}$	41.96	$2 \ 1_{2u}$				
$5 \Gamma_{6u}$	3.080	202	34924		49.82	$2 \ {}^{o}T_{1u}$	46.61	$2 \ {}^{o}T_{2u}$		0		
$6 \Gamma_{7u}$	3.080	202	34949		41.27	$2 {}^{6}T_{1u}$	30.98	$2 {}^{6}T_{2u}$	20.89	$1 {}^{6}A_{1u}$		
$10 \Gamma_{8u}$	3.080	202	34952		74.30	$2^{6}T_{1u}$	19.06	$2^{6}T_{2u}$				
$6 \Gamma_{6u}$	3.080	202	34997		87.52	$2^{6}T_{2u}$						
$7 \Gamma_{7u}$	3.080	202	35009		29.47	$2^{-6}T_{1u}$	26.55	$1^{6}E_{u}$	22.48	$2^{6}T_{2u}$	21.05	$1^{6}A_{1u}$
11 Γ _ο	3 080	202	35042		40.56	$2^{6}T_{2}^{1}$	32 44	$1^{6}E_{}^{"}$	$11 \ 37$	$1^{6}A_{2}^{2}$		14
$19 \Gamma_{\circ}$	3 080	202	35068		30.72	$2^{6}T_{2}^{12u}$	37.03	$2^{6}T$	16 60	$1^{6}A$		
12 18u	3.080	202	35000		09.72	$\frac{2}{16E}$	15 01	$2 1_{1u}$	10.09	$1 A_{1u}$		
13 1 8u	3.080	202	30083		63.09	$1 E_u$	10.91	$2^{-1}2u$				
$8 \Gamma_{7u}$	3.080	202	35084		65.14	$1 \overset{\circ}{E} E_u$	28.57	$2 {}^{\circ}T_{1u}$		6 —		<i>c</i> .
$14 \Gamma_{8u}$	3.080	202	35125		35.50	$1 \ ^{\circ}E_u$	21.02	$2 {}^{o}T_{2u}$	15.35	$2 {}^{o}T_{1u}$	15.26	$1 {}^{o}A_{2u}$
					10.54	$1 {}^{6}A_{1u}$						
$7 \Gamma_{6u}$	3.080	202	35141		33.24	$1 {}^{6}A_{2u}$	29.30	$1^{6}E_{u}$	20.11	$2^{6}T_{2u}$	11.18	$2^{6}T_{1u}$
$8 \Gamma_{6u}$	3.080	202	35223		48.83	$1^{6}E_{u}$	16.17	$2^{6}T_{2u}$	15.26	$1^{6}T_{2u}$	12.43	$1^{6}A_{2u}$
$9 \Gamma_{7u}$	3.080	202	35223		49.12	$2^{-6}T_{1u}$	26.67	$1^{6}A_{1u}$	21.63	$2^{6}T_{2u}$		
15 Γ _e	3 080	202	35238		27.75	$2^{6}T_{2}$	26.53	$1^{6}E_{}$	21.60	$2^{6}T_{1}$		
16 Г.	3.080	202	35958		46.18	$\frac{2}{16} \frac{12u}{4}$	20.00	$2^{6}T_{-}$	13 35	$2^{-1}u$ $2^{6}T$		
17 D	3.080	202	25200		40.10	$1 A_{2u}$	19 49	2 12u 0.6T	11 69	$\begin{array}{c} 2 & 1 \\ 1 & 6 \end{array}$		
111_{8u}	3.080	202	35200		01.08	$\frac{2}{16} \frac{1}{2u}$	13.43	$2 I_{1u}$	11.02	$1 A_{2u}$		
$9 T_{6u}$	3.080	202	35268		44.97	$1 {}^{\circ}A_{2u}$	28.13	$2 \ ^{\circ}T_{2u}$	19.32	$2 \ ^{\circ}T_{1u}$		
1 c7 (6 D) C										
$4f^{\circ}(^{\circ}D_1$	/2,3/2,5/2,7/	2)				a 6 m	a / - a	a 6 F				
$10 \Gamma_{6u}$	3.079	202	37397		72.40	$3 \ T_{2u}$	24.72	$2 \ E_u$				
$18 \Gamma_{8u}$	3.079	202	37421		59.19	$3 \ ^{\mathrm{o}}T_{2u}$	37.52	$2 \ ^{o}E_{u}$				
$19 \Gamma_{8u}$	3.079	202	37454		73.35	$3^{6}T_{2u}$	23.51	$2^{-6}E_u$				
$11 \Gamma_{6u}$	3.079	202	37659		67.62	$2^{-6}E_{u}$	31.65	$3^{6}T_{2u}$				
$20 \ \Gamma_{8u}$	3.079	202	37956		55.24	$3^{-6}T_{2u}$	37.08	$2^{-6}E_{u}$				
$10 \Gamma_{\pi}$	3.079	202	38180		85.12	$3^{6}T_{0}^{-2}$	11 22	$1^{6}T_{1}^{-a}$				
10 Г/ш 91 Г.	3 0 7 0	202	38330		57.43	$3^{6}T_{-}$	28.25	$2^{6}F$	11 99	$1^{6}T$		
10Γ	3.073	202	20209		79.00	3 12u 3 6T	19 11	$^{2} D_{u}$ 16 T	11.22	1 1 1 u		
$12 \ 1_{6u}$	3.079	202	36202		78.00	$3 I_{2u}$	13.11	$1 I_{1u}$	10.00	1.60		
$22 \Gamma_{8u}$	3.079	202	38307		55.71	$2 \ ^{\circ}E_u$	28.60	$3 \ ^{\circ}T_{2u}$	12.09	$1 \ ^{\circ}T_{1u}$		
$11 \Gamma_{7u}$	3.079	202	38317		83.13	$2 \ ^{o}E_{u}$	12.32	$1 {}^{o}T_{1u}$				
					Eu ³⁺ -doped l	BaS						
$\Delta f^6 (^7 F_{\gamma})$	c)											
-1Δ	-0/ 2800	286	Ω		17 12	1.7T	36 09	$1.7T_{2}$	10 19	1.74		
1 T.	2.000	200 986	272		47.13	1 7T	36 17	1 7T	10.12	1 1 A12g		
1 L 1g	2.000	⊿00 90≝	060		49.10	1 777	00.47 90.01	1 77 1 77				
⊥Ľg	2.199	200	903		07.33	1 (11g	29.01	$\perp (12g$				

$1 T_{\rm o}$	2 800	287	1137	42 70	$1.7T_{1}$	30.80	$1.7T_{\odot}$	13.86	1.74_{\circ}		
1 1 29	2.000	201	107	12.10	1 1 1 1 1 9	12.00	1 1129	10.00	1 12129		
$1 A_{2g}$	2.799	285	1956	54.65	ΓTT_{1g}	42.86	$1 \ 7 T_{2g}$				
$2 T_{2a}$	2.800	287	2017	46.15	$1.7T_{1a}$	32.05	$1.7T_{2a}$	19.23	$1.7A_{2a}$		
2y	2.000	207	20000	10.10	1 777	02.00	1 P/T	14.90	1 7 4		
$Z I_{1g}$	2.800	287	2000	40.00	$1 \ (1_{2g}$	30.34	$I (I_{1g}$	14.32	$1 \ (A_{2g})$		
$3 T_{2a}$	2.799	286	2951	70.46	$1 \ 7T_{1a}$	23.92	$1 \ 7T_{2a}$				
$2 \overline{F}$	2 800	285	3170	74.60	$1.7T_{-}^{19}$	93 36	1.7T.				
$_{2} E_{g}$	2.800	200	3170	74.00	1 (12g	23.30	1 (1 _{1g}				
$3 T_{1q}$	2.800	288	3190	43.79	$1 \ 7T_{2q}$	29.53	$1 \ 7T_{1q}$	24.61	$1 \ 7A_{2q}$		
2 4	2 800	201	3911	50.44	174°	37.56	$1.7T_{1}$		5		
2 111g	2.000	201	0211	50.11	1 77129	10 =0	1 1119				
$4 T_{1g}$	2.799	286	4184	52.40	ΓTT_{1g}	42.78	$17T_{2g}$				
$3 E_{a}$	2.799	285	4216	51.01	$1.7T_{2a}$	46.64	$1.7T_{1a}$				
4 T	0.000	000	49.47	60.06	1 77	95 70	1 7 4				
$4 \ 12g$	2.800	200	4247	02.20	I (I_{1g}	25.79	$1 \ i A_{2g}$				
5 T_{1q}	2.800	287	4400	74.15	$1 \ 7T_{2a}$	12.01	$1 \ 7T_{1q}$	11.47	$1 \ 7A_{2q}$		
A E	2 799	285	5387	5656	$1.7T_1$	40.14	$1.7T_{o}$		5		
ΞL_g	2.100	200	0001	50.00	$1 1 1_{1g}$	10.11	1 1129				
$5 T_{2g}$	2.799	286	5407	52.28	$1 \ TT_{1g}$	43.48	$1 \ 7 T_{2g}$				
$2 A_{2a}$	2.799	285	5457	54.22	$1.7T_{2a}$	42.46	$1.7T_{1a}$				
c 7	0.000	990	5610	45.05	1 77	22.07	1 7 4	17.00	1 77		
$0 \ I_{2g}$	2.800	289	3019	45.05	$1 \ (1_{2g}$	33.07	$1 (A_{2g})$	17.99	$1 \ (I_{1g}$		
$6 T_{1a}$	2.800	289	5650	47.57	$1 \ 7T_{2a}$	34.76	$1 \ 7A_{2a}$	14.36	$1 \ 7T_{1a}$		
3 4	2 800	200	5676	48 77	$1.7T_{2}^{-3}$	36 45	1.74^{-3}	11 47	$1.7T_{.}^{-3}$		
$\mathbf{J} \mathbf{A}_{1g}$	2.800	290	3070	40.11	1 (12g	50.45	$1 \ (A_{2g})$	11.47	1 (1 _{1g}		
$4f^{6}(^{5}D_{c})$, a)										
-j (D()-3)	0.05	100 - 0	10	1 5 7						
$4 A_{1g}$	2.798	285	19973	57.46	$1 \ 5T_{2g}$	36.83	$1 5 E_g$				
$7 T_{1a}$	2.798	285	20781	58.04	$1 5T_{2a}$	36.80	$1.5E_a$				
$\overline{7}$ T	9.707	905	99498	70.26	1 = 77	95.91	150				
$1 \ 1 \ 2g$	2.191	200	22420	70.50	$1 \ 51_{2g}$	20.21	$1 \ \partial E_g$				
$5 E_a$	2.798	284	22521	54.04	$1 5E_a$	41.47	$1 \ 5T_{2a}$				
8 T.	2 7 9 7	285	95111	85.65	$1.5T_{2}^{'}$	10.04	$1.5E^{-3}$				
	2.191	200	20111	00.00	1.512g	10.04	$15D_g$				
$8 T_{2g}$	2.797	285	25153	49.90	$1.5E_g$	45.77	$1.5T_{2g}$				
3 42-	2,797	284	25190	$95\ 44$	$1.5E_{-}$						
0 112g	2.101	201	20100	50.11	10Lg						
$4f^{6}(^{5}D_{4})$	$1.5 L_{6-10}$	${}^{5}G_{2-6}$									
-5 (-3)	0 707	,	00000	01.04	1 577	20 60	9 F F	16 46	4 577	14.94	9.577
$9 I_{2g}$	2.191	289	28323	21.94	$1 \ \Im I_{1g}$	20.09	$Z \ \partial E_g$	10.40	$4 \ 51_{2g}$	14.24	$Z \ \Im I_{1g}$
$5 A_{1a}$	2.797	284	28343	51.00	$3 5T_{2a}$	34.25	$3 5E_a$	11.53	$4 5T_{2a}$		
$4 4_{2}^{-3}$	2 7 9 7	285	28345	36.80	$1.5T_{2}^{-3}$	35.07	$2.5\vec{E}$	14.96	2 5 T		
4 A2g	2.191	200	20040	00.00	$1 5 I_{1g}$	30.07	$2.5D_g$	14.30	$2 5 I_{1g}$		
$9 T_{1g}$	2.797	284	28362	31.55	$3 \ 5T_{2g}$	14.41	$3 5 E_g$	13.19	$2 \ 5T_{1g}$	11.83	$1.5T_{1g}$
				10.75	$4 5 T_{2}$						
10 77	0 707	004	00404	10.00	1 5 1 2g	10 10	0 F F	10.07			
$10 \ T_{2g}$	2.797	284	28494	43.00	$1 \ 5 I_{1g}$	10.42	$2 \ 5E_g$	10.07	$4 \ _{01_{1g}}$		
$11 T_{2a}$	2.797	285	28495	42.72	$1 \ 5T_{1a}$	25.53	$1 5A_{1a}$				
6 F ²⁹	9 707	995	28526	45 16	1 ET	00.2K	151	10 14	95F		
$0 L_g$	2.191	200	20000	40.10	$1 \ 51_{1g}$	22.55	$1 \ \partial A_{1g}$	10.14	$_{2,0E_g}$		
$12 T_{2q}$	2.797	285	28572	32.46	$4 5T_{2q}$	15.97	$1 5T_{1q}$	14.79	$2 5 E_q$		
$10 T_{1}$	2 7 9 7	285	28618	43.04	$1.5T_{1}$	23 45	$2.5T_{o}$		5		
	2.101	200	20010	10.01	1 0 1 1g	20.40	2 01 2g	10.00	0 F.T.	10 51	
$7 E_g$	2.797	284	28625	21.65	$3 \ 5T_{2g}$	17.24	$3 \ 5T_{1g}$	16.86	$2 \ 5T_{1g}$	13.51	$4 5 E_g$
				13.26	$4 5T_{2a}$						
19 77	9 707	909	20620	00.20	2 5 T	17.04	9.5T	16 01	257	12.95	$4 \in E$
$13 \ I_{2g}$	2.191	283	28029	22.30	$3 \ 51_{2g}$	17.04	$2 \ 5I_{1g}$	10.91	$3 \ 5I_{1g}$	13.25	$4 \ \Im E_g$
				12.24	$4 5T_{2q}$						
$6 A_{1}$	2.797	281	28703	$61 \ 44$	2.5E	$14\ 13$	$2.5T_{2}$	13.04	$5.5T_{2}$		
0 5	0.700	201	00700	00.00	- 0	17.07	- 012g	17.00	1 F F	11 /0	0 5 4
δE_g	2.198	284	20100	32.23	$\mathfrak{s} \mathfrak{I}_{1g}$	17.07	$4 \ 51_{2g}$	11.02	4 D E_g	11.43	$z \ \Im A_{1g}$
$5 A_{2a}$	2.798	284	28715	42.37	$2 5T_{1a}$	20.16	$4 5E_a$	11.33	$2 5E_a$	10.61	$3 5E_a$
$14 T_{-}^{29}$	2 708	<u> </u>	28825	75.09	2 5T		9		9		9
14 12g	2.190	204	20020	10.92	$2 \ 512g$						
$11 T_{1a}$	2.797	285	28934	19.48	$3 5T_{2a}$	19.11	$2 5T_{1a}$	11.08	$1 5 E_q$	10.83	$1 5T_{2a}$
$7 A_1$	2797	284	28954	55.22	1.5E	35 33	$1.5T_{\circ}$		0		5
	2.101	201	20001	00.22	1000	10.00	1 01 2g	10 75	0.577	11 00	4.50
$9 E_g$	2.797	284	29001	29.36	$5 \ 5 E_g$	17.87	$2 \ 5I_{2g}$	12.75	$2 \ 5I_{1g}$	11.80	$4 \ 51_{2g}$
$12 T_{1a}$	2.797	285	29015	30.02	$1 5E_a$	29.87	$1 5T_{2a}$	12.65	$2 5T_{2a}$		
$15 T_{-}$	9 707	 	20020		$2 5 T_{-}$	1/ 91	9 5T.	19 61	1 5T-	11 17	45F
$10 \ 12g$	4.191	204	23029 225	20.00	5 51 2g	14.41	2 311g	12.01	4 012g	11.11	$+ 0 E_g$
$10 E_g$	2.797	284	29066	38.73	$1 \ 5T_{2g}$	29.03	$1.5E_g$	12.20	$25E_g$		
$16 T_{2}$	2.798	285	29110	51.85	$1.5T_{\rm n}$	$13 \ 39$	$1.5 \vec{E_{-}}$	11.34	$2.5T_{2}$		
10 12g	0.707	200	00100	00.55	1 0 1 2g	10.00	1 F 77	10.05	2 0 1 2g	10.05	
$17 \ T_{2g}$	2.797	285	29122	33.57	$2 \ 5 E_g$	22.85	$1 \ 5T_{1g}$	10.95	$2 \ 5T_{2g}$	10.05	$5 \ 5T_{2g}$
$18 T_{22}$	2.797	285	29131	21.75	$1.5T_{1c}$	20.33	$1 5 A_{12}$	15.08	$2 5T_{2}$		
	9 707	000	90100	95.05	1 5 T	02.04	4 5 E	10 51	<u></u> ∠y 2577		
15 I_{1g}	4.191	200	29100	20.90	4 01 2g	2 3 .24	4 0 <i>L</i> g	19.91	$5 51_{1g}$		
$6 A_{2a}$	2.797	285	29207	44.48	$3 5 T_{1a}$	23.59	$3 5 E_a$	22.51	$4 5 E_a$		
$11 \vec{E}$	2 7 9 7	284	29226	46.55	$2.5T_{2}^{-3}$	12.68	$3.5\vec{E}$		3		
11 Dg	<u></u>	204	20220	10.00	2 01 2g	11.00	5 0 Dg				
$14 T_{1g}$	2.798	285	29239	39.81	$2 \ 5T_{2g}$	11.93	$1 \ 5T_{1g}$				
$19 T_{22}$	2.798	284	29250	29.67	$3 5T_{1c}$	19.79	$25A_{12}$	19.09	$2 5T_{1c}$	10.73	$3 5E_a$
_0 ±29 10 ₽	9 707	0.05	20600	EE 40	19 9 E/T	10 69	0 5 T	11 01	_ = = 19 1 E/T	0	y
12 E_g	2.197	285	29090	55.48	$5 \ 51_{2g}$	19.03	$2 \ 31_{1g}$	11.21	$4 \ 51_{2g}$		
$20 T_{2a}$	2.797	285	29716	30.57	$2 5T_{1c}$	29.09	$3 5E_a$	13.62	$4 5T_{2a}$		
					÷.4				- 3		

$15 T_{1g}$	2.797	284	29792	25.37	$3 5T_{2g}$	21.47	$4 5T_{2g}$	13.16	$2 5T_{1g}$	12.96	$3 5 E_g$
				12.61	$4 5 E_g$						
$21 T_{2q}$	2.797	285	29886	37.77	$3 \ 5T_{1q}$	13.78	$4 5T_{2q}$	12.81	$4 5 E_q$	10.21	$3 5T_{2q}$
16 T_{1q}	2.798	284	29907	45.98	$3 5 T_{1q}$	25.36	$2 5 T_{1q}$	17.30	$4 5 T_{2q}$		5
$8 A_{1q}$	2.797	285	29956	55.57	$4 5 E_q$	21.20	$4 5 T_{2q}$	16.77	$3 5 T_{2q}$		
13 E_q	2.797	283	30010	20.58	$1 \; 5T_{1q}$	15.63	$2 5 A_{1q}$	12.25	$4 5 E_q$		
22 T_{2q}	2.797	284	30049	14.01	$1 \; 5T_{1q}$	13.06	$2 5 A_{1q}$	12.20	$1 \; 5 A_{1q}$	11.63	$2 5T_{1q}$
$14 E_{q}$	2.797	285	30050	35.89	$1 \ 5T_{1a}$	23.50	$2 5 E_a$	13.78	$1 \; 5A_{1q}$		5
$7 A_{2g}$	2.797	285	30087	38.07	$1 \; 5T_{1g}$	35.69	$2 5 E_g$	12.27	$4 5 T_{1g}$		
9 A_{1q}	2.797	284	30209	59.14	$2 5T_{2q}$	15.13	$5 5 E_q$	14.91	$2 5 E_q$		
$17 T_{1q}$	2.797	285	30209	53.06	$2 5 T_{2q}$		5		5		
23 T_{2q}	2.798	284	30233	46.73	$2 5 T_{2q}$	12.48	$1 5T_{1q}$	12.34	$5 5T_{1q}$		
$8 A_{2q}$	2.797	285	30652	42.03	$3 5 T_{2q}$	24.71	$4 5 T_{2q}$	22.18	$2 5 T_{1q}$		
18 T_{1q}	2.797	285	30653	42.08	$3 5 T_{2q}$	24.69	$4 5 T_{2q}$	22.13	$2 5 T_{1q}$		
$24 T_{2q}$	2.797	285	30656	28.86	$2 5 T_{1q}$	27.16	$3 5 T_{2q}$	22.27	$4 5 T_{2q}$	10.84	$3 5 E_q$
$10 A_{1q}$	2.797	284	30738	32.22	$3 5 E_q$	29.71	$4 5 E_q$	28.59	$3 5 T_{2q}$		5
19 T_{1q}	2.797	285	30751	40.27	$3 \ 5T_{1q}$	21.82	$4 5 T_{2q}$	13.84	$3 5 E_q$	10.86	$3 5T_{2q}$
$15 E_q$	2.797	285	30819	28.81	$4\ 5E_q$	25.41	$4 5 T_{2q}$	18.20	$2 5 A_{1q}$		
$25 T_{2g}$	2.798	284	30895	27.89	$2 5 A_{1g}$	23.94	$2 \ 5T_{1g}$	18.43	$4 \ 5T_{2g}$	12.98	$4 5 E_g$
				10.47	$3 \ 5T_{1g}$						
$20 T_{1g}$	2.798	284	30926	42.40	$3 \ 5T_{1g}$	38.25	$4 5 E_g$				
$21 T_{1g}$	2.797	285	31709	56.79	$3 5T_{2g}$	20.63	$3 5E_g$	11.73	$2 5T_{1g}$		
$16 E_g$	2.797	285	31757	30.99	$3 5T_{2g}$	29.07	$2 \ 5T_{1g}$	28.90	$3 5 E_g$		
$22 T_{1g}$	2.797	285	31772	35.81	$2 5T_{1g}$	26.96	$3 5E_g$	17.68	$3 5T_{2g}$	10.42	$4 5T_{2g}$
$11 \ A_{1g}$	2.797	285	31812	61.93	$4 5T_{2g}$	26.16	$3 5E_g$	10.33	$4 5E_g$		
23 T_{1g}	2.797	285	31856	38.21	$4 5T_{2g}$	24.23	$2 \ 5T_{1g}$	14.89	$4 5E_g$	13.27	$3 5T_{1g}$
26 T_{2g}	2.797	285	31897	34.64	$4 5T_{2g}$	29.53	$3 \ 5T_{1g}$	11.77	$4 5E_g$		
9 A_{2g}	2.798	284	32058	51.10	$4 5 E_g$	36.67	$3 \ 5T_{1g}$	11.99	$2 5T_{1g}$		
27 T_{2g}	2.798	284	32094	40.56	$3 5T_{1g}$	26.56	$4 5 E_g$	24.33	$2 \ 5A_{1g}$		
$17 E_g$	2.798	284	32106	40.50	$3 \ 5T_{1g}$	30.54	$2 5A_{1g}$	21.63	$4 5 E_g$		

^a Absorption oscillator strengths for 1 $\Gamma_{6u,8u,7u} \rightarrow i$ transitions are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=3.100$ Å; the reference value is $f_{ref}=1.906\times10^{-3}$. Emission oscillator strengths for 1 $\Gamma_{8g}\rightarrow1$ Γ_{6u} ,1 Γ_{8u} ,1 Γ_{7u} and radiative emission lifetime are calculated at $d_{\mathrm{Eu}-\mathrm{F}}=3.050$ Å; the reference value is $f_{ref}=8.969\times10^{-4}$. ^b The analyses of the wave functions have been done at $d_{\mathrm{Eu}-\mathrm{F}}=3.100$ Å ($4f^{6}(5d^{1}+6sa_{1g}^{1})$), 2.850 Å ($4f^{6}$). ^c C.f. Table S7. ^d C.f. Table S8.

TABLE S15: Comparison between calculated and experimental excitations energies. For the lowest $4f^{6}5d^{1}$ state of Eu^{2+} , zero-phonon lines (ZPL) were visible in low temperature emission or excitation spectra in most cases, except for the BaF₂ and BaS hosts. In the latter two cases, the ZPL location was estimated (shown in italic). Energies given in cm⁻¹.

		$E_{\rm calc}$	$E_{\rm exp}$	diff.			$E_{\rm calc}$	$E_{\rm exp}$	diff.			$E_{\rm calc}$	$E_{\rm exp}$	diff.
		С	aF ₂ :Eu ²⁺	-			S	rF_2 : Eu^{2+}				В	$aF_2:Eu^{2+}$	
$4f^7$			Ref. 32		$4f^7$			Ref. 32		$4f^7$			Ref. 33	
${}^{8}S_{}^{6}P$	$\begin{array}{c} 2 \ \Gamma_{8u} \\ 2 \ \Gamma_{7u} \\ 3 \ \Gamma_{9} \end{array}$	$0\\30442\\30453\\30826$	$0 \\ 27558 \\ 27564 \\ 27588$	$0 \\ 2884 \\ 2889 \\ 3238$	⁸ S ⁶ P	$\begin{array}{c} 2 \ \Gamma_{8u} \\ 2 \ \Gamma_{7u} \\ 3 \ \Gamma_{9} \end{array}$	$0\\30577\\30585\\30962$	$0 \\ 27654 \\ 27658 \\ 27672$	$0 \\ 2923 \\ 2927 \\ 3290$	${}^{8}S_{6}P$	2 Γ_{8u} 2 Γ_{7u} 3 Γ_{9}	$0\\30809\\30815\\31194$	$0 \\ 27727 \\ 27729 \\ 27738$	$0\\3082\\3086\\3456$
6 -	$\begin{array}{c} 3 & \Gamma_{8u} \\ 2 & \Gamma_{6u} \\ 4 & \Gamma_{8u} \end{array}$	$31053 \\ 31065$	27959 27959 27999	$3094 \\ 3066$	6 -	$\begin{array}{c} 3 & \Gamma_{8u} \\ 2 & \Gamma_{6u} \\ 4 & \Gamma_{8u} \end{array}$	$31194 \\ 31205$	28066 28098	$3128 \\ 3107$		5 I 8u	91194	21190	0400
⁶ D	$\begin{array}{c} 3 \ \Gamma 6 u \\ 5 \ \Gamma 8 u \\ 6 \ \Gamma 8 u \\ 7 \ \Gamma 8 u \\ 8 \ \Gamma 8 u \\ 10 \ \Gamma 8 u \\ 5 \ \Gamma 7 u \\ 6 \ \Gamma 7 u \\ 12 \ \Gamma 8 u \\ 7 \ \Gamma 7 u \\ 8 \ \Gamma 6 u \\ 14 \ \Gamma 8 u \\ 15 \ \Gamma 8 u \\ 17 \ \Gamma 8 u \\ 17 \ \Gamma 8 u \\ 17 \ \Gamma 8 u \\ 10 \ \Gamma 6 u \\ 19 \ \Gamma 8 u \\ 11 \ \Gamma 6 u \\ 20 \ \Gamma 8 u \\ 21 \ \Gamma 8 u \\ 12 \ \Gamma 6 u \\ 22 \ \Gamma 8 u \\ 22 \ \Gamma 8 u \end{array}$	34758 34766 34798 34807 35033 35172 35182 35210 35213 35242 35265 35315 35376 35496 35510 37633 37672 37925 38099 38311 38515 38609	30760 30880 31057 31107 31296 31318 31371 31433 31446 31445 31513 31540 31653 31710 31748 33890 34010 34503 34620 34685 34785 34950	$\begin{array}{c} 3998\\ 3886\\ 3741\\ 3700\\ 3737\\ 3854\\ 3811\\ 3777\\ 3767\\ 3752\\ 3757\\ 3752\\ 3775\\ 3752\\ 3775\\ 3723\\ 3766\\ 3762\\ 3743\\ 3662\\ 3422\\ 3479\\ 3626\\ 3730\\ 3659\\ \end{array}$	⁶ D	$\begin{array}{c} 3 \ \Gamma 6 u \\ 5 \ \Gamma 8 u \\ 4 \ \Gamma 6 u \\ 5 \ \Gamma 6 u \\ 6 \ \Gamma 7 u \\ 6 \ \Gamma 6 u \\ 2 \ \Gamma 8 u \\ 7 \ \Gamma 6 u \\ 7 \ \Gamma 7 u \\ 3 \ \Gamma 8 u \\ 8 \ \Gamma 6 u \\ 8 \ \Gamma 7 u \\ 5 \ \Gamma 8 u \\ 9 \ \Gamma 6 u \\ 10 \ \Gamma 6 u \\ 10 \ \Gamma 6 u \\ 10 \ \Gamma 8 u \\ 20 \ \Gamma 8 u \\ 21 \ \Gamma 8 u \\ 10 \ \Gamma 7 u \\ 12 \ \Gamma 6 u \end{array}$	34938 34945 34945 34989 35261 35315 35317 35356 35362 35362 35405 35414 35442 35442 35499 35590 35590 35633 37811 37829 38276 38489 38557 38667	30887 31000 31210 31407 31450 31479 31526 31561 31590 31610 31632 31647 31749 31766 31766 31766 31766 31828 33990 34115 34650 34740 34770 34860	4051 3945 3779 3854 3865 3838 3830 3801 3792 3795 3795 3795 3750 3824 3805 3824 3805 3821 3714 3626 3749 3787 3807					
$4f^65d^3$	1 1 Γ_{8g}	25720	Ref. 34 24215	1505	$4f^{6}56$	$\operatorname{l}^1_{1}_{1 \ \Gamma_{8g}}$	26828	Ref. 33 24925	1903	$4f^65d$	$1 1 \Gamma_{8g}$	28044	Ref. 33 <i>25636</i>	2408
		С	aF ₂ :Eu ³⁺	-										
$4f^{6}$ ${}^{7}F_{0}$ ${}^{7}F_{1}$ ${}^{7}F_{2}$	$1 A_{1g}$ $1 T_{1g}$ $1 T_{2g}$ $1 F$	$0\\345\\803\\1406$	Ref. 35 0 337 811 1242	0 8 -8										
${}^{7}F_{3}$	$\begin{array}{c} 1 \ L_{g} \\ 2 \ T_{1g} \\ 2 \ T_{2g} \\ 1 \ A_{2g} \end{array}$	$ 1400 \\ 1971 \\ 2111 \\ 2352 $	$ 1342 \\ 1857 \\ 1968 \\ 2107 $	$114 \\ 143 \\ 245$										
' F ₄	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2501 \\ 3114 \\ 3361 \\ 3472$	$2845 \\ 2879 \\ 3021 \\ 3233$	$-344 \\ 235 \\ 340 \\ 239$										
F_5	$\begin{array}{c} 4 \ T_{2g} \\ 4 \ T_{1g} \\ 3 \ E_g \\ 5 \ T_{1g} \end{array}$	$\begin{array}{c} 4132 \\ 4404 \\ 4600 \\ 4602 \end{array}$	$3793 \\ 3933 \\ 4028 \\ 4438$	$339 \\ 471 \\ 572 \\ 164$										
${}^{7}F_{6}$	$\begin{array}{c} 3 \ A_{1g} \\ 6 \ T_{1g} \\ 5 \ T_{2g} \end{array}$	$5524 \\ 5580 \\ 5603$	$\begin{array}{c} 4920 \\ 4946 \\ 5044 \end{array}$	$\begin{array}{c} 604 \\ 634 \\ 559 \end{array}$										

${}^{5}D_{0}$ ${}^{5}D_{1}$	$\begin{array}{c} 4 \ E_{g} \\ 6 \ T_{2g} \\ 2 \ A_{2g} \\ 4 \ A_{1g} \\ 7 \ T_{1g} \end{array}$	$5806 \\ 5813 \\ 5827 \\ 20023 \\ 20828$	$5062 \\ 5184 \\ 5411 \\ 17274 \\ 19030$	$744 \\ 629 \\ 416 \\ 2749 \\ 1798$										
	$CaS:Eu^{2+}$					$SrS:Eu^{2+}$						$BaS:Eu^{2+}$		
$4f^65d^1$	1 Γ _{8g}	17309	Ref. 36 15995	1314	$4f^6 5d^1$	$1 \ \Gamma_{8g}$	18978	Ref. 37 17191	1787	$4f^{6}5c$	1^{1} 1 Γ_{8g}	20356	Ref. 38 18729	1627

FIG. S1. Potential energy curves at spin-orbit-free MS-RASPT2 level for the Eu^{2+} impurity in the alkaline earth fluorides CaF_2 , SrF_2 and BaF_2 and alkaline earth sulfides CaS, SrS and BaS. The black curves show the levels that correspond to the $4f^7$ configuration, while green and red curves originate from the excited states with $4f^6(5d, ITE_{a_{1g}}/6s)^1$ configurations, indicating spin-octet and spin-sextet levels respectively. Fig. 3 from the main text shows the potential energy curves after spin-orbit coupling is included.

FIG. S2. Potential energy curves at spin-orbit-free MS-RASPT2 level for states of the $4f^6$ configuration of the Eu^{3+} impurity in the alkaline earth fluorides CaF_2 , SrF_2 and BaF_2 and alkaline earth sulfides CaS, SrS and BaS. The color of the curves denotes the main L value of the associated ${}^{2S+1}L$ term.

FIG. S3. Potential energy curves after spin-orbit coupling (at RASSI-SO level) for states of the $4f^6$ configuration of the Eu^{3+} impurity in the alkaline earth fluorides CaF₂, SrF₂ and BaF₂ and alkaline earth sulfides CaS, SrS and BaS. The orange and red curves correspond to the low-lying ⁷F and ⁵D multiplets respectively, while the grey curves show higher levels originating from other spin-quintet multiplets.