Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

#### **SUPPORTING INFORMATION**

# Ferromagnetic Ni(II)-Cr(III) Single-chain magnet based on pentagonal bipyramid building units

Katerina Bretosh, Virginie Béreau, Carine Duhayon, Céline Pichon, Jean-Pascal Sutter\*

*Laboratoire de Chimie de Coordination (LCC) du CNRS, Université de Toulouse, CNRS, Toulouse, France* 

#### **CONTENT :**

| Table S1  | Crystallographic data for 1-4 and [NiL <sup>N3O2Ph</sup> ] <sub>2</sub>                                                                                               |            |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| Table S2  | Results from the polyhedral shape analysis by SHAPE <sup>1</sup> for the heptacoordinated                                                                             | <b>S</b> 3 |  |
|           | metal centers in 1-4.                                                                                                                                                 |            |  |
| Figure S1 | $[NiL^{N3O2Ph}]_2$ : molecular structure and selected bond distances (Å) and angles (°).                                                                              | S4         |  |
| Figure S2 | $[NiL^{N5PhenMe}(H_2O)_2]$ ·2BF <sub>4</sub> , <b>1</b> : ORTEP view of the asymmetric unit and crystal                                                               | <b>S</b> 5 |  |
|           | packing.                                                                                                                                                              |            |  |
| Figure S3 | [{NiL <sup>N5PhenMe</sup> }{Ni(CN) <sub>4</sub> }]0.5H <sub>2</sub> O, <b>2</b> : ORTEP view of the asymmetric and crystal                                            | S6         |  |
|           | packing.                                                                                                                                                              |            |  |
| Figure S4 | [{NiL <sup>N5PhenMe</sup> }{CrL <sup>N3O2Ph</sup> (CN) <sub>2</sub> } <sub>2</sub> ].2H <sub>2</sub> O, <b>3</b> . (a) detail of the disordered L <sup>N5PhenMe</sup> | S8         |  |
|           | ligand and best modeling, ( <b>b</b> ) ORTEP plots of asymmetric unit, ( <b>c</b> ) crystal packing.                                                                  |            |  |
| Figure S5 | Powder X-Ray patterns for [{NiL <sup>N5PhenMe</sup> }{CrL <sup>N3O2Ph</sup> (CN) <sub>2</sub> } <sub>2</sub> ].2H <sub>2</sub> O, <b>3</b>                            | S10        |  |
| Figure S6 | [{NiL <sup>N5PhenMe</sup> }{CrL <sup>N3O2Ph</sup> (CN) <sub>2</sub> }].dmf.ClO <sub>4</sub> , <b>4</b> : ( <b>a</b> ) ORTEP plot of asymmetric unit, (b)              | S11        |  |
|           | Crystal packing, (c) inter-chain arrangement and relative organization of the Ni                                                                                      |            |  |
|           | moieties                                                                                                                                                              |            |  |
| Figure S7 | Powder X-Ray patterns for [{NiL <sup>N5PhenMe</sup> }{CrL <sup>N3O2Ph</sup> (CN) <sub>2</sub> }].dmf.ClO <sub>4</sub> , <b>4</b>                                      | S12        |  |
| Figure S8 | Magnetic behavior for $[NiL^{N5PhenMe}(H_2O)_2]$ ·2BF <sub>4</sub> , <b>1</b> . Experimental (O) and                                                                  | S13        |  |
|           | calculated (–) temperature dependence of $\chi_{M}\mathcal{T}$ , and isothermal magnetizations.                                                                       |            |  |
| Figure S9 | Additional magnetic data for [{NiL <sup>N5PhenMe</sup> }{CrL <sup>N3O2Ph</sup> (CN) <sub>2</sub> }].dmf.ClO <sub>4</sub> , <b>4</b>                                   | S14        |  |

# Table S1 Crystallographic data for 1-4 and $[NiL^{N3O2Ph}]_2$

|                                                                   | [NiL <sup>N3O2Ph</sup> ] <sub>2</sub> | 1                              | 2                                | 3                               | 4                                   |
|-------------------------------------------------------------------|---------------------------------------|--------------------------------|----------------------------------|---------------------------------|-------------------------------------|
| Formula                                                           | C46H38N10Ni2O4                        | $C_{23}H_{25}B_2F_8N_7Ni_1O_2$ | $C_{27}H_{22}N_{11}Ni_2O_{0.50}$ | $C_{73}H_{63}Cr_2N_{21}Ni_1O_6$ | $C_{51}H_{47}Cl_1Cr_1N_{15}Ni_1O_7$ |
| Mr                                                                | 912.24                                | 663.81                         | 625.97                           | 1493.14                         | 1128.19                             |
| Crystal system                                                    | monoclinic                            | monoclinic                     | monoclinic                       | monoclinic                      | monoclinic                          |
| Crystal color                                                     | red                                   | orange                         | yellow                           | orange                          | orange                              |
| Space group                                                       | C 2/c                                 | P 21/c                         | P 2 <sub>1</sub> /n              | P 2 <sub>1</sub> /n             | C 2/c                               |
| a/Å                                                               | 22.4352(6)                            | 14.874(1)                      | 10.2821(5)                       | 11.5125(3)                      | 28.021(2)                           |
| b/Å                                                               | 16.1038(2)                            | 11.9090(9)                     | 17.4266(7)                       | 16.4374(3)                      | 20.6609(10) Å                       |
| c/Å                                                               | 15.4417(4)                            | 15.814(1)                      | 14.9144(6)                       | 19.5359(4)                      | 20.235(1)                           |
| α /°                                                              | 90                                    | 90                             | 90                               | 90                              | 90                                  |
| β /°                                                              | 133.251(5)                            | 109.989(3)                     | 102.068(2)                       | 106.980(2)                      | 96.273(2)                           |
| γ/°                                                               | 90                                    | 90                             | 90                               | 90                              | 90                                  |
| V/Å <sup>3</sup>                                                  | 4063.5(4)                             | 2632.4(4)                      | 2613.3(2)                        | 3535.7 (1)                      | 11644(1)                            |
| Ζ                                                                 | 4                                     | 4                              | 4                                | 2                               | 8                                   |
| T/K                                                               | 180                                   | 107                            | 100                              | 100                             | 100                                 |
| $\rho_{calcd}/gcm^{-1}$                                           | 1.49                                  | 1.67                           | 1.59                             | 1.40                            | 1.29                                |
| $\mu$ (Mo-K $\alpha$ )mm <sup>-1</sup>                            | 1.637                                 | 0.832                          | 1.484                            | 0.634                           | 0.616                               |
| Reflections measured                                              | 18728                                 | 55103                          | 55318                            | 104637                          | 148165                              |
| Independent<br>reflect. (Rint)                                    | 3025 (0.030)                          | 6533 (0.052)                   | 6471 (0.059)                     | 11367 (0.115)                   | 13403 (0.074)                       |
| Refl. with $I > n \sigma(I)$                                      | 2813, n=1.5                           | 5008, n=3                      | 4536, n=3                        | 8067, n=3                       | 9260, n=3                           |
| Nb restraints                                                     | 0                                     | 0                              | 154                              | 0                               | 0                                   |
| Nb parameters                                                     | 280                                   | 388                            | 321                              | 418                             | 676                                 |
| $ \begin{array}{l} R_1 / w R_2 \\ (I > n \sigma(I)) \end{array} $ | 0.028/0.027                           | 0.049/0.050                    | 0.072/0.076                      | 0.101/0.111                     | 0.069/0.073                         |
| Residual e- density<br>(ē.Å <sup>-3</sup> )                       | 0.29/-0.28                            | 1,53/-1,37                     | 2,15/-0,93                       | 2.09/-1.52                      | 1.44/-1.27                          |
| CCDC N°                                                           | 1957997                               | 1958001                        | 1958000                          | 1957999                         | 1957998                             |

**Table S2** Results from the polyhedral shape analysis by SHAPE<sup>2</sup> for the heptacoordinated metal centers in **1-4**.

| Complexes                                                                                                           | PBPY-7 <sup>3</sup> |
|---------------------------------------------------------------------------------------------------------------------|---------------------|
| $[NiL^{N5PhenMe}(H_2O)_2][BF_4]_2$ (1)                                                                              | 0.383               |
| $[{NiL^{N5PhenMe}}{Ni(CN)_4}]_n 0.5H_2O (2)$                                                                        | 0.302               |
| [{NiL <sup>N5PhenMe</sup> }{CrL <sup>N3O2Ph</sup> (CN) <sub>2</sub> } <sub>2</sub> ].2H <sub>2</sub> O ( <b>3</b> ) | Ni: 0.445           |
|                                                                                                                     | Cr: 0.371           |
| $[{NiL^{N5PhenMe}}{CrL^{N3O2Ph}(CN)_2}].dmf.ClO_4 (4)$                                                              | Ni: 0.469           |
|                                                                                                                     | Cr: 0.298           |

PBPY stands for pentagonal bipyramid

<sup>&</sup>lt;sup>2</sup> SHAPE: Program for the stereochemical analysis of molecular fragments by means of continuous shape measures and associated tools; M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, 2.1 ed., University of Barcelona, Barcelona, **2013**.

<sup>&</sup>lt;sup>3</sup> D. Casanova, P. Alemany, J. M. Bofill, S. Alvarez, Chem. Eur. J. 2003, 9, 1281-1295.

Figure S1  $[NiL^{N3O2Ph}]_2$ : Molecular structure.





## Selected bond distances (Å) and angles (°).

| Ni1 | N2                       | 1.956(1)                  |
|-----|--------------------------|---------------------------|
|     | N5 <sup>1-x, y, 1.</sup> | <sup>5-z</sup> 1.964(1)   |
|     | O2 <sup>1-x, y, 1.</sup> | <sup>5-z</sup> , 2.019(2) |
|     | 01                       | 2.0263(9)                 |
|     | N1 <sup>1-x, y, 1.</sup> | <sup>5-z</sup> 2.291(2)   |
|     | N1                       | 2.414(1)                  |
| N2  | N3                       | 1.381(2)                  |
| N4  | N5                       | 1.383 (2)                 |
|     |                          |                           |

| N3      | C8                        | 1.330(2) |
|---------|---------------------------|----------|
| N4      | C9                        | 1.338(3) |
| 02      | C9                        | 1.274(2) |
| 01      | C8                        | 1.283(2) |
| Ni-N1-N | Vi <sup>1-x,y,1.5-z</sup> | 81.26(4) |
|         |                           |          |

N3-C8-O1, 126.1(1) N4-C9-O2, 125.8(1) **Figure S2**  $[NiL^{N5PhenMe}(H_2O)_2]$  ·2BF<sub>4</sub>, **1**: ORTEP view of the asymmetric unit (ellipsoids are drawn at 50 % probability level) and crystal packing.





## Selected bond distances (Å)

| Ni1 | N4  | 2.030(2)   | N4 | C13 | 1.361(3) |
|-----|-----|------------|----|-----|----------|
|     | 02  | 2.080(2)   |    | N3  | 2.306(3) |
|     | 01  | 2.098(2)   |    | C14 | 2.362(3) |
|     | N5  | 2.123(2)   |    | C10 | 2.384(3) |
|     | N1  | 2.132(2)   |    | C12 | 2.415(3) |
|     | N2  | 2.213(2)   |    | N2  | 2.508(3) |
|     | N7  | 2.434(2)   |    | N5  | 2.627(3) |
| N1  | C1  | 1.336(3)   |    | C11 | 2.750(3) |
|     | C5  | 1.352(3)   | N5 | C20 | 1.320(3) |
|     | C2  | 2.381(3)   |    | C14 | 1.358(3) |
|     | C4  | 2.390(3)   |    | N6  | 2.302(3) |
|     | C22 | 2.403(3)   | N5 | C13 | 2.363(3) |
|     | C6  | 2.427(3)   |    | C19 | 2.392(3) |
|     | N7  | 2.591(3)   |    | C15 | 2.424(4) |
|     | N2  | 2.6055(30) |    | N7  | 2.522(3) |
|     | C3  | 2.755(3)   |    | N4  | 2.627(3) |
| N2  | C6  | 1.279(3)   |    | C18 | 2.763(3) |
|     | N3  | 1.385(3)   | N6 | N7  | 1.362(3) |
|     | C9  | 2.299(3)   |    | C20 | 1.385(3) |
|     | C5  | 2.305(3)   |    | C21 | 1.474(3) |
|     | C8  | 2.493(3)   |    | N5  | 2.302(1) |
| N2  | N4  | 2.508(3)   |    | C22 | 2.355(2) |
|     | C7  | 2.516(3)   |    | C19 | 2.461(3) |
|     | N1  | 2.605(3)   | N7 | C22 | 1.274(3) |
| N3  | N2  | 1.385(3)   |    | N6  | 1.362(3) |
|     | C9  | 1.392(3)   |    | C20 | 2.297(3) |
|     | C8  | 1.472(3)   |    | C1  | 2.301(3) |
|     | N4  | 2.306(3)   |    | C21 | 2.508(3) |
|     | C6  | 2.358431   |    | C23 | 2.513(3) |
|     | C10 | 2.469(3)   |    | N5  | 2.522(3) |
| N4  | C9  | 1.312(3)   |    | N1  | 2.591(3) |

**Figure S3** [{NiL<sup>N5PhenMe</sup>}{Ni(CN)<sub>4</sub>}]0.5H<sub>2</sub>O, **2**: ORTEP view of the asymmetric unit (ellipsoids are drawn at 50 % probability level) and crystal packing.



## Selected bond distances (Å) and angles (°)

| Ni2 | N90  | 2.0387(64)  |
|-----|------|-------------|
|     | N1   | 2.0462(48)  |
|     | N9   | 2.0614(63)  |
|     | N2   | 2.0638(48)  |
|     | N8   | 2.0986(53)  |
|     | N50  | 2.1475(91)  |
|     | N80  | 2.1614(36)  |
|     | N110 | 2.1624(56)  |
|     | N5   | 2.1703(100) |

| Ni2                                | N11                     | 2.2621(        | 59)         |
|------------------------------------|-------------------------|----------------|-------------|
|                                    | N6                      | 2.3932(6       | 50)         |
|                                    | N60                     | 2.4846(        | 58)         |
| Ni2                                | Ni2 <sup>-0.5+x,</sup>  | 0.5-y, -0.5+z  | 8.2785(9)   |
|                                    | Ni2 <sup>0.5+x, 0</sup> | 0.5-у, 0.5+z   | 8.2785(9)   |
|                                    | Ni2 <sup>0.5+x, 0</sup> | 0.5-y, -0.5+z  | 10.0297(11) |
| N1-Ni2-N2, 177.7                   | <b>'</b> (2)            |                |             |
| Ni1-N1-Ni2, 166.                   | 1(2)                    |                |             |
| Ni1-N2 <sup>0.5+x,0.5-y,-0.5</sup> | +z-Ni2 <sup>0.5+;</sup> | x,0.5-y,-0.5+z | , 166.0(2)  |

**Figure S4** [{NiL<sup>N5PhenMe</sup>}{CrL<sup>N3O2Ph</sup>(CN)<sub>2</sub>}<sub>2</sub>].2H<sub>2</sub>O, **3**. (a) detail of the disordered L<sup>N5PhenMe</sup> ligand and best modeling, (b) ORTEP plots of asymmetric unit, (c) crystal packing.

(a)



Atoms C104, C106, and C107 (in red in the sketch) have occupancy of 1 while all the other positions have occupancy of 0.5. Symmetry code: ' = 1-x, 2-y, 1-z

(b)





Shortest intermolecular distances between metal enters:

Cr1-Cr1<sup>2-x,2-y,1-z</sup>, 8.284(1) Å; Cr1-Ni1<sup>1+x,y,z</sup>, 8.5635(7) Å

## Selected bond distances (Å) and angles (°)

| Ni1   | N1        | 2.0753(42)  | Cr1            | N3       | 2.3954(36) |
|-------|-----------|-------------|----------------|----------|------------|
|       | N8        | 2.1661(62)  |                | N4       | 2.1993(38) |
|       | N9        | 2.1194(114) |                | N7       | 2.2296(32) |
|       | N11       | 2.1673(86)  |                | 01       | 1.9430(31) |
|       | N12       | 2.1661(84)  |                | 02       | 1.962(3)   |
|       | N14       | 2.406(8)    |                | C1       | 2.0628(31) |
| Ni1-N | 1-C1, 165 | .50(38)     |                | C2       | 2.0827(42) |
|       |           |             | Cr1-N1-C1, 17  | 2.89(35) |            |
|       |           |             | Cr1-N2-C2, 17  | 5.24(41) |            |
|       |           |             | C1-Cr1-C2, 174 | 4.39(16) |            |

**Figure S5** Powder X-Ray patterns for  $[{NiL^{N3PhenMe}}{CrL^{N3O2Ph}(CN)_2}_2].2H_2O$ , **3** : (up) experimental diffractogram (blue line) obtained from the crystals batch and (down) calculated diffractogram (red line) deduced from the single crystal X-Ray diffraction.



**Figure S6** [{NiL<sup>N5PhenMe</sup>}{CrL<sup>N302Ph</sup>(CN)<sub>2</sub>}].dmf.ClO<sub>4</sub>, **4**: (**a**) ORTEP plot of asymmetric unit (ellipsoids are drawn at the 30% probability level), (**b**) Crystal packing, (**c**) inter-chain arrangement and relative organization of the Ni moieties, the colored surfaces materialize the plane crossing the atoms N8, N11 and N12 of the [NiL<sup>N5PhenMe</sup>] moieties.





S10

## Selected bond distances (Å) and angles (°)

| Ni1                   | N1  | 2.0639(29) | Cr1 N3                | 2.3900(33) |
|-----------------------|-----|------------|-----------------------|------------|
|                       | N2  | 2.0704(29) | N4                    | 2.2313(29) |
|                       | N8  | 2.1365(32) | N7                    | 2.2077(32) |
|                       | N9  | 2.5553(34) | 01                    | 1.9524(28) |
|                       | N11 | 2.2053(33) | 02                    | 1.9594(24) |
|                       | N12 | 2.0094(27) | C1                    | 2.0554(30) |
|                       | N14 | 2.1054(34) | C2                    | 2.0641(31) |
| N1-Ni1-N2, 170.16(11) |     | ).16(11)   | Cr1-N1-C1, 172.31(27) |            |
| Ni1-N1-C1, 170.71(26) |     | 0.71(26)   | Cr1-N2-C2, 171.65(27) |            |
| Ni1-N2-C2, 167.47(27) |     | .47(27)    | C1-Cr1-C2, 163.86(12) |            |
|                       |     |            |                       |            |

**Figure S7** Powder X-Ray patterns for  $[{NiL^{N5PhenMe}}{CrL^{N3O2Ph}(CN)_2}].dmf.ClO_4, 4 : (up) experimental diffractogram (blue line) obtained from the crystals batch and (down) calculated diffractogram (red line) deduced from the single crystal X-Ray diffraction.$ 



**Figure S8** Magnetic behavior for  $[NiL^{NSPhenMe}(H_2O)_2] \cdot 2BF_4$ , **1**. Experimental (O) and calculated (–) temperature dependence of  $\chi_M T$ , and isothermal magnetizations.

Best fit<sup>4</sup> parameters:  $D = -10.95 \pm 0.04$  cm<sup>-1</sup>,  $E = 1.515 \pm 0.008$  cm<sup>-1</sup>, g = 2.11.



<sup>&</sup>lt;sup>4</sup> Performed with PHI: N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes, *J. Comput. Chem.*, 2013, **34**, 1164-1175.

**Figure S9** Additional magnetic data for [{NiL<sup>N5PhenMe</sup>}{CrL<sup>N3O2Ph</sup>(CN)<sub>2</sub>}].dmf.ClO<sub>4</sub>, **4**.

1. Temperature dependence of the molar magnetic susceptibility ( $\chi_M$ ) with  $H_{dc}$  = 1 kOe (red) and  $H_{dc}$  = 50 Oe (blue).



2. Temperature dependence of  $\chi_{M}$  and  $\chi_{M}$  for AC frequencies between 1 and 1500 Hz with  $H_{ac}$  = 3 Oe.



#### 3. Cole-Cole plots and best-fit parameters



| Т (К) | χ <sub>T</sub> | χs    | α     |
|-------|----------------|-------|-------|
| 2.2   | 14.607         | 0.343 | 0.161 |
| 2.3   | 12.494         | 0.341 | 0.137 |
| 2.4   | 12.990         | 0.334 | 0.136 |
| 2.5   | 13.174         | 0.317 | 0.147 |
| 2.6   | 14.391         | 0.280 | 0.167 |
| 2.7   | 14.920         | 0.206 | 0.192 |
| 2.8   | 15.291         | 0.089 | 0.215 |
| 2.9   | 15.033         | 0.081 | 0.191 |
| 3.0   | 14.985         | 0.019 | 0.183 |
| 3.1   | 14.670         | 0.010 | 0.164 |
| 3.2   | 14.333         | 0.048 | 0.145 |
| 3.3   | 14.264         | 0.058 | 0.136 |
| 3.4   | 14.621         | 0.017 | 0.147 |
| 3.5   | 14.892         | 0.114 | 0.153 |
| 3.6   | 15.044         | 0.570 | 0.151 |
| 3.7   | 15 .410        | 0.031 | 0.197 |
| 3.8   | 15.434         | 1.248 | 0.195 |
| 3.9   | 15.313         | 2.935 | 0.172 |
| 4.0   | 15.189         | 5.099 | 0.139 |
| 4.1   | 15.07          | 6.661 | 0.119 |
| 4.2   | 14.92          | 6.873 | 0.126 |