## **Supporting Information**

## Luminescent Ir(III)–Ln(III) coordination polymers showing slow magnetization relaxation

Kun Fan,<sup>*a*</sup> Song-Song Bao,<sup>*a*</sup> Ran Huo,<sup>*a*</sup> Xin-Da Huang,<sup>*a*</sup> Yu-Jie Liu <sup>*a*</sup>, Zi-Wen Yu,<sup>*a*</sup> Mohamedally Kurmoo,<sup>*b*</sup> and Li-Min Zheng<sup>\**a*</sup>

[a] State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China

[b] Université de Strasbourg, Institut de Chimie, CNRS-UMR7177, 4 rue Blaise Pascal, Strasbourg Cedex 67070, France.

## **Table of Contents**

| Table S1. Selected bond lengths [Å] and angles [°] for Ir2Dy.                         | <b>S</b> 4 |
|---------------------------------------------------------------------------------------|------------|
| Table S2 Selected bond lengths [Å] and angles [°] for Ir2Er.                          | S5         |
| <b>Table S3</b> Hydrogen bonds in Ir2Er.                                              | <b>S</b> 6 |
| Table S4 Selected bond lengths [Å] and angles [°] for Ir2Yb.                          | <b>S</b> 7 |
| Table S5 Hydrogen bonds in Ir2Yb.                                                     | <b>S</b> 8 |
| Table S6 Selected bond lengths [Å] and angles [°] for Ir4Yb2.                         | <b>S</b> 9 |
| Table S7 Hydrogen bonds in Ir4Yb2.                                                    | S11        |
| Table S8. Cell parameters of Ir2Gd and Ir4Ln2.                                        | S12        |
| <b>Table S9.</b> The parameters obtained by Cole-Cole fitting for Ir2Dy under zero dc | S13        |
| field.                                                                                |            |
| <b>Table S10</b> The parameters obtained by Cole-Cole fitting for Ir2Dy under 2.0 kOe | S13        |
| dc field.                                                                             |            |
| Table S11 The parameters obtained by Cole-Cole fitting for Ir4Dy2 under zero          | S13        |
| dc field.                                                                             |            |
| <b>Table S12</b> The parameters obtained by Cole-Cole fitting for Ir4Dy2 under 2.0    | S14        |
| kOe dc field.                                                                         |            |
| <b>Table S13</b> The parameters obtained by Cole-Cole fitting for Ir2Er under 1.0 kOe | S15        |
| dc field.                                                                             |            |
|                                                                                       |            |

| Table S14 The parameters obtained by Cole-Cole fitting for Ir4Er2 under 1.5                                                | S15         |
|----------------------------------------------------------------------------------------------------------------------------|-------------|
| kOe dc field.                                                                                                              |             |
| Table S15 The parameters obtained by Cole-Cole fitting for Ir <sub>2</sub> Yb under 2.0                                    | S16         |
| kOe dc field.                                                                                                              |             |
| Table S16 The parameters obtained by Cole-Cole fitting for Ir4Yb2 under 1.5                                                | S16         |
| kOe dc field.                                                                                                              |             |
| Figure S1. FT-IR spectra of compounds Ir2Ln and the free ligand.                                                           | <b>S</b> 17 |
| Figure S2. FT-IR spectra of compounds Ir <sub>4</sub> Ln <sub>2</sub> and the free ligand.                                 | S17         |
| Figure S3. Molecular structure of Ir2Dy.                                                                                   | S18         |
| Figure S4. Molecular structure of Ir <sub>2</sub> Er.                                                                      | S19         |
| Figure S5. Simulated and experimental powder X-ray diffraction patterns of                                                 | S20         |
| compounds Ir <sub>2</sub> Ln.                                                                                              |             |
| Figure S6. Pawley fit of a powder sample of compound Ir <sub>2</sub> Gd.                                                   | S20         |
| Figure S7. Simulated and experimental powder X-ray diffraction patterns of                                                 | S21         |
| compounds Ir <sub>4</sub> Ln <sub>2</sub> .                                                                                |             |
| Figure S8. Pawley fit of a powder sample of compound Ir4Gd2.                                                               | S21         |
| Figure S9. Pawley fit of a powder sample of compound Ir4Dy2.                                                               | S22         |
| Figure S10. Pawley fit of a powder sample of compound Ir <sub>4</sub> Er <sub>2</sub> .                                    | S22         |
| <b>Figure S11.</b> The $\chi_M$ vs. <i>T</i> curves for <b>Ir<sub>2</sub>Gd</b> and <b>Ir<sub>4</sub>Gd</b> <sub>2</sub> . | S23         |
| Figure S12. The plot of magnetization $M$ vs. $H$ and $M$ vs. $H/T$ at depicted                                            | S24         |
| temperatures for Ir <sub>2</sub> Ln (Ln=Dy, Er, Yb).                                                                       |             |
| Figure S13. The plot of magnetization $M$ vs. $H$ and $M$ vs. $H/T$ at depicted                                            | S25         |
| temperatures for $Ir_4Ln_2$ (Ln = Dy, Er, Yb).                                                                             |             |
| <b>Figure S14.</b> The in-phase $(\chi')$ ac susceptibilities and Cole-Cole plot of Ir <sub>2</sub> Dy                     | S26         |
| under zero dc field.                                                                                                       |             |
| <b>Figure S15.</b> In-phase $(\chi')$ and out-of-phase $(\chi'')$ ac susceptibilities of Ir <sub>2</sub> Dy                | S26         |
| collected at 1.8 K under dc fields ranging from 0 to 3.0 kOe.                                                              |             |
| Figure S16. The ac susceptibilities for Ir <sub>2</sub> Dy under 2.0 kOe dc field.                                         | S27         |
| <b>Figure S17.</b> The in-phase ( $\chi'$ ) ac susceptibilities and Cole-Cole plot of Ir <sub>4</sub> Dy <sub>2</sub>      | S27         |
| under zero dc field.                                                                                                       |             |
| <b>Figure S18.</b> In-phase $(\chi')$ and out-of-phase $(\chi'')$ ac susceptibilities of Ir <sub>4</sub> Dy <sub>2</sub>   | S28         |
| collected at 1.8 K under dc fields ranging from 0 to 3.0 kOe.                                                              |             |
| Figure S19. The ac susceptibility of Ir <sub>4</sub> Dy <sub>2</sub> under a 2.0 kOe dc field.                             | S28         |
| <b>Figure S20.</b> In-phase $(\chi')$ and out-of-phase $(\chi'')$ ac susceptibilities of Ir <sub>2</sub> Er                | S29         |
| collected at 1.8 K under dc field ranging from 0 to 3.0 kOe.                                                               |             |
| Figure S21. The ac susceptibilities of Ir <sub>2</sub> Er under a 1.0 kOe dc field at different                            | S29         |
| temperatures: (a) frequency dependence of in-phase ( $\chi'$ ) and (b) out-of-phase                                        |             |
| $(\chi'')$ , (c) Cole-Cole plot and (d) plots of $\ln(\tau)$ <i>vs.</i> 1/T.                                               |             |

| <b>Figure S22.</b> In-phase $(\chi')$ and out-of-phase $(\chi'')$ ac susceptibilities of Ir <sub>4</sub> Er <sub>2</sub>            | <b>S</b> 30 |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------|
| collected at 1.8 K under dc field ranging from 0 to 3.0 kOe.                                                                        |             |
| Figure S23. The ac susceptibilities of Ir <sub>4</sub> Er <sub>2</sub> under a 1.5 kOe dc field at different                        | S30         |
| temperatures: (a) frequency dependence of in-phase ( $\chi'$ ) and (b) out-of-phase                                                 |             |
| $(\chi'')$ , (c) Cole-Cole plot and (d) plots of $\ln(\tau)$ vs. 1/T.                                                               |             |
| Figure S24. In-phase $(\chi')$ and out-of-phase ac susceptibility $(\chi'')$ of Ir <sub>2</sub> Yb                                  | S31         |
| collected at 1.8 K under dc fields ranging from 0 to 3.0 kOe.                                                                       |             |
| <b>Figure S25.</b> The in-phase $(\chi')$ ac susceptibilities of <b>Ir<sub>2</sub>Yb</b> under a 1.0 kOe dc                         | <b>S</b> 31 |
| field at different temperatures.                                                                                                    |             |
| Figure S26. In-phase $(\chi')$ and out-of-phase $(\chi'')$ ac susceptibilities of $Ir_4Yb_2$                                        | <b>S</b> 31 |
| collected at 1.8 K under dc field ranging from 0 to 3.0 kOe.                                                                        |             |
| <b>Figure S27.</b> The in-phase ( $\chi'$ ) ac susceptibilities of <b>Ir</b> <sub>4</sub> <b>Yb</b> <sub>2</sub> under a 1.5 kOe dc | S32         |
| field at different temperatures.                                                                                                    |             |
| Figure S28. The absorption spectra of Ir(ppy) <sub>2</sub> (Hdcbpy) and of compounds                                                | <b>S</b> 32 |
| $Ir_2Ln$ and $Ir_4Ln_2$ (Ln = Gd, Dy, Er, Yb) in the solid-state.                                                                   |             |
| Figure S29. The luminescence decay for compounds Ir(ppy) <sub>2</sub> (Hdcbpy), Ir <sub>2</sub> Ln                                  | <b>S</b> 33 |
| and Ir4Ln <sub>2</sub> .                                                                                                            |             |
| Figure S30. Luminescent decay profiles monitored at 975 nm for Ir <sub>2</sub> Yb and                                               | S34         |
| Ir <sub>4</sub> Yb <sub>2</sub> in the solid state at room temperature.                                                             |             |
| Figure S31. Luminescent decay profiles monitored at 1538 nm for Ir2Er and                                                           | S35         |
| Ir <sub>4</sub> Er <sub>2</sub> in the solid state at room temperature.                                                             |             |
| Figure S32. TGA curve of Ir <sub>2</sub> Ln and Ir(ppy) <sub>2</sub> (Hdcbpy).                                                      | <b>S</b> 36 |
| Figure S33. TGA curve of Ir <sub>4</sub> Ln <sub>2</sub> and Ir(ppy) <sub>2</sub> (Hdcbpy).                                         | <b>S</b> 36 |
|                                                                                                                                     |             |

|                 | 0 0       |                 |           |
|-----------------|-----------|-----------------|-----------|
| Ir1 - N1        | 2.137(17) | Ir1 - N2        | 2.157(18) |
| Ir1 - N3        | 2.02(2)   | Ir1 - N4        | 2.04(2)   |
| Ir1 - C13       | 1.998(19) | Ir1 - C24       | 2.02(2)   |
| Ir2 - N5        | 2.134(16) | Ir2 - N6        | 2.106(16) |
| Ir2 - N7        | 2.037(19) | Ir2 - N8        | 2.044(18) |
| Ir2 - C47       | 1.97(2)   | Ir2 - C58       | 2.07(2)   |
| Dy1 - O1        | 2.270(16) | Dy1 - O1W       | 2.332(19) |
| Dy1 - O2W       | 2.384(17) | Dy1 - O3W       | 2.375(17) |
| Dy1 - O4W       | 2.50(2)   | Dy1 - O5        | 2.359(18) |
| Dy1 - O5W       | 2.48(3)   | Dy1 -O3A        | 2.376(16) |
|                 |           |                 |           |
| N1 - Ir1 - N2   | 76.4(7)   | N1 - Ir1 - N3   | 90.2(7)   |
| N1 - Ir1 - N4   | 95.1(8)   | N1 - Ir1 - C13  | 96.5(8)   |
| N1 - Ir1 - C24  | 174.2(9)  | N2 - Ir1 - N3   | 98.1(7)   |
| N2 - Ir1 - N4   | 85.4(9)   | N2 - Ir1 - C13  | 172.7(8)  |
| N2 - Ir1 - C24  | 99.6(9)   | N3 - Ir1 - N4   | 174.3(9)  |
| N3 - Ir1 - C13  | 79.9(8)   | N3 - Ir1 - C24  | 94.6(9)   |
| N4 - Ir1 - C13  | 97.2(10)  | N4 - Ir1 - C24  | 80.3(10)  |
| C13 - Ir1 - C24 | 87.6(10)  | N5 - Ir2 - N6   | 76.3(6)   |
| N5 - Ir2 - N7   | 87.4(7)   | N5 - Ir2 - N8   | 96.8(7)   |
| N5 - Ir2 - C47  | 97.5(8)   | N5 - Ir2 - C58  | 176.4(8)  |
| N6 - Ir2 - N7   | 97.1(7)   | N6 - Ir2 - N8   | 88.5(6)   |
| N6 - Ir2 - C47  | 172.9(8)  | N6 - Ir2 - C58  | 100.8(8)  |
| N7 - Ir2 - N8   | 173.7(7)  | N7 - Ir2 - C47  | 78.9(8)   |
| N7 - Ir2 - C58  | 95.1(8)   | N8 - Ir2 - C47  | 95.8(8)   |
| N8 - Ir2 - C58  | 80.9(8)   | C47 - Ir2 - C58 | 85.5(9)   |
| O1 - Dy1 - O1W  | 92.8(6)   | O1 - Dy1 - O2W  | 151.1(6)  |
| O1 - Dy1 - O3W  | 88.8(7)   | O1 - Dy1 - O4W  | 140.1(7)  |
| O1 - Dy1 - O5   | 85.9(6)   | O1 - Dy1 - O5W  | 73.2(6)   |
| O1 - Dy1 - O3A  | 79.1(6)   | O1W - Dy1 - O2W | 89.2(6)   |
| O1W - Dy1 - O3W | 142.3(8)  | O1W - Dy1 - O4W | 78.0(7)   |
| O1W - Dy1 - O5  | 147.1(7)  | O1W - Dy1 - O5W | 72.8(7)   |
| O1W - Dy1 - O3A | 73.9(6)   | O2W - Dy1 - O3W | 106.9(7)  |
| O2W - Dy1 - O4W | 68.4(7)   | O2W - Dy1 - O5  | 77.1(6)   |
| O2W - Dy1 - O5W | 134.4(6)  | O2W - Dy1- O3A  | 73.8(6)   |
| O3W - Dy1 - O4W | 76.8(7)   | O3W - Dy1 - O5  | 70.6(8)   |
| O3W - Dy1 - O5W | 71.7(8)   | O3A - Dy1 - O3W | 142.9(7)  |
| O4W - Dy1 -O5   | 122.2(7)  | O5 - Dy1 - O5W  | 136.9(7)  |
| O3A - Dy1 - O4W | 132.6(7)  | O3A - Dy1 - O5W | 134.9(7)  |
| O3A - Dy1 - O5  | 73.6(6)   | O4W - Dy1 -O5W  | 67.0(7)   |

 Table S1 Selected bond lengths [Å] and angles [°] for Ir2Dy.

Symmetry transformations used to generate equivalent atoms: A: -1+x, y, z.

| Ir1 - N1         | 2.126(11) | Ir1 - N2         | 2.159(12) |
|------------------|-----------|------------------|-----------|
| Ir1 - N3         | 2.015(11) | Ir1 - N4         | 2.012(14) |
| Ir1 - C13        | 2.008(14) | Ir1 - C24        | 1.983(17) |
| Ir2 - N5         | 2.163(11) | Ir2 - N6         | 2.149(12) |
| Ir2 - N7         | 2.031(11) | Ir2 - N8         | 2.044(11) |
| Ir2 - C47        | 2.000(15) | Ir2 - C58        | 2.033(14) |
| Er1 - O1         | 2.227(11) | Er1 - O1W        | 2.315(13) |
| Er1 - O2W        | 2.28(2)   | Er1 - O3W        | 2.321(11) |
| Er1 - O4W        | 2.31(2)   | Er1 - O5         | 2.263(12) |
| Er1 - O4W'       | 2.47(3)   | Er1 -O3A         | 2.318(11) |
|                  |           |                  |           |
| N1 - Ir1 - N2    | 76.1(5)   | N1 - Ir1 - N3    | 90.0(4)   |
| N1 - Ir1 - N4    | 96.2(5)   | N1 - Ir1 - C13   | 95.5(5)   |
| N1 - Ir1 - C24   | 173.4(6)  | N2 - Ir1 - N3    | 98.7(5)   |
| N2 - Ir1 - N4    | 86.5(5)   | N2 - Ir1 - C13   | 171.5(5)  |
| N2 - Ir1 - C24   | 98.6(6)   | N3 - Ir1 - N4    | 172.7(5)  |
| N3 - Ir1 - C13   | 79.9(5)   | N3 - Ir1 - C24   | 94.8(6)   |
| N4 - Ir1 - C13   | 95.6(6)   | N4 - Ir1 - C24   | 79.3(7)   |
| C13 - Ir1 - C24  | 89.8(6)   | N5 - Ir2 - N6    | 74.9(4)   |
| N5 - Ir2 - N7    | 88.2(4)   | N5 - Ir2 - N8    | 95.9(4)   |
| N5 - Ir2 - C47   | 99.5(5)   | N5 - Ir2 - C58   | 174.9(5)  |
| N6 - Ir2 - N7    | 95.9(5)   | N6 - Ir2 - N8    | 90.2(5)   |
| N6 - Ir2 - C47   | 173.4(5)  | N6 - Ir2 - C58   | 102.4(5)  |
| N7 - Ir2 - N8    | 173.3(5)  | N7 - Ir2 - C47   | 80.3(6)   |
| N7 - Ir2 - C58   | 96.4(6)   | N8 - Ir2 - C47   | 93.9(6)   |
| N8 - Ir2 - C58   | 79.7(6)   | C47 - Ir2 - C58  | 83.5(6)   |
| O1 - Er1 - O1W   | 90.4(5)   | O1 - Er1 - O2W   | 166.7(6)  |
| O1 - Er1 - O3W   | 82.7(4)   | O1 - Er1 - O4W   | 116.1(7)  |
| O1 - Er1 - O5    | 94.0(4)   | O1 - Er1 - O4W'  | 78.6(6)   |
| O1 - Er1 - O3A   | 84.5(4)   | O1W - Er1 - O2W  | 84.4(7)   |
| O1W - Er1 - O3W  | 136.6(5)  | O1W - Er1 - O4W  | 74.0(8)   |
| O1W - Er1 - O5   | 148.6(5)  | O1W - Er1 - O4W' | 67.0(7)   |
| O1W - Er1 - O3A  | 74.6(4)   | O2W - Er1 - O3W  | 109.4(6)  |
| O2W - Er1 - O4W  | 74.1(9)   | O2W - Er1 - O5   | 84.4(7)   |
| O2W - Er1 - O4W' | 110.2(8)  | O2W - Er1- O3A   | 82.4(6)   |
| O3W - Er1 - O4W  | 71.0(7)   | O3W - Er1 - O5   | 74.8(5)   |
| O3W - Er1 - O4W' | 69.6(7)   | O3A - Er1 - O3W  | 146.1(4)  |
| O4W - Er1 -O5    | 130.0(8)  | O5 - Er1 - O4W'  | 144.2(7)  |
| O3A - Er1 - O4W  | 142.2(7)  | O3A - Er1 - O4W' | 137.6(7)  |
| O3A - Er1 - O5   | 75.0(4)   |                  |           |
|                  |           |                  |           |

**Table S2** Selected bond lengths [Å] and angles [°] for Ir2Er.

Symmetry transformations used to generate equivalent atoms: A: -1+x, y, z.

| D-H···A                        | <i>d</i> (D-H) (Å) | $d(\mathrm{H}\cdots\mathrm{A})(\mathrm{\AA})$ | $d(\mathbf{D}\cdots\mathbf{A})(\mathbf{\mathring{A}})$ | $\angle$ DHA (°) |
|--------------------------------|--------------------|-----------------------------------------------|--------------------------------------------------------|------------------|
| $O1W\text{-}H1WA\cdots O4^i$   | 0.8500             | 1.8000                                        | 2.578(18)                                              | 152.00           |
| O1W-H1WB…O14 <sup>ii</sup>     | 0.8600             | 2.3600                                        | 2.95(4)                                                | 126.00           |
| O2W-H2WA…O16                   | 0.8500             | 2.5100                                        | 3.16(4)                                                | 133.00           |
| O2W-H2WB····O10 <sup>iii</sup> | 0.8500             | 2.5100                                        | 3.16(5)                                                | 134.00           |
| O3W-H3WA····O8 <sup>ii</sup>   | 0.8500             | 2.1100                                        | 2.801(7)                                               | 136.00           |
| O3W-H3WB····O6 <sup>iv</sup>   | 0.8500             | 1.8300                                        | 2.666(17)                                              | 166.00           |
| O4W'-H5WA…O14 <sup>ii</sup>    | 0.8500             | 2.4500                                        | 3.00(5)                                                | 124.00           |
| O4W'-H5WB…O3W                  | 0.8500             | 2.4300                                        | 2.74(3)                                                | 102.00           |
| O6W-H6WB…O16                   | 0.8500             | 2.4900                                        | 3.33(10)                                               | 173.00           |
| O9-H9A…O11                     | 0.8400             | 1.9500                                        | 2.68(4)                                                | 145.00           |
| O10-H10C····O7 <sup>v</sup>    | 0.8600             | 1.9900                                        | 2.69(3)                                                | 138.00           |

Table S3 Hydrogen bonds in Ir2Er

Symmetry transformations used to generate equivalent atoms: i: -1+x, y, z; ii: 1+x, y, z; iii: 2-x, 1-y, 1-z; iv: 1-x, 2-y, 1-z; v: 2+x, -1+y, z.

| Ir1 - N1         | 2.121(7)  | Ir1 - N2         | 2.151(7) |
|------------------|-----------|------------------|----------|
| Ir1 - N3         | 2.032(7)  | Ir1 - N4         | 2.034(7) |
| Ir1 - C13        | 2.001(9)  | Ir1 - C24        | 2.010(9) |
| Ir2 - N5         | 2.132(7)  | Ir2 - N6         | 2.119(7) |
| Ir2 - N7         | 2.042(7)  | Ir2 - N8         | 2.045(7) |
| Ir2 - C47        | 1.996(8)  | Ir2 - C58        | 2.003(7) |
| Yb1 - O1         | 2.191(7)  | Yb1 - O1W        | 2.286(7) |
| Yb1 - O2W        | 2.253(11) | Yb1 - O3W        | 2.291(6) |
| Yb1 - O4W        | 2.321(10) | Yb1 - O5         | 2.230(7) |
| Yb1 - O4W'       | 2.452(18) | Yb1 -O3A         | 2.298(6) |
|                  |           |                  |          |
| N1 - Ir1 - N2    | 75.3(3)   | N1 - Ir1 - N3    | 89.9(3)  |
| N1 - Ir1 - N4    | 95.8(3)   | N1 - Ir1 - C13   | 96.6(3)  |
| N1 - Ir1 - C24   | 174.4(3)  | N2 - Ir1 - N3    | 98.6(3)  |
| N2 - Ir1 - N4    | 86.4(3)   | N2 - Ir1 - C13   | 171.8(3) |
| N2 - Ir1 - C24   | 100.1(3)  | N3 - Ir1 - N4    | 173.2(3) |
| N3 - Ir1 - C13   | 80.0(3)   | N3 - Ir1 - C24   | 94.1(3)  |
| N4 - Ir1 - C13   | 95.7(4)   | N4 - Ir1 - C24   | 80.5(4)  |
| C13 - Ir1 - C24  | 88.1(4)   | N5 - Ir2 - N6    | 76.3(3)  |
| N5 - Ir2 - N7    | 88.7(3)   | N5 - Ir2 - N8    | 96.2(3)  |
| N5 - Ir2 - C47   | 97.4(3)   | N5 - Ir2 - C58   | 174.9(3) |
| N6 - Ir2 - N7    | 96.0(3)   | N6 - Ir2 - N8    | 89.5(3)  |
| N6 - Ir2 - C47   | 172.8(3)  | N6 - Ir2 - C58   | 100.4(3) |
| N7 - Ir2 - N8    | 173.4(3)  | N7 - Ir2 - C47   | 80.5(3)  |
| N7 - Ir2 - C58   | 95.5(3)   | N8 - Ir2 - C47   | 94.4(3)  |
| N8 - Ir2 - C58   | 79.9(3)   | C47 - Ir2 - C58  | 86.2(3)  |
| O1 - Yb1 - O1W   | 89.6(2)   | O1 - Yb1 - O2W   | 169.7(3) |
| O1 - Yb1 - O3W   | 82.8(2)   | O1 - Yb1 - O4W   | 115.2(3) |
| O1 - Yb1 - O5    | 95.0(2)   | O1 - Yb1 - O4W'  | 79.6(5)  |
| O1 - Yb1 - O3A   | 85.8(2)   | O1W - Yb1 - O2W  | 84.3(4)  |
| O1W - Yb1 - O3W  | 135.1(3)  | O1W - Yb1 - O4W  | 73.3(3)  |
| O1W - Yb1 - O5   | 149.8(3)  | O1W - Yb1 - O4W' | 67.4(5)  |
| O1W - Yb1 - O3A  | 75.4(2)   | O2W - Yb1 - O3W  | 107.4(3) |
| O2W - Yb1 - O4W  | 70.9(4)   | O2W - Yb1 - O5   | 86.3(4)  |
| O2W - Yb1 - O4W' | 105.4(5)  | O2W - Yb1- O3A   | 84.7(3)  |
| O3W - Yb1 - O4W  | 70.4(3)   | O3W - Yb1 - O5   | 75.1(3)  |
| O3W - Yb1 - O4W' | 67.7(5)   | O3A - Yb1 - O3W  | 147.1(2) |
| O4W - Yb1 -O5    | 129.7(3)  | O5 - Yb1 - O4W'  | 142.7(5) |
| O3A - Yb1 - O4W  | 141.7(3)  | O3A - Yb1 - O4W' | 139.9(5) |
| O3A - Yb1 - O5   | 75.3(2)   |                  |          |
|                  |           |                  |          |

Table S4 Selected bond lengths [Å] and angles [°] for Ir<sub>2</sub>Yb.

Symmetry transformations used to generate equivalent atoms: A: -1+x, y, z.

| D-H···A                        | <i>d</i> (D-H) (Å)  | $d(\mathbf{H}\cdots\mathbf{A})(\mathbf{\mathring{A}})$ | $d(\mathbf{D}\cdots\mathbf{A})$ (Å) | $\angle$ DHA (°) |
|--------------------------------|---------------------|--------------------------------------------------------|-------------------------------------|------------------|
| O1W-H1WA…O4 <sup>i</sup>       | 0.8500              | 1.8100                                                 | 2.600(9)                            | 154.00           |
| O1W-H1WB…O14 <sup>ii</sup>     | 0.8600              | 2.2700                                                 | 2.857(17)                           | 126.00           |
| O2W-H2WA···O16                 | 0.8500              | 2.5000                                                 | 3.16(2)                             | 135.00           |
| O2W-H2WB····O10 <sup>iii</sup> | 0.8500              | 2.4100                                                 | 3.07(3)                             | 135.00           |
| O3W-H3WA····O8 <sup>ii</sup>   | 0.8500              | 1.9700                                                 | 2.649(9)                            | 136.00           |
| O3W-H3WB····O6 <sup>iv</sup>   | 0.8500              | 1.8300                                                 | 2.668(10)                           | 167.00           |
| O6W-H6WB····O16                | <mark>0.8500</mark> | 2.5800                                                 | 3.43(4)                             | 174.00           |
| O9-H9A…O11                     | 0.8400              | 1.9400                                                 | 2.70(2)                             | 151.00           |
| O10-H10C…O7 <sup>v</sup>       | 0.8600              | 1.9600                                                 | 2.660(14)                           | 138.00           |

Table S5 Hydrogen bonds in  $Ir_2Yb$ 

Symmetry transformations used to generate equivalent atoms: i: -1+x, y, z; ii: 1+x, y, z; iii: 1-x, 1-y, 1-z; iv: 1-x, 2-y, 1-z; v: 1+x, -1+y, z.

| Ir1 - N1        | 2.120(15) | Ir1 - N2        | 2.160(12) |
|-----------------|-----------|-----------------|-----------|
| Ir1 - N3        | 2.029(13) | Ir1 - N4        | 2.037(12) |
| Ir1 - C23       | 2.011(19) | Ir1 - C34       | 1.999(13) |
| Ir2 - N5        | 2.123(12) | Ir2 - N6        | 2.127(13) |
| Ir2 - N7        | 2.036(15) | Ir2 - N8        | 2.022(15) |
| Ir2 - C47       | 2.011(17) | Ir2 - C58       | 2.002(14) |
| Ir3 - N9        | 2.134(13) | Ir3 - N10       | 2.159(13) |
| Ir3 - N11       | 2.030(15) | Ir3 - N12       | 2.035(15) |
| Ir3 - C81       | 2.011(17) | Ir3 - C92       | 2.023(17) |
| Ir4 - N13       | 2.108(15) | Ir4 - N14       | 2.147(13) |
| Ir4 -N15        | 2.026(13) | Ir4 - N16       | 2.040(16) |
| Ir4 - C115      | 2.038(15) | Ir4 - C126      | 2.01(2)   |
| Yb1 - O1        | 2.215(9)  | Yb1 - O1W       | 2.367(11) |
| Yb1 - O2W       | 2.306(15) | Yb1 - O5        | 2.190(8)  |
| Yb1 - O9        | 2.272(11) | Yb1 - O3b       | 2.366(12) |
| Yb1 - O28c      | 2.262(12) | Yb2 - O3W       | 2.450(11) |
| Yb2 -O4W        | 2.329(12) | Yb2 - O11       | 2.245(12) |
| Yb2 -O13        | 2.221(12) | Yb2 - O28       | 2.205(12) |
| Yb2 - O7a       | 2.289(10) | Yb2 - O15b      | 2.335(12) |
|                 |           |                 |           |
| N1 - Ir1 - N2   | 76.1(5)   | N1 - Ir1 - N3   | 94.9(5)   |
| N1 - Ir1 - N4   | 89.2(5)   | N1 - Ir1 - C23  | 175.0(6)  |
| N1 - Ir1 - C34  | 95.2(5)   | N2 - Ir1 - N3   | 89.2(5)   |
| N2 - Ir1 - N4   | 96.9(5)   | N2 - Ir1 - C23  | 101.5(6)  |
| N2 - Ir1 - C34  | 170.7(5)  | N3 - Ir1 - N4   | 173.3(6)  |
| N3 - Ir1 - C23  | 80.6(6)   | N3 - Ir1 - C34  | 94.9(5)   |
| N4 - Ir1 - C23  | 95.4(6)   | N4 - Ir1 - C34  | 79.5(5)   |
| C23 - Ir1 - C34 | 87.4(6)   | N5 - Ir2 - N6   | 77.0(5)   |
| N5 - Ir2 - N7   | 89.4(5)   | N5 - Ir2 - N8   | 95.6(6)   |
| N5 - Ir2 - C47  | 99.5(6)   | N5 - Ir2 - C58  | 172.3(5)  |
| N6 - Ir2 - N7   | 98.1(5)   | N6 - Ir2 - N8   | 87.0(5)   |
| N6 - Ir2 - C47  | 175.9(6)  | N6 - Ir2 - C58  | 95.9(5)   |
| N7 - Ir2 - N8   | 173.5(5)  | N7 - Ir2 - C47  | 79.6(6)   |
| N7 - Ir2 - C58  | 94.3(6)   | N8 - Ir2 - C47  | 95.4(7)   |
| N8 - Ir2 - C58  | 81.3(6)   | C47 - Ir2 - C58 | 87.8(6)   |
| N9 - Ir3 - N10  | 76.8(5)   | N9 - Ir3 - N11  | 87.7(5)   |
| N9 - Ir3 - N12  | 96.4(5)   | N9 - Ir3 - C81  | 96.4(6)   |
| N9 - Ir3 - C92  | 175.1(6)  | N10 - Ir3 - N11 | 95.5(6)   |
| N10 - Ir3 - N12 | 90.7(6)   | N10 - Ir3 - C81 | 172.0(6)  |
| N10 - Ir3 - C92 | 99.8(6)   | N11 -Ir3 - N12  | 173.2(5)  |
| N11 -Ir3 - C81  | 80.0(7)   | N11 -Ir3 - C92  | 96.1(7)   |

 Table S6 Selected bond lengths [Å] and angles [°] for Ir4Yb2.

| N12 - Ir3 - C81  | 94.2(7)  | N12 - Ir3 - C92   | 80.1(6)  |
|------------------|----------|-------------------|----------|
| C81 - Ir3 - C92  | 87.3(7)  | N13 -Ir4 -N14     | 76.2(5)  |
| N13 - Ir4 - N15  | 89.7(5)  | N13 - Ir4 - N16   | 96.5(6)  |
| N13 - Ir4 - C115 | 96.3(6)  | N13 - Ir4 - C126  | 174.9(7) |
| N14 - Ir4 - N15  | 97.7(5)  | N14 - Ir4 - N16   | .9(6)    |
| N14 -Ir4 -C115   | 172.2(6) | N14 - Ir4 - C126  | 99.4(6)  |
| N15 - Ir4 - N16  | 173.0(6) | N15 - Ir4 - C115  | 79.8(6)  |
| N15 -Ir4 -C126   | 93.4(7)  | N16 - Ir4 - C115  | 96.3(6)  |
| N16 - Ir4 - C126 | 80.6(7)  | C115 - Ir4 - C126 | 88.2(7)  |
| O1 - Yb1 - O1W   | 81.4(4)  | O1 - Yb1 - O2W    | 91.4(4)  |
| O1 - Yb1 - O5    | 169.0(4) | O1 - Yb1 - O9     | 96.4(4)  |
| O1 -Yb1 - O3b    | 82.6(4)  | O1 - Yb1 - O28c   | 87.5(4)  |
| O1W - Yb1 - O2W  | 72.0(5)  | O1W - Yb1 - O5    | 87.7(4)  |
| O1W - Yb1 - O9   | 142.8(4) | O1W - Yb1 - O3b   | 144.1(4) |
| O1W - Yb1 - O28c | 71.5(4)  | O2W - Yb1 - O5    | 84.1(5)  |
| O2W - Yb1 - O9   | 145.1(5) | O2W - Yb1 - O3b   | 76.4(4)  |
| O2W - Yb1 - O28c | 143.2(4) | O5 - Yb1 - O9     | 93.0(4)  |
| O3b - Yb1 - O5   | 105.9(5) | O5 - Yb1 - O28c   | 90.2(5)  |
| O3b - Yb1 - O9   | 71.0(4)  | O9 - Yb1 - O28c   | 71.3(4)  |
| O3b - Yb1 - O28c | 139.5(4) | O3W - Yb2 - O4W   | 72.6(4)  |
| O3W - Yb2 - O11  | 95.4(4)  | O3W - Yb2 - O13   | 73.8(4)  |
| O3W - Yb2 - O28  | 74.6(4)  | O3W - Yb2 - O7a   | 144.0(4) |
| O3W - Yb2 - O15b | 138.5(4) | O4W - Yb2 - O11   | 80.0(5)  |
| O4W - Yb2 - O13  | 93.4(4)  | O4W - Yb2 - O28   | 139.2(4) |
| O4W -Yb2 - O7a   | 143.1(4) | O4W - Yb2 - O15b  | 74.3(4)  |
| O11 - Yb2 - O13  | 168.7(4) | O11 - Yb2 - O28   | 79.6(5)  |
| O7a -Yb2 - O11   | 96.3(4)  | O11 - Yb2 - O15b  | 102.8(5) |
| O13 - Yb2 - O28  | 100.2(4) | O7a - Yb2 - O13   | 94.5(4)  |
| O13 - Yb2 - O15b | 83.9(4)  | O7a - Yb2 - O28   | 74.2(4)  |
| O15b - Yb2 - O28 | 145.0(4) | O7a - Yb2 - O15b  | 70.8(4)  |

Symmetry transformations used to generate equivalent atoms: a: x,-2+y, z; b: x,-1+y, z; c x,1+y,z.

| D-H···A                      | <i>d</i> (D-H) (Å) | $d(\mathbf{H}\cdots\mathbf{A})(\mathbf{\mathring{A}})$ | $d(\mathbf{D}\cdots\mathbf{A})$ (Å) | $\angle$ DHA (°) |
|------------------------------|--------------------|--------------------------------------------------------|-------------------------------------|------------------|
| O1W-H1WA···O3W <sup>i</sup>  | 0.8500             | 2.0600                                                 | 2.897(17)                           | 171.00           |
| $O1W-H1WB\cdots O10^{i}$     | 0.8500             | 1.9100                                                 | 2.703(16)                           | 154.00           |
| O2W-H2WA…O4 <sup>ii</sup>    | 0.8500             | 1.8300                                                 | 2.628(19)                           | 157.00           |
| O2W-H2WB····O24              | 0.8500             | 1.9800                                                 | 2.69(2)                             | 140.00           |
| O3W-H3WB····O8 <sup>ii</sup> | 0.8500             | 1.8800                                                 | 2.679(16)                           | 157.00           |
| O3W-H3WC····O6W              | 0.8500             | 2.0000                                                 | 2.81(3)                             | 159.00           |
| O4W-H4WA…O16 <sup>™</sup>    | 0.8500             | 1.9000                                                 | 2.600(17)                           | 139.00           |
| O4W-H4WB····O25 <sup>™</sup> | 0.8500             | 2.0800                                                 | 2.68(3)                             | 128.00           |
| O5W-H5WB····O16 <sup>i</sup> | 0.8500             | 2.0300                                                 | 2.76(2)                             | 142.00           |
| $O5W-H5WC\cdots O25^{i}$     | 0.8500             | 2.0300                                                 | 2.87(2)                             | 169.00           |
| O24-H24A…O5W                 | 0.8400             | 1.9600                                                 | 2.69(2)                             | 144.00           |
| O25-H25B…O8W                 | 0.8500             | 1.8700                                                 | 2.57(5)                             | 138.00           |
| $O26-H26A\cdots O20^{i}$     | 0.8400             | 2.1100                                                 | 2.84(4)                             | 145.00           |
| O28-H28A…O11                 | 0.8500             | 2.3800                                                 | 2.848(19)                           | 115.00           |

 Table S7 Hydrogen bonds in Ir4Yb2

Symmetry transformations used to generate equivalent atoms: i: x, 1+y, z; ii: x, -1+y, z.

|                    | Ir <sub>2</sub> Gd <sup>a</sup> | Ir4Gd2 <sup>a</sup>        | Ir4Dy2 <sup>a</sup>        | Ir4Dy2 <sup>b</sup>        | Ir4Er2 <sup>a</sup>        | Ir4Er2 <sup>b</sup>        |
|--------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| crystal<br>system  | Triclinic                       | Monoclinic                 | Monoclinic                 | Monoclinic                 | Monoclinic                 | Monoclinic                 |
| space group        | $P \overline{1}$                | <i>P</i> 2 <sub>1</sub> /c |
| <i>a</i> [Å]       | 8.5118                          | 36.6123                    | 36.6427                    | 36.5349                    | 36.5234                    | 36.5048                    |
| <i>b</i> [Å]       | 18.4308                         | 8.7589                     | 8.6936                     | 8.6464                     | 8.6886                     | 8.6197                     |
| <i>c</i> [Å]       | 23.9822                         | 44.0515                    | 43.9847                    | 44.0538                    | 44.0465                    | 43.7404                    |
| α [°]              | 71.3693                         | 90                         | 90                         | 90                         | 90                         | 90                         |
| β [°]              | 80.5212                         | 112.3939                   | 112.371                    | 112.141                    | 112.5198                   | 112.256                    |
| γ [°]              | 77.9817                         | 90                         | 90                         | 90                         | 90                         | 90                         |
| V[Å <sup>3</sup> ] | 3467.4                          | 13061.37                   | 12957.23                   | 12890.18                   | 12911.90                   | 12738.01                   |
| Rwp %              | 7.32                            | 5.55                       | 9.55                       | /                          | 2.04                       | /                          |

**Table S8.** Cell parameters of **Ir<sub>2</sub>Gd** and **Ir<sub>4</sub>Ln<sub>2</sub>** (Ln = Gd, Dy, Er) were obtained by LeBail fitting the powder X-ray diffraction patterns (a) or single crystal X-ray diffraction analyses at 150 K (b).

| T / K            | <mark>χs∕ cm<sup>3</sup> K mol</mark> | $\chi_T/ \text{ cm}^3 \text{ K mol}$ | $\tau / s$                        | α                  |
|------------------|---------------------------------------|--------------------------------------|-----------------------------------|--------------------|
| <mark>1.8</mark> | <mark>1.494</mark>                    | <mark>5.329</mark>                   | <mark>3.39×10<sup>-5</sup></mark> | <mark>0.362</mark> |
| <mark>2</mark>   | <mark>1.349</mark>                    | <mark>4.854</mark>                   | <mark>3.20×10<sup>-5</sup></mark> | <mark>0.369</mark> |
| <mark>2.2</mark> | <mark>1.261</mark>                    | <mark>4.452</mark>                   | <mark>3.09×10<sup>-5</sup></mark> | <mark>0.369</mark> |
| <mark>2.4</mark> | <mark>1.199</mark>                    | <mark>4.109</mark>                   | <mark>2.99×10<sup>-5</sup></mark> | <mark>0.367</mark> |
| <mark>2.6</mark> | <mark>1.151</mark>                    | <mark>3.817</mark>                   | <mark>2.89×10<sup>-5</sup></mark> | <mark>0.365</mark> |
| <mark>2.8</mark> | <mark>1.107</mark>                    | <mark>3.565</mark>                   | <mark>2.78×10<sup>-5</sup></mark> | <mark>0.364</mark> |
| <mark>3</mark>   | <mark>1.071</mark>                    | <mark>3.345</mark>                   | <mark>2.68×10<sup>-5</sup></mark> | <mark>0.363</mark> |
| <mark>3.3</mark> | <mark>1.038</mark>                    | <mark>3.058</mark>                   | <mark>2.56×10<sup>-5</sup></mark> | <mark>0.356</mark> |
| <mark>3.6</mark> | <mark>1.010</mark>                    | <mark>2.819</mark>                   | <mark>2.44×10<sup>-5</sup></mark> | <mark>0.351</mark> |
| <mark>3.9</mark> | <mark>0.986</mark>                    | <mark>2.615</mark>                   | 2.34×10 <sup>-5</sup>             | <mark>0.346</mark> |

 Table S9
 The parameters obtained by Cole-Cole fitting for Ir2Dy under zero dc field.

|  | <b>Table S10</b> The parameters | s obtained by Co | le-Cole fitting for <b>I</b> | <b>r<sub>2</sub>Dv</b> under 2.0 kOe dc field. |
|--|---------------------------------|------------------|------------------------------|------------------------------------------------|
|--|---------------------------------|------------------|------------------------------|------------------------------------------------|

| <mark>T / K</mark> | Xs                 | $\Delta \chi_1$        | τ <sub>1</sub> /                  | <mark>α1</mark> | $\Delta \chi_2 /$      | <mark>7</mark> 2 /                | <mark>α2</mark>    |
|--------------------|--------------------|------------------------|-----------------------------------|-----------------|------------------------|-----------------------------------|--------------------|
|                    |                    | <mark>cm³∙mol⁻¹</mark> | <mark>s</mark>                    |                 | <mark>cm³∙mol⁻¹</mark> | <mark>s</mark>                    |                    |
| <mark>5.4</mark>   | <mark>0.523</mark> | <mark>0.091</mark>     | 1.78×10 <sup>-5</sup>             | <mark>0</mark>  | <mark>1.401</mark>     | <mark>0.00321</mark>              | <mark>0.602</mark> |
| <mark>6</mark>     | <mark>0.557</mark> | <mark>0.102</mark>     | <mark>1.86×10<sup>-5</sup></mark> | <mark>0</mark>  | <mark>1.098</mark>     | <mark>0.00158</mark>              | <mark>0.554</mark> |
| <mark>6.5</mark>   | <mark>0.507</mark> | <mark>0.069</mark>     | 1.41×10 <sup>-5</sup>             | <mark>0</mark>  | <mark>1.169</mark>     | <mark>0.00108</mark>              | <mark>0.620</mark> |
| <mark>7</mark>     | <mark>0.582</mark> | <mark>0.109</mark>     | 1.83×10 <sup>-5</sup>             | <mark>0</mark>  | <mark>0.822</mark>     | <mark>6.54×10<sup>-4</sup></mark> | <mark>0.533</mark> |
| <mark>7.5</mark>   | <mark>0.595</mark> | <mark>0.116</mark>     | 1.82×10 <sup>-5</sup>             | <mark>0</mark>  | <mark>0.722</mark>     | <mark>4.96×10<sup>-4</sup></mark> | <mark>0.533</mark> |

Table S11 The parameters obtained by Cole-Cole fitting for  $Ir_4Dy_2$  under zero dc field.

| T / K | $\chi_s/cm^3$ K mol | $\chi_T/\mathrm{cm}^3 \mathrm{K} \mathrm{mol}$ | $\tau$ / s            | α     |
|-------|---------------------|------------------------------------------------|-----------------------|-------|
| 1.8   | 6.36                | 14.28                                          | 7.34×10 <sup>-5</sup> | 0.446 |
| 2     | 5.89                | 12.86                                          | 7.30×10 <sup>-5</sup> | 0.449 |
| 2.2   | 5.48                | 11.71                                          | 7.23×10 <sup>-5</sup> | 0.454 |
| 2.4   | 5.18                | 10.73                                          | 7.22×10 <sup>-5</sup> | 0.453 |
| 2.6   | 4.94                | 9.90                                           | 7.22×10 <sup>-5</sup> | 0.451 |
| 2.8   | 4.70                | 9.21                                           | 7.17×10 <sup>-5</sup> | 0.450 |
| 3     | 4.53                | 8.58                                           | 7.13×10 <sup>-5</sup> | 0.449 |
| 3.3   | 4.28                | 7.80                                           | 6.95×10 <sup>-5</sup> | 0.445 |
| 3.6   | 4.09                | 7.14                                           | 6.80×10 <sup>-5</sup> | 0.435 |
| 4     | 3.86                | 6.42                                           | 6.47×10 <sup>-5</sup> | 0.421 |
| 4.5   | 3.50                | 5.74                                           | 5.42×10 <sup>-5</sup> | 0.433 |
| 5     | 3.36                | 5.14                                           | 5.06×10 <sup>-5</sup> | 0.379 |
| 5.5   | 3.08                | 4.69                                           | 3.92×10 <sup>-5</sup> | 0.391 |
| 6     | 2.89                | 4.31                                           | 3.23×10 <sup>-5</sup> | 0.383 |
| 7     | 2.48                | 3.72                                           | 1.85×10 <sup>-5</sup> | 0.406 |
| 8     | 2.44                | 3.21                                           | 1.91×10 <sup>-5</sup> | 0.255 |
| 9     | 2.21                | 2.88                                           | 1.33×10 <sup>-5</sup> | 0.266 |

| T / K | $\chi_s/cm^3$ K mol | $\chi_T/\mathrm{cm}^3 \mathrm{K} \mathrm{mol}$ | au / s                | α     |
|-------|---------------------|------------------------------------------------|-----------------------|-------|
| 1.8   | 0.935               | 9.510                                          | 6.18×10 <sup>-4</sup> | 0.522 |
| 2     | 1.046               | 9.200                                          | 6.12×10 <sup>-4</sup> | 0.528 |
| 2.2   | 1.164               | 8.853                                          | 5.96×10 <sup>-4</sup> | 0.529 |
| 2.4   | 1.260               | 8.495                                          | 5.71×10 <sup>-4</sup> | 0.532 |
| 2.6   | 1.367               | 8.106                                          | 5.36×10 <sup>-4</sup> | 0.529 |
| 2.8   | 1.414               | 7.796                                          | 5.06×10 <sup>-4</sup> | 0.535 |
| 3     | 1.499               | 7.448                                          | 4.71×10 <sup>-4</sup> | 0.531 |
| 3.3   | 1.586               | 6.942                                          | 4.07×10 <sup>-4</sup> | 0.525 |
| 3.6   | 1.647               | 6.480                                          | 3.44×10 <sup>-4</sup> | 0.517 |
| 4     | 1.688               | 6.057                                          | 2.87×10 <sup>-4</sup> | 0.507 |
| 4.2   | 1.672               | 5.753                                          | 2.45×10 <sup>-4</sup> | 0.509 |
| 4.5   | 1.720               | 5.356                                          | 1.98×10 <sup>-4</sup> | 0.486 |
| 5     | 1.711               | 4.872                                          | $1.44 \times 10^{-4}$ | 0.467 |
| 5.5   | 1.581               | 4.567                                          | 1.05×10 <sup>-4</sup> | 0.487 |
| 6     | 1.579               | 4.203                                          | 7.99×10 <sup>-5</sup> | 0.466 |
| 6.5   | 1.593               | 3.895                                          | 6.47×10 <sup>-5</sup> | 0.442 |
| 7     | 1.640               | 3.587                                          | 5.39×10 <sup>-5</sup> | 0.396 |
| 8     | 1.526               | 3.203                                          | 3.57×10 <sup>-5</sup> | 0.401 |
| 9     | 1.561               | 2.831                                          | 2.91×10 <sup>-5</sup> | 0.333 |
| 10    | 1.519               | 2.565                                          | 2.32×10 <sup>-5</sup> | 0.307 |
| 11    | 1.511               | 2.339                                          | 2.02×10 <sup>-5</sup> | 0.253 |
| 12    | 1.448               | 2.145                                          | 1.64×10 <sup>-5</sup> | 0.229 |
| 13    | 1.408               | 1.985                                          | 1.35×10 <sup>-5</sup> | 0.196 |

**Table S12** The parameters obtained by Cole-Cole fitting for **Ir4Dy**<sub>2</sub> under 2.0 kOe dc field.

| <mark>T / K</mark> | <mark>χs∕ cm<sup>3</sup> K mol</mark> | <mark>χ₁/ cm³ K mol</mark> | $\tau/s$                          | α                  |
|--------------------|---------------------------------------|----------------------------|-----------------------------------|--------------------|
| <mark>1.8</mark>   | <mark>1.139</mark>                    | <mark>3.211</mark>         | 5.25×10 <sup>-5</sup>             | <mark>0.095</mark> |
| <mark>2</mark>     | <mark>1.061</mark>                    | <mark>2.939</mark>         | <mark>2.42×10<sup>-5</sup></mark> | <mark>0.105</mark> |
| <mark>2.2</mark>   | <mark>1.034</mark>                    | <mark>2.718</mark>         | 1.19×10 <sup>-5</sup>             | <mark>0.122</mark> |
| <mark>2.4</mark>   | <mark>1.131</mark>                    | <mark>2.533</mark>         | <mark>7.03×10<sup>-5</sup></mark> | <mark>0.140</mark> |
| <mark>2.6</mark>   | <mark>1.356</mark>                    | <mark>2.369</mark>         | <mark>5.59×10<sup>-6</sup></mark> | <mark>0.135</mark> |

 Table S13 The parameters obtained by Cole-Cole fitting for Ir2Er under 1.0 kOe dc field.

Table S14 The parameters obtained by Cole-Cole fitting for  $Ir_4Er_2$  under 1.5 kOe dc field.

| T / K | $\chi_S/\mathrm{cm}^3 \mathrm{K} \mathrm{mol}$ | $\chi_T/\mathrm{cm}^3 \mathrm{K} \mathrm{mol}$ | au / s                | α     |
|-------|------------------------------------------------|------------------------------------------------|-----------------------|-------|
| 1.8   | 1.508                                          | 6.348                                          | 4.47×10 <sup>-5</sup> | 0.107 |
| 2     | 1.431                                          | 5.870                                          | 2.53×10 <sup>-5</sup> | 0.109 |
| 2.2   | 1.456                                          | 5.459                                          | 1.44×10 <sup>-5</sup> | 0.114 |
| 2.4   | 1.603                                          | 5.106                                          | 8.82×10 <sup>-6</sup> | 0.123 |
| 2.6   | 1.912                                          | 4.798                                          | 6.14×10 <sup>-6</sup> | 0.129 |

| T / K            | <mark>χs∕ cm<sup>3</sup> K mol</mark> | <mark>χ</mark> τ∕ cm <sup>3</sup> K mol | <mark>τ/s</mark>                  | α                                 |
|------------------|---------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|
| <mark>1.8</mark> | <mark>0.2105</mark>                   | <mark>0.703</mark>                      | <mark>9.29×10<sup>-4</sup></mark> | <mark>0.170</mark>                |
| <mark>2</mark>   | <mark>0.200</mark>                    | <mark>0.637</mark>                      | <mark>7.61×10<sup>-4</sup></mark> | <mark>0.146</mark>                |
| <mark>2.2</mark> | <mark>0.186</mark>                    | <mark>0.582</mark>                      | <mark>6.33×10<sup>-4</sup></mark> | <mark>0.142</mark>                |
| <mark>2.4</mark> | <mark>0.173</mark>                    | <mark>0.537</mark>                      | <mark>5.28×10<sup>-4</sup></mark> | <mark>0.142</mark>                |
| <mark>2.6</mark> | <mark>0.164</mark>                    | <mark>0.496</mark>                      | <mark>4.37×10<sup>-4</sup></mark> | <mark>0.125</mark>                |
| <mark>2.8</mark> | <mark>0.158</mark>                    | <mark>0.461</mark>                      | <mark>3.64×10<sup>-4</sup></mark> | <mark>0.104</mark>                |
| <mark>3</mark>   | <mark>0.150</mark>                    | <mark>0.436</mark>                      | <mark>3.08×10<sup>-4</sup></mark> | <mark>0.099</mark>                |
| <mark>3.3</mark> | <mark>0.131</mark>                    | <mark>0.409</mark>                      | <mark>2.32×10<sup>-4</sup></mark> | <mark>0.133</mark>                |
| <mark>3.6</mark> | <mark>0.118</mark>                    | <mark>0.374</mark>                      | <mark>1.63×10<sup>-4</sup></mark> | <mark>0.130</mark>                |
| <mark>4</mark>   | <mark>0.127</mark>                    | <mark>0.336</mark>                      | <mark>1.25×10<sup>-4</sup></mark> | <mark>0.038</mark>                |
| <mark>4.2</mark> | <mark>0.084</mark>                    | <mark>0.324</mark>                      | <mark>7.23×10<sup>-5</sup></mark> | <mark>0.167</mark>                |
| <mark>4.5</mark> | <mark>0.078</mark>                    | <mark>0.304</mark>                      | <mark>5.28×10<sup>-5</sup></mark> | <mark>0.163</mark>                |
| <mark>5</mark>   | <mark>0.074</mark>                    | <mark>0.276</mark>                      | <mark>3.27×10<sup>-5</sup></mark> | <mark>0.143</mark>                |
| <mark>5.5</mark> | <mark>0.085</mark>                    | <mark>0.242</mark>                      | <mark>2.26×10<sup>-5</sup></mark> | <mark>0.032</mark>                |
| <mark>6</mark>   | <mark>0.087</mark>                    | <mark>0.222</mark>                      | <mark>1.62×10<sup>-5</sup></mark> | <mark>8.50×10<sup>-8</sup></mark> |
| <mark>6.5</mark> | <mark>0.081</mark>                    | <mark>0.206</mark>                      | 1.11×10 <sup>-5</sup>             | <mark>7.88×10<sup>-8</sup></mark> |

 Table S15
 The parameters obtained by Cole-Cole fitting for Ir2Yb under 2.0 kOe dc field.

Table S16 The parameters obtained by Cole-Cole fitting for  $Ir_4Yb_2$  under 1.5 kOe dc field.

| Τ/  | Xs                    | $\Delta \chi_1$                    | $	au_1$ /             | $\alpha_1$             | $\Delta \chi_2$ /                  | $	au_2$ /             | $\alpha_2$            |
|-----|-----------------------|------------------------------------|-----------------------|------------------------|------------------------------------|-----------------------|-----------------------|
| Κ   |                       | cm <sup>3</sup> ·mol <sup>-1</sup> | S                     |                        | cm <sup>3</sup> ·mol <sup>-1</sup> | S                     |                       |
| 1.8 | 0.222                 | 0.721                              | 6.47×10 <sup>-5</sup> | 0.25                   | 0.327                              | 9.23×10 <sup>-4</sup> | 5.3×10 <sup>-6</sup>  |
| 2   | 0.205                 | 0.685                              | 5.80×10 <sup>-5</sup> | 0.25                   | 0.288                              | 7.96×10 <sup>-4</sup> | 8.3×10 <sup>-4</sup>  |
| 2.2 | 0.200                 | 0.628                              | 5.16×10 <sup>-5</sup> | 0.23                   | 0.269                              | 6.79×10 <sup>-4</sup> | $1.2 \times 10^{-5}$  |
| 2.4 | 0.194                 | 0.579                              | 4.62×10 <sup>-5</sup> | 0.21                   | 0.248                              | 5.78×10 <sup>-4</sup> | $2.4 \times 10^{-5}$  |
| 2.6 | 0.163                 | 0.606                              | 4.41×10 <sup>-5</sup> | 0.26                   | 0.196                              | 5.42×10 <sup>-4</sup> | 4.1×10 <sup>-5</sup>  |
| 2.8 | 0.171                 | 0.529                              | 3.82×10 <sup>-5</sup> | 0.21                   | 0.202                              | 4.46×10 <sup>-4</sup> | 6.3×10 <sup>-5</sup>  |
| 3   | 0.174                 | 0.475                              | 3.34×10 <sup>-5</sup> | 0.17                   | 0.202                              | 3.68×10 <sup>-4</sup> | 8.7×10 <sup>-5</sup>  |
| 3.3 | 0.145                 | 0.489                              | 2.92×10 <sup>-5</sup> | 0.22                   | 0.156                              | 3.09×10 <sup>-4</sup> | 2.6×10 <sup>-5</sup>  |
| 3.6 | 0.123                 | 0.490                              | $2.48 \times 10^{-5}$ | 0.25                   | 0.125                              | 2.47×10 <sup>-4</sup> | 4.0×10 <sup>-5</sup>  |
| 3.9 | 0.148                 | 0.387                              | $1.97 \times 10^{-5}$ | 0.15                   | 0.144                              | $1.76 \times 10^{-4}$ | 8.6×10 <sup>-5</sup>  |
| 4.2 | 0.141                 | 0.372                              | 1.65×10 <sup>-5</sup> | 0.16                   | 0.125                              | 1.39×10 <sup>-4</sup> | $1.2 \times 10^{-4}$  |
| 4.5 | 0.089                 | 0.454                              | 1.34×10 <sup>-5</sup> | 0.29                   | 0.068                              | 9.52×10 <sup>-5</sup> | 1.3×10 <sup>-11</sup> |
| 5   | 0.130                 | 0.318                              | 9.36×10 <sup>-6</sup> | 0.14                   | 0.096                              | 6.45×10 <sup>-5</sup> | $2.2 \times 10^{-11}$ |
| 5.5 | 0.056                 | 0.380                              | 4.86×10 <sup>-6</sup> | 0.25                   | 0.067                              | 3.83×10 <sup>-5</sup> | 2.6×10 <sup>-29</sup> |
| 6   | 6.28×10 <sup>-8</sup> | 0.385                              | 1.91×10 <sup>-6</sup> | 0.32                   | 0.081                              | 2.09×10 <sup>-5</sup> | $1.9 \times 10^{-29}$ |
| 6.5 | 5.76×10 <sup>-8</sup> | 0.327                              | 1.94×10 <sup>-6</sup> | 1.34×10 <sup>-14</sup> | 0.093                              | 1.79×10 <sup>-5</sup> | 2.7×10 <sup>-29</sup> |
| 7   | 7.64×10 <sup>-8</sup> | 0.321                              | 1.56×10 <sup>-6</sup> | $1.47 \times 10^{-14}$ | 0.073                              | 1.49×10 <sup>-5</sup> | 3.5×10 <sup>-29</sup> |



Figure S1. FT-IR spectra of compounds Ir<sub>2</sub>Ln and the free ligand.



Figure S2. FT-IR spectra of compounds Ir<sub>4</sub>Ln<sub>2</sub> and the free ligand.





Figure S3. (a) One dimensional chain structure in compound  $Ir_2Dy$ . (b) The supramolecular double-chain of  $Ir_2Dy$ . (c) The 3D packing supramolecular framework of  $Ir_2Dy$  along the *a*-axis.



**Figure S4.** (a) Molecular structure of **Ir<sub>2</sub>Er** and (b) Coordination environments of the Er(III) ions. (c) One dimensional chain structure in compound **Ir<sub>2</sub>Er**. (d) The supramolecular double-chain of **Ir<sub>2</sub>Er**. (e) The 3D packing supramolecular framework of **Ir<sub>2</sub>Er** along the *a*-axis.



Figure S5. Simulated and experimental powder X-ray diffraction patterns of compounds Ir<sub>2</sub>Ln.



**Figure S6.** Pawley fit of a powder sample of compound **Ir<sub>2</sub>Gd** performed using *Topas* 5.0 program. Green is the measured intensities, orange is the calculated intensities, and gray is the difference plot between the measured and calculated intensities (Rwp : 7.32%).



Figure S7. Simulated and experimental powder X-ray diffraction patterns of compounds Ir<sub>4</sub>Ln<sub>2</sub>.



**Figure S8.** Pawley fit of a powder sample of compound **Ir4Gd**<sub>2</sub> performed using *Topas* 5.0 program. Green is the measured intensities, orange is the calculated intensities, and gray is the difference plot between the measured and calculated intensities (Rwp: 5.55%).



**Figure S9.** Pawley fit of a powder sample of compound **Ir4Dy**<sub>2</sub> performed using *Topas* 5.0 program. Blue is the measured intensities, orange is the calculated intensities, and gray is the difference plot between the measured and calculated intensities (Rwp: 5.55%).



**Figure S10.** Pawley fit of a powder sample of compound **Ir4Er2** performed using *Topas* 5.0 program. Blue is the measured intensities, orange is the calculated intensities, and gray is the difference plot between the measured and calculated intensities (Rwp: 2.04%).



**Figure S11.** The  $\chi_M$  vs. *T* curves for **Ir<sub>2</sub>Gd** (top) and **Ir<sub>4</sub>Gd**<sub>2</sub> (bottom). The red solid lines represent the best fits of the data in the whole temperature range.



**Figure S12.** The plot of magnetization *M vs. H* and *M vs. H/T* at depicted temperatures for **Ir<sub>2</sub>Ln** (Ln=Dy, Er, Yb).



Figure S13. The plot of magnetization *M* vs. *H* and *M* vs. *H*/*T* at depicted temperatures for  $Ir_4Ln_2$  (Ln = Dy, Er, Yb).



**Figure S14.** (a) The in-phase ( $\chi$ ) ac susceptibilities and (b) Cole-Cole plot of **Ir<sub>2</sub>Dy** under zero dc field.



**Figure S15.** In-phase ( $\chi^{\gamma}$ ) and out-of-phase ( $\chi^{\gamma}$ ) ac susceptibilities of **Ir<sub>2</sub>Dy** collected at 1.8 K under dc fields ranging from 0 to 3.0 kOe.



**Figure S16.** The ac susceptibilities for **Ir<sub>2</sub>Dy** under 2.0 kOe dc field at different temperatures: (a) frequency dependence of in-phase ( $\chi$ ) and (b) out-of-phase ( $\chi$ ), (c) Cole-Cole plot and (d) plots of ln( $\tau$ ) *vs.* 1/T.



**Figure S17.** (a) The in-phase  $(\chi')$  ac susceptibilities and (b) Cole-Cole plot of **Ir**<sub>4</sub>**Dy**<sub>2</sub> under zero dc field.



**Figure S18.** In-phase  $(\chi')$  and out-of-phase  $(\chi'')$  ac susceptibilities of **Ir**<sub>4</sub>**Dy**<sub>2</sub> collected at 1.8 K under dc fields ranging from 0 to 3.0 kOe.



**Figure S19.** The ac susceptibility of **Ir**<sub>4</sub>**Dy**<sub>2</sub> under a 2.0 kOe dc field at different temperatures: (a) frequency dependence of in-phase ( $\chi'$ ) and (b) out-of-phase ( $\chi''$ ), (c) Cole-Cole plot and (d) plots of ln( $\tau$ ) *vs.* 1/T.



**Figure S20.** In-phase ( $\chi^{\gamma}$ ) and out-of-phase ( $\chi^{\gamma}$ ) ac susceptibilities of **Ir<sub>2</sub>Er** collected at 1.8 K under dc field ranging from 0 to 3.0 kOe.



**Figure S21.** The ac susceptibilities of **Ir<sub>2</sub>Er** under a 1.0 kOe dc field at different temperatures: (a) frequency dependence of in-phase ( $\chi'$ ) and (b) out-of-phase ( $\chi''$ ), (c) Cole-Cole plot and (d) plots of ln( $\tau$ ) *vs.* 1/T.



**Figure S22.** In-phase  $(\chi')$  and out-of-phase  $(\chi'')$  ac susceptibilities of **Ir**<sub>4</sub>**Er**<sub>2</sub> collected at 1.8 K under dc field ranging from 0 to 3.0 kOe.



**Figure S23.** The ac susceptibilities of **Ir**<sub>4</sub>**Er**<sub>2</sub> under a 1.5 kOe dc field at different temperatures: (a) frequency dependence of in-phase ( $\chi'$ ) and (b) out-of-phase ( $\chi''$ ), (c) Cole-Cole plot and (d) plots of ln( $\tau$ ) *vs.* 1/T.



**Figure S24.** In-phase ( $\chi'$ ) and out-of-phase ac susceptibility ( $\chi''$ ) of **Ir<sub>2</sub>Yb** collected at 1.8 K under dc fields ranging from 0 to 3.0 kOe.



**Figure S25.** The in-phase ( $\chi'$ ) ac susceptibilities of **Ir<sub>2</sub>Yb** under a 1.0 kOe dc field at different temperatures.



**Figure S26.** In-phase  $(\chi')$  and out-of-phase  $(\chi'')$  ac susceptibilities of **Ir**<sub>4</sub>**Yb**<sub>2</sub> collected at 1.8 K under dc field ranging from 0 to 3.0 kOe.



**Figure S27.** The in-phase  $(\chi')$  ac susceptibilities of  $Ir_4Yb_2$  under a 1.5 kOe dc field at different temperatures.



**Figure S28.** The absorption spectra of  $Ir(ppy)_2(Hdcbpy)$  and of compounds  $Ir_2Ln$  and  $Ir_4Ln_2$  (Ln = Gd, Dy, Er, Yb) in the solid-state.



**Figure S29.** The luminescence decay for compounds  $Ir(ppy)_2(Hdcbpy)$ ,  $Ir_2Ln$  and  $Ir_4Ln_2$ (Ln = Gd, Dy, Er, Yb) fitted by bi-exponential function I = A + B<sub>1</sub>exp(-t/ $\tau_1$ ) + B<sub>2</sub>exp(-t/ $\tau_2$ ), affording lifetimes ( $\tau$ ) of 6.60 µs ( $\chi^2$  = 1.37) for Ir(ppy)<sub>2</sub>(Hdcbpy), 8.69 µs ( $\chi^2$  = 1.27) for Ir<sub>2</sub>Gd, 4.79 µs ( $\chi^2$  = 1.43) for Ir<sub>2</sub>Dy, 6.37 µs ( $\chi^2$  = 1.47) for Ir<sub>2</sub>Er, 2.23 µs ( $\chi^2$  = 1.39) for Ir<sub>2</sub>Yb, 7.74 µs ( $\chi^2$  = 1.33) for Ir<sub>4</sub>Gd<sub>2</sub>, 0.66 µs ( $\chi^2$  = 1.32) for Ir<sub>4</sub>Dy<sub>2</sub>, 5.47 µs ( $\chi^2$  = 1.35) for Ir<sub>4</sub>Er<sub>2</sub> and 1.24 µs ( $\chi^2$  = 1.20) for Ir<sub>4</sub>Yb<sub>2</sub>.



**Figure S30.** Luminescent decay profiles monitored at 975 nm for **Ir<sub>2</sub>Yb** and **Ir<sub>4</sub>Yb<sub>2</sub>** in the solid state at room temperature. The lifetime was fitted by bi-exponential function  $I = A + B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2)$ .



**Figure S31.** Luminescent decay profiles monitored at 1538 nm for **Ir2Er** and **Ir4Er2** in the solid state at room temperature. The lifetime was fitted by bi-exponential function  $I = A + B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2)$ .



Figure S32. TGA curve of Ir<sub>2</sub>Ln and Ir(ppy)<sub>2</sub>(Hdcbpy).



Figure S33. TGA curve of Ir<sub>4</sub>Ln<sub>2</sub> and Ir(ppy)<sub>2</sub>(Hdcbpy).