## Supplementary information

## Two isomeric In(III)-MOFs: Unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water

Wen-Bin Zhong, Ru-Xia Li, Jie Lv, Tao He, Ming-Ming Xu, Bin Wang, Lin-Hua Xie\* and Jian-Rong Li\*

Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China.



Fig. S1. TGA curves of BUT-172 (a) and BUT-173 (b).



Fig. S2. FT-IR spectra of BUT-172 and BUT-173.



**Fig. S3** An ORTEP view of the asymmetric units of **BUT-172** (a) and **BUT-173** (b). Displacement ellipsoids are represented by 50% probability level.



Fig. S4 (a)The channels in BUT-173 viewing along the [101] direction, (b) the molecular structure of the  $H_3$ CTTA ligand.



**Fig. S5** PXRD patterns of **BUT-173** before and after stability tests, and PXRD patterns were not normalized to compare their crystallinities.



**Fig. S6.** Luminescent spectra of H<sub>3</sub>CTTA (solid, suspension in water), **BUT-172** and **BUT-173** (suspension in water)



**Fig. S7** (a) Effect on the emission spectra of **BUT-172** dispersed in water upon the incremental addition of 300  $\mu$ L (500  $\mu$ M) water solution of NOR, (b) Stern-Volmer plot of NOR.



**Fig. S8** (a) Effect on the emission spectra of **BUT-172** dispersed in water upon the incremental addition of 300  $\mu$ L (500  $\mu$ M) water solution of ENR, (b) Stern-Volmer plot of ENR.



**Fig. S9** (a) Effect on the emission spectra of **BUT-172** dispersed in water upon the incremental addition of 300  $\mu$ L (500  $\mu$ M) water solution of CIP, (b) Stern-Volmer plot of CIP.



**Fig. S10** Effect on the emission spectra of **BUT-172** dispersed in water upon the incremental addition of 300  $\mu$ L (500  $\mu$ M) water solution of (a) THI, (b) STR.



**Fig. S11** Effect on the emission spectra of **BUT-172** dispersed in water upon the incremental addition of 300  $\mu$ L (500  $\mu$ M) water solution of (a) ERY, (b) PCL.



**Fig. S12** Effect on the emission spectra of **BUT-172** dispersed in water upon the incremental addition of 300  $\mu$ L (500  $\mu$ M) water solution of (a) KAN, (b) APR.



**Fig. S13** The emission spectra of NOR, CIP, ENR (0.11mM) dissolved in water (excitation wavelength 280nm).



**Fig. S14** Fluorescence quenching efficiencies of **BUT-172** and **BUT-173** by the antibiotics at room temperature.



**Fig. S15** (a) The initial fluorescence intensities (blue bars) of the **BUT-172** suspensions and those after the addition of 300  $\mu$ L NOR (0.5 mM) aqueous solution (purple bars) in each regeneration test. (b) The quenching efficiencies of the **BUT-172** suspensions by the addition of 300  $\mu$ L NOR (0.5 mM) aqueous solution for each regeneration test.



Fig. S16 The PXRD patterns of BUT-172 before and after the fluorescence titration experiment.



**Fig. S17** HOMO and LUMO energies for selected antibiotics arranged in descending order of LUMO energies.



**Fig. S18** The change of the fluorescence of aqueous **BUT-172** suspensions upon the incremental addition of 300  $\mu$ L aqueous solution of (a) QUI, or (b) DOQ (500  $\mu$ M).



Fig. S19 The change of the fluorescence of an aqueous BUT-172 suspension upon the incremental addition of 300  $\mu$ L aqueous solution of OFX (500  $\mu$ M).



**Fig. S20** The change of the fluorescence of aqueous **BUT-172** suspensions upon the incremental addition of 300  $\mu$ L aqueous solution of (a) MDZ, (b) SMR, and (c) FZD (500  $\mu$ M).

| Analytes | HOMO (ev) | LUMO (ev) | Band Gap (ev) |
|----------|-----------|-----------|---------------|
| KAN      | -5.473    | 1.345     | 6.818         |
| APR      | -5.176    | 1.139     | 6.315         |
| ERY      | -5.472    | -0.636    | 4.836         |
| STR      | -5.854    | -1.325    | 4.529         |
| PCL      | -5.558    | -1.777    | 3.781         |
| ENR      | -6.264    | -1.837    | 4.427         |
| CIP      | -6.274    | -1.841    | 4.433         |
| NOR      | -6.450    | -2.020    | 4.430         |
| ТНІ      | -6.206    | -2.661    | 3.545         |

Table S1. HOMO and LUMO energies calculated for selected anlytes used at B3LYP/6-31G\*level.

|                                              | BUT-172                          | BUT-173                         |
|----------------------------------------------|----------------------------------|---------------------------------|
| Empirical formula                            | $C_{60}H_{45}In_{3}O_{15}$       | $C_{60}H_{45}In_{3}O_{15}$      |
| Formula weight                               | 1350.42                          | 1350.42                         |
| Measurement temperature                      | 293(2) K                         | 293(2) K                        |
| Crystal system                               | Orthorhombic                     | Monoclinic                      |
| Space group                                  | Pnma                             | <i>P</i> 2 <sub>1</sub> /n      |
| <i>a</i> (Å)                                 | 49.7021(5)                       | 18.9338(6)                      |
| <i>b</i> (Å)                                 | 7.26820(10)                      | 29.1926(9)                      |
| <i>c</i> (Å)                                 | 30.1678(4)                       | 20.8268(7)                      |
| α (°)                                        | 90                               | 90                              |
| β (°)                                        | 90                               | 113.720(4)                      |
| γ (°)                                        | 90                               | 90                              |
| Volume(ų)                                    | 10898.0(2)                       | 10539.1(7)                      |
| Z                                            | 4                                | 4                               |
| Calculated density(g cm <sup>-3</sup> )      | 0.823                            | 0.687                           |
| Absorption coefficient (mm <sup>-1</sup> )   | 5.321                            | 1.847                           |
| Independent reflections ( $l > 2\sigma(l)$ ) | 11102 [ <i>R</i> (int) = 0.0317] | 3860 [ <i>R</i> (int) = 0.2153] |
| F(000)                                       | 2688                             | 2688                            |
| Reflections collected                        | 34774                            | 64310                           |
| artheta range for data collection            | 3.847-70.496°                    | 3.365-26.372°                   |
| Data/restraints/parameters                   | 11102/0/412                      | 21510/0/706                     |
| Limiting indices                             | <i>–</i> 53 ≤ <i>h</i> ≤ 60      | <b>-</b> 23 ≤ <i>h</i> ≤ 18     |
| $-33 \le k \le 27$                           | $-7 \le k \le 8$                 | -34 ≤ <i>h</i> ≤ 36             |
| -33 ≤ 1 ≤ 33                                 | <b>−</b> 35 ≤ / ≤ 36             | -16 ≤ <i>h</i> ≤ 26             |
| Goodness-of-fit on F <sup>2</sup>            | 1.069                            | 1.034                           |
| $P = \mu P = b [l > 2\sigma(l)]$             | $R_1 = 0.0475, wR_2 =$           | $R_1 = 0.0491$ , $wR_2 =$       |
| $A_1^{-1}, WA_2^{-1} [I > 20(I)]$            | 0.1314                           | 0.0968                          |
| $B_{a}^{a}$ w $B_{a}^{b}$ (all data)         | $R_1 = 0.0613, wR_2 =$           | $R_1 = 0.0759, wR_2 =$          |
|                                              | 0.1416                           | 0.1080                          |
| Largest diff. peak and hole (e/ų)            | 0.988 and –1.070                 | 2.021 and -0.976                |

Table S2. Crystal data and structure refinement for **BUT-172** and **BUT-173**.

<sup>a</sup>  $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$ . <sup>b</sup>  $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$