Electronic Supplementary Information

Highly dispersed redox-active polyoxometalates periodic deposition on multi-walled carbon nanotubes for boosting electrocatalytic triiodide reduction in dye-sensitized solar cells

Ting Wang,^{§a} Ming Xu,^{§a} Xiaohong Li,^a Chunlei Wang,^b Weilin Chen*^a

^aKey Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun 130024, China. E-Mail: chenwl@nenu.edu.cn.

^bNortheast Normal University Library, Changchun, 130024, China

[§]These two authors equally contributed to this paper.

Table of Contents

Supplementary Figures	S3								
Figure S1. IR spectra of POMs salts, POMs/CNTs nanocomposites employed as the CEsS									
Figure S2. The PXRD patterns of (a, c, e, g) POMs salts; (b, d, f, h) POMs/CNTs nanocomposite									
employed as the CEs	S4								
Figure S3. The EDX result of Co ₄ PW ₉ /CNTs nanocomposites	S5								
Figure S4. The full XPS spectra of (a) PW ₁₂ /CNTs, (b) PMo ₁₂ /CNTs, (c) P ₂ W ₁₈ /CNTs and (d)									
P2M018/CNTs nanocomposites	.S5								
Figure S5. High-resolution XPS spectra of (a) W and (b) C in PW ₁₂ /CNTs nanocomposite	.S5								
Figure S6. High-resolution XPS spectra of (a) Mo and (b) C in PMo ₁₂ /CNTs nanocompositeS6									
Figure S7. High-resolution XPS spectra of (a) W and (b) C in P ₂ W ₁₈ /CNTs nanocompositeS6									
Figure S8. High-resolution XPS spectra of (a) Mo and (b) C in P ₂ Mo ₁₈ /CNTs nanocompositeS6									
Figure S9. The EDX results of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and	(d)								
P2Mo18/CNTs nanocomposites									
Figure S10. The cross sectional view of the Co ₄ PW ₉ /CNTs CE	.S7								
Figure S11. The SEM images of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and	(d)								
P2M018/CNTs nanocomposites	.S7								
Figure S12. The TEM images of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and	(d)								
P2Mo18/CNTs nanocomposites	.S8								
Figure S13. The equivalent circuit for EIS analysis; R_s is the series resistance, CPE represents the									
electrochemistry double-layer capacitance, the charge transfer resistance related to the	IRR								
process is R _{ct}	.S8								
Figure S14. Long-term stability of a DSSC based on Co ₄ PW ₉ /CNTs CE	.S9								
Supplementary Tables	S10								
Table S1. The POMs salts employed as the CEs in t	this								
study									
TableS2.Electrochemicalparametersfordiffer	ent								
CEs									
References	510								

..

Supplementary Figures

Fig. S1. IR spectra of POMs salts, POMs/CNTs nanocomposites employed as the CEs.

Fig. S2. The PXRD patterns of (a, c, e, g) POMs salts; (b, d, f, h) POMs/CNTs nanocomposites employed as the CEs.

Fig. S3. The EDX result of Co₄PW₉/CNTs nanocomposites.

Fig. S4. The full XPS spectra of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and (d) $P_2Mo_{18}/CNTs$ nanocomposites.

Fig. S5. High-resolution XPS spectra of (a) W and (b) C in PW₁₂/CNTs nanocomposite.

Fig. S6. High-resolution XPS spectra of (a) Mo and (b) C in PMo₁₂/CNTs nanocomposite.

Fig. S7. High-resolution XPS spectra of (a) W and (b) C in P₂W₁₈/CNTs nanocomposite.

Fig. S8. High-resolution XPS spectra of (a) Mo and (b) C in $P_2Mo_{18}/CNTs$ nanocomposite.

Fig. S9. The EDX results of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and (d) $P_2Mo_{18}/CNTs$ nanocomposites.

Fig. S10. The cross sectional view of the $Co_4PW_9/CNTs$ CE.

Fig. S11. The SEM images of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and (d) $P_2Mo_{18}/CNTs$ nanocomposites.

Fig. S12. The TEM images of (a) $PW_{12}/CNTs$, (b) $PMo_{12}/CNTs$, (c) $P_2W_{18}/CNTs$ and (d) $P_2Mo_{18}/CNTs$ nanocomposites.

Fig. S13. The equivalent circuit for EIS analysis; R_s is the series resistance, CPE represents the electrochemistry double-layer capacitance, the charge transfer resistance related to the IRR process is R_{ct} .

Fig. S14. Long-term stability of a DSSC based on $Co_4PW_9/CNTs$ CE.

Supplementary Tables

Entry no	POMs salts	Abbreviation	Ref.				
1	TBA ₃ [PW ₁₂ O ₄₀] ^a	PW ₁₂	[1]				
2	TBA ₃ [PMo ₁₂ O ₄₀]	PMo ₁₂	[2]				
3	$TBA_6[P_2W_{18}]$	P_2W_{18}	[3]				
4	$TBA_6[P_2Mo_{18}]$	P ₂ Mo ₁₈	[4]				
5	$Na_{10}[Co_4(H_2O)_2(PW_9O_{34})_2] \cdot 27H_2O$	Co ₄ PW ₉	[5]				

Table S1. The POMs salts employed as the CEs in this study.

[a] TBA: tetra-n-butylammonium.

 Table S2. Electrochemical parameters for different CEs.

CEs	R _s (Ω·cm²)	R _{ct} (Ω·cm²)	J _{Red} (mA cm ⁻²)	<i>E</i> pp(mV)	$f_{\max}(Hz)$	τ(μs)
Pt	10.54	13.50	-3.16	900	2234.36	71.27
CNTs	19.04	24.04	-1.47	740	19.96	7977.66
PW ₁₂ /CNTs	11.03	10.90	-3.50	600	5067.43	31.42
PMo ₁₂ /CNTs	11.05	15.50	-6.18	280	5937.08	26.82
P ₂ W ₁₈ /CNTs	11.56	6.97	-2.81	560	1320.82	120.56
P ₂ Mo ₁₈ /CNTs	10.48	10.85	-3.20	690	3593.43	44.31
Co ₄ PW ₉ /CNTs	11.75	1.20	-8.43	230	7316.63	21.76

References

[1] C. Sanchez, J. Livage, J. P. Launay and Y. Jeannin, Electron delocalization in mixed-valence molybdenum polyanions, *J. Am. Chem. Soc.*, 1982, **104**, 3194–3202.

[2] G. A. Tsigdinos and C. J. Hallada, Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization, *Inorg. Chem.*, 1968, **7**, 437–441.

[3] R. Contant, W. G. Klemperer and O. Yaghi, Potassium octadecatungstodiphosphates (V) and related lacunary compounds, *Synth. Chem.*, 1990, **27**, 104–111.

[4] J. F. Garvey and M. T. POPE, Chirality of oxidized and reduced octadecamolybdodiphosphate anions. Observation of a Pfeiffer effect, *Inorg. Chem.*, 1978, **17**, 1115-1117.

[5] Q. S. Yin, J. M. Tan, C. Besson and C. L. Hill, A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals, *Science*, 2010, **328**, 342-345.