Supporting Information for Metal-Ligand Cooperativity of a Co–P Moiety

Seji Kim and Yunho Lee*

Department of Chemistry, Korea Advanced Institute of Science and Technology Daejeon 34141, Republic of Korea

Contents

Experimental Section.

Figure S1. ¹H NMR spectrum of (P₂P–PP₂)(CoBr)₂ (1-Br) in benzene-d₆ at room temperature.

Figure S2. ¹H NMR spectrum of (PP^HP)CoBr₂ (2) in benzene-*d*₆ at room temperature.

Figure S3. ¹H NMR spectrum of $\{(\mu - PP_2)Co\}_2$ (3) in benzene-*d*₆ at room temperature.

Figure S4. ¹H NMR spectrum of $\{(P_2P-PP_2) \{Co(OTf)\}_2 (1-OTf) \text{ in benzene-} d_6 \text{ at room temperature.}$

Figure S5. ¹H NMR spectrum of (P_2P-PP_2) {Co(OPh)}₂ (1-OPh) in benzene-d₆ at room temperature.

Figure S6. ¹H NMR spectrum of (PP^{OAr}P)CoBr (4-Br) in benzene-*d*₆ at room temperature.

Figure S7. ¹H NMR spectrum of (PP^{OAr}P)Co(OPh) (4-OPh) in benzene-*d*₆ at room temperature.

Figure S8. ¹H NMR spectrum of (PPP)Co(CN^{*t*}Bu)₂ (5) in benzene-*d*₆ at room temperature.

Figure S9. ³¹P NMR spectrum of (PPP)Co(CN'Bu)₂ (5) in benzene-*d*₆ at room temperature.

Figure S10. ¹³C NMR spectrum of (PPP)Co(CN/Bu)₂ (5) in benzene- d_6 at room temperature.

Figure S11. ¹H NMR spectrum of (PP^{OPh}P)Co(OPh) (6) in benzene-*d*₆ at room temperature.

Figure S12. ¹H NMR spectrum of $\{(PPP)Co(CN'Bu)\}_2$ (7) in benzene-*d*₆ at room temperature.

Figure S13. ³¹P NMR spectrum of $\{(PPP)Co(CN'Bu)\}_2$ (7) in benzene-d₆ at room temperature.

Figure S14. ¹H NMR spectra of a mixture of $\{(\mu-PP_2)Co\}_2$ (3) and $(PP^{OPh}P)Co(OPh)$ (6) (a) after 5 min at room temperature and (b) after 2 h heating at 100 °C in acetonitrile- d_3 .

Figure S15. ¹H NMR spectra of (a) (P_2P-PP_2) {Co(OPh)}₂ (**1-OPh**) after stirring 24 h in 6 mL CD₃CN (black), (b) the isolated diethyl ether-soluble portion of the resulting solution (black) with **1-OPh** (red) and **6** (blue) and (c) the isolated diethyl ether-insoluble powder (black) with **3** (orange) in benzene-*d*₆ at room temperature.

Figure S16. ¹H NMR spectra of (a) {(PPP)Co(CN'Bu)}₂ (7), (b) after 1.5 h and (c) 24 hour heating at 100 °C with two equivalents of ^{*t*}BuNC and (d) (PPP)Co(CN*t*Bu)₂ (5) in benzene- d_6 at room temperature.

Figure S17. VT ¹H NMR spectra profile of (P₂P–PP₂)(CoBr)₂ (1-Br) in toluene-d₈.

Figure S18. VT ¹H NMR spectra profile of $\{(\mu - PP_2)Co\}_2$ (**3**) in toluene-*d*₈.

Figure S19. Experimental (black line) X-band EPR spectra of (a) $(P_2P-PP_2)(CoBr)_2$ (**1-Br**) in toluene at 10 K and (b) after the irradiation of **1-Br** with a white LED exposure in toluene at room temperature, collected at 10 K.

Figure S20. Experimental (black line) and simulated (dashed red line) X-band EPR spectra of (PP^HP)CoBr₂ (2) in toluene at 20 K.

Figure S21. Solid-state structure of $(P_2P-PP_2)(CoBr)_2$ (**1-Br**). Hydrogen atoms are omitted for clarity. **Table S1.** Selected bond distances and angles for $(P_2P-PP_2)(CoBr)_2$ (Å and °).

Figure S22. Solid-state structure of (PP^HP)CoBr₂(2). Hydrogen atoms are omitted for clarity except H1.

Table S2. Selected bond distances and angles for $(PP^{H}P)CoBr_{2}$ (Å and °).

Figure S23. Solid-state structure of $\{(\mu - PP_2)Co\}_2$ (3). Hydrogen atoms are omitted for clarity.

Table S3. Selected bond distances and angles for $\{(\mu - PP_2)Co\}_2$ (Å and °).

Figure S24. Solid-state structure of (P_2P-PP_2) {Co(OPh)}₂ (**1-OPh**). Hydrogen atoms are omitted for clarity. **Table S4.** Selected bond distances and angles for (P_2P-PP_2) {Co(OPh)}₂ (Å and °).

Figure S25. Solid-state structure of $(PP^{OAr}P)CoBr$ (**4-Br**) (Ar = 2,4,6-tri-*t*butylphenyl). Hydrogen atoms are omitted for clarity.

Table S5. Selected bond distances and angles for (PPOAr)CoBr (Å and °).

Figure S26. Solid-state structure of $(PP^{OAr}P)Co(OPh)$ (**4-OPh**) (Ar = 2,4,6-tri-*t*butylphenyl). Hydrogen atoms are omitted for clarity.

Table S6. Selected bond distances and angles for (PP^{OAr}P)Co(OPh) (Å and °).

Figure S27. Solid-state structure of (PPP)Co(CN'Bu)₂ (5). Hydrogen atoms are omitted for clarity.

Table S7. Selected bond distances and angles for (PPP)Co(CN'Bu)2 (Å and °).

Figure S28. Solid-state structure of (PP^{OPh}P)Co(OPh) (6). Hydrogen atoms are omitted for clarity.

Table S8. Selected bond distances and angles for (PP^{OPh}P)Co(OPh) (Å and °).

Figure S29. Solid-state structure of $\{(PPP)Co(CN'Bu)\}_2$ (7). Hydrogen atoms are omitted for clarity. **Table S9.** Selected bond distances and angles for $\{(PPP)Co(CN'Bu)\}_2$ (Å and °).

Figure S30. UV-Vis spectra of (P₂P–PP₂)(CoBr)₂ (**1-Br**) (red), (PP^HP)CoBr₂ (green) and (PP^{OAr}P)CoBr (**4-Br**) (blue) in THF.

Figure S31. UV-Vis spectra of (P_2P-PP_2) {Co(OPh)}₂ (**1-OPh**) (red) and (PP^{OAr}P)Co(OPh) (**4-OPh**) (blue) in THF.

Figure S32. UV-Vis spectra of $\{(\mu-PP_2)Co\}_2$ (**3**) (black), (PPP)Co(CN^{*t*}Bu)₂ (**5**) (blue) and (PP^{OPh}P)Co(OPh) (**6**) (red) in THF.

Figure S33. UV-Vis spectra of (P_2P-PP_2) {Co(OTf)}₂ (1-OTf) (red) and {(PPP)Co(CN'Bu)}₂ (7) (blue) in THF.

Figure S34. IR spectra of PP^HP (black), (P₂P–PP₂)(CoBr)₂ (**1-Br**) (red) and (PP^HP)CoBr₂ (**2**) (green) (KBr pellet).

Figure S35. IR spectra of (P_2P-PP_2) {Co(OPh)}₂ (1-OPh) (black), (PPP)Co(CN'Bu)₂ (5) (red) and (PP^{OPh}P)Co(OPh) (6) (blue) (KBr pellet).

Figure S36. IR spectra of $\{(\mu-PP_2)Co\}_2$ (3) (black) and $\{(PPP)Co(CN'Bu)\}_2$ (7) (red) (KBr pellet).

Figure S37. CSI mass data of {(PPP)Co(CNtBu)}₂ (7); blue bars represent calculated values and red bars represent experiment values.

Figure S38. Cyclic voltammogram of $\{(P_2P-PP_2)CoBr\}_2$ (**1-Br**) with scan rates: 30, 40 and 50 mV/s. – 2.23 V vs. Fc/Fc⁺ were observed in THF with 0.3 M tetra-*n*-butylammonium hexafluorophosphate as an electrolyte.

Figure S39. Electronic structures for (PPP)CoBr₂ derived from the single point DFT calculations; energies in cm^{-1} .

Figure S40. Electronic structures for (PPP)CoBr with S = 1/2 derived from the single point DFT calculations; energies in cm⁻¹.

Figure S41. Electronic structures for (PPP)CoBr with S = 2/3 derived from the single point DFT calculations; energies in cm⁻¹.

Figure S42. Electronic structures for $(P_2P-PP_2)(CoBr)_2$ (**1-Br**) derived from the single point DFT calculations; energies in cm⁻¹.

Figure S43. Electronic structures for $\{(\mu-PP_2)Co\}_2$ (3) derived from the single point DFT calculations; energies in cm⁻¹.

Figure S44. Mulliken atomic spin density plots derived from the single-point DFT calculations of (a) (PPP)CoBr₂, (b) (PPP)CoBr with S = 1/2 and (c) (PPP)CoBr with S = 3/2. Lobal representations to the spin density by the number with 0.004 isocontours.

Figure S45. Optimized molecular structures for (PPP)CoBr with (a) S = 1/2 and (b) S = 3/2. Hydrogen atoms are omitted for clarity.

Table S10. Selected bond distances and angles for (PPP)CoBr with (a) S = 1/2 and (b) S = 3/2 of the calculated data based on the geometry optimization using DFT calculation.

Table S11. Computed energies (kcal mol⁻¹) of (PPP)CoBr and (P₂P-PP₂){CoBr}₂ (1-Br).

Figure S46. LUMOs of (P_2P-PP_2) {CoBr}₂ (1-Br) with S = 2.

Figure S47. Mulliken atomic spin density plots derived from the single-point DFT calculations of (P_2P-PP_2) {CoBr}₂ (**1-Br**) with S = 2. Lobal representations to the spin density by the number with 0.003 isocontours.

Figure S1. ¹H NMR spectrum of (P₂P–PP₂)(CoBr)₂ (1-Br) in benzene-*d*₆ at room temperature.

Figure S2. ¹H NMR spectrum of (PP^HP)CoBr₂ (2) in benzene- d_6 at room temperature.

Figure S3. ¹H NMR spectrum of $\{(\mu-PP_2)Co\}_2$ (3) in benzene-*d*₆ at room temperature.

Figure S4. ¹H NMR spectrum of $\{(P_2P-PP_2)Co(OTf)\}_2$ (**1-OTf**) in benzene-*d*₆ at room temperature.

Figure S5. ¹H NMR spectrum of (P_2P-PP_2) {Co(OPh)}₂ (1-OPh) in benzene- d_6 at room temperature.

Figure S6. ¹H NMR spectrum of (PP^{OAr}P)CoBr (4-Br) in benzene-*d*₆ at room temperature.

Figure S7. ¹H NMR spectrum of (PP^{OAr}P)Co(OPh) (4-OPh) in benzene-*d*₆ at room temperature.

Figure S8. ¹H NMR spectrum of (PPP)Co(CN'Bu)₂ (5) in benzene-*d*₆ at room temperature.

Figure S9. ³¹P NMR spectrum of (PPP)Co(CN'Bu)₂ (5) in benzene-*d*₆ at room temperature.

Figure S13. ³¹P NMR spectrum of $\{(PPP)Co(CN'Bu)\}_2$ (7) in benzene-*d*₆ at room temperature.

Figure S14. ¹H NMR spectra of a mixture of $\{(\mu-PP_2)Co\}_2$ (3) and $(PP^{OPh}P)Co(OPh)$ (6) (a) after 5 min at room temperature and (b) after 2 h heating at 100 °C in acetonitrile-*d*₃.

Figure S15. ¹H NMR spectra of (a) (P_2P-PP_2) {Co(OPh)}₂ (**1-OPh**) after stirring 24 h in 6 mL CD₃CN (black), (b) the isolated diethyl ether-soluble portion of the resulting solution (black) with **1-OPh** (red) and **6** (blue) and (c) the isolated diethyl ether-insoluble powder (black) with **3** (orange) in benzene-*d*₆ at room temperature.

Figure S16. ¹H NMR spectra of (a) {(PPP)Co(CN'Bu)}₂ (7), (b) after 1.5 h and (c) 24 hour heating at 100 °C with two equivalents of 'BuNC and (d) (PPP)Co(CNtBu)₂ (5) in benzene- d_6 at room temperature.

Figure S17. VT ¹H NMR spectra profile of (P₂P–PP₂)(CoBr)₂ (1-Br) in toluene-*d*₈.

Figure S18. VT ¹H NMR spectra profile of $\{(\mu-PP_2)Co\}_2$ (3) in toluene-*d*₈.

Figure S19. Experimental (black line) X-band EPR spectra of (a) $(P_2P-PP_2)(CoBr)_2$ (**1-Br**) in toluene at 10 K and (b) after the irradiation of **1-Br** with a white LED exposure in toluene at room temperature, collected at 10 K.

Figure S20. Experimental (black line) and simulated (dashed red line) X-band EPR spectra of (PP^HP)CoBr₂ (2) in toluene at 20 K.

Figure S21. Solid-state structure of (P2P-PP2)(CoBr)2 (1-Br). Hydrogen atoms are omitted for clarity.

Table S1. Selected bond distances and angles for (P2P-PP2)(CoBr)2 (Å and °).

Distance	(P2P–PP2)(CoBr)2	Angle	(P ₂ P–PP ₂)(CoBr) ₂
dp1-p4	2.279(2)	∠Co1-P1-P4 ∠Co2-P4-P1	132.22(9) 130.57(9)
d _{Co1-Br1} d _{Co2-Br2}	2.352(1) 2.353 (1)	∠Br1-Co1-P1 ∠Br2-Co2-P4	128.15(6) 127.83(6)
d _{С01-Р1} d _{С02-Р4}	2.199(2) 2.203(2)	∠P2-Co1-P1 ∠P3-Co1-P1 ∠P5-Co2-P4 ∠P6-Co2-P4	86.30(7) 88.63(7) 86.92(7) 86.46(7)
d _{C01-P2} d _{C01-P3}	2.257 (2) 2.246 (2)	∠Br1-Co1-P2 ∠Br1-Co1-P3 ∠Br2-Co2-P5 ∠Br2-Co2-P6	117.77(6) 119.43(6) 118.32(6) 114.78(6)
dC02-P5 dC02-P6	2.256(2) 2.250 (2)	∠P2-Co1-P3 ∠P5-Co2-P6	109.66(7) 116.72(7)

Figure S22. Solid-state structure of (PP^HP)CoBr₂(2). Hydrogen atoms are omitted for clarity except H1.

Table S2. Selected bond distances and angles for (PP^HP)CoBr₂ (Å and °).

Distance	$(PP^{H}P)CoBr_{2}$	Angle	(PP ^H P)CoBr ₂
dp1-H1 dC01-Br2A dC01-Br2B	1.4086(?) 2.4805(6) 2.797(8)	∠P1-Co1-P2 ∠P1-Co1-P3 ∠P2-Co1-P3	84.37(4) 85.10(4) 169.31(4)
dC01-P1 dC01-P2 dC01-P3	2.145(1) 2.2284(9) 2.2481(9)	∠Br1-Co1-P1 ∠Br1-Co1-P2 ∠Br1-Co1-P3	143.66(4) 90.84(3) 96.56(3)
dC01-Br1 dC01-Br2A dC01-Br2B	2.3742(5) 2.4805(6) 2.797(8)	∠Br2A-Co1-Br1 ∠Br2B-Co1-Br1	122.36(3) 102.8(2)
		∠Br2A-Co1-P1 ∠Br2B-Co1-P1	93.84(3) 113.5(2)
		∠Br2A-Co1-P2 ∠Br2B-Co1-P2	92.05(3) 95.6(2)
		∠Br2B-Co1-P3 ∠Br2A-Co1-P3	90.3(2) 90.50(3)

Figure S23. Solid-state structure of $\{(\mu-PP_2)Co\}_2$ (3). Hydrogen atoms are omitted for clarity.

Table S3. Selected bond distances and angles for $\{(\mu-PP_2)Co\}_2$ (Å and °).

Distance	${(\mu-PP_2)Co}_2$	Angle	$\{(\mu\text{-}PP_2)Co\}_2$
		∠P1-Co1-P2	92.59(3)
d _{Co1} -Co1'	2.4118(8)	∠P1-Co1-P1'	112.39(3)
		∠P2-Co1-P1'	117.15(3)
d _{Co1-P1}	2.1454(8)	∠P1-Co1-P3	90.24(3)
d _{Co1-P2}	2.1887(8)	∠P2-Co1-P3	107.47(3)
d _{Co1-P3}	2.1926(9)	∠P1'-Co1-P3	127.80(3)
d _{Co1-P1} ,	2.1888(8)	∠P1'-Co1-Co1'	55.34(2)
d _{Co1} '-P1	2.1889(8)	∠P3-Co1-Co1'	124.06(3)
	3.602(1)		

Figure S24. Solid-state structure of (P₂P-PP₂){Co(OPh)}₂ (1-OPh). Hydrogen atoms are omitted for clarity.

Table S4. Selected bond distances and angles for (P₂P-PP₂){Co(OPh)}₂ (Å and °).

Distance	$(P_2P-PP_2){Co(OPh)}_2$	Angle	$(P_2P-PP_2){Co(OPh)}_2$
dC01-01 dC01-P1 dC01-P2 dC01-P3	1.9249(3) 2.1906(3) 2.2415(2) 2.2610(3)	∠P1-Co1-P2 ∠P1-Co1-P3 ∠P2-Co1-P3	86.116(6) 85.868(6) 115.602(6)
dC02-02 dC02-P4 dC02-P5 dC02-P6	1.9024(3) 2.1857(3) 2.2556(3) 2.2351(2)	∠O1-Co1-P1 ∠O1-Co1-P2 ∠O1-Co1-P3	122.833(9) 115.091(8) 122.464(7)
d _{P1-P4}	2.2638(3)	∠P4-Co2-P5 ∠P4-Co2-P6 ∠P5-Co1-P6	86.130(6) 86.332(6) 115.572(5)
		∠O2-Co2-P4 ∠O2-Co2-P5 ∠O2-Co1-P6	121.958(9) 123.419(7) 114.357(8)

Figure S25. Solid-state structure of $(PP^{OAr}P)CoBr$ (**4-Br**) (Ar = 2,4,6-tri-*t*butylphenyl). Hydrogen atoms are omitted for clarity.

Table S5. Selected bond distances	and angles for	(PPOAr)CoBr ((Å and °).
-----------------------------------	----------------	--------	---------	----------	----

Distance	(PP ^{OAr} P)CoBr	Angle	(PP ^{OAr} P)CoBr
d _{C01-Br1} d _{C01-P1} d _{C01-P2} d _{C01-P3}	2.3772(8) 2.1924(1) 2.3012(1) 2.2763(1)	∠P1-Co1-P2 ∠P1-Co1-P3 ∠P2-Co1-P3	84.76(5) 85.75(5) 117.34(5)
dp1-01 d01-C25	1.684(3) 1.405(5)	∠Br1-Co1-P1 ∠Br1-Co1-P2 ∠Br1-Co1-P3	144.84(4) 112.31(4) 110.29(4)
		∠Co1-P1-O1 ∠P1-O1-C25	137.10(1) 122.6(3)

Figure S26. Solid-state structure of $(PP^{OAr}P)Co(OPh)$ (**4-OPh**) (Ar = 2,4,6-tri-*t*butylphenyl). Hydrogen atoms are omitted for clarity.

Table S6. Selected bond distances and angles for (PP^{OAr}P)Co(OPh) (Å and °).

Distance	(PP ^{OAr} P)Co(OPh)	Angle	(PP ^{OAr} P)Co(OPh)
d _{C01} -01 d _{C01} -P1 d _{C01} -P2 d _{C01} -P3	1.8965(2) 2.1735(2) 2.2654(2) 2.2411(2)	∠P1-Co1-P2 ∠P1-Co1-P3 ∠P2-Co1-P3	85.152(5) 88.678(5) 109.517(5)
d _{P1-02}	1.6844(2)	∠01-Co1-P1 ∠01-Co1-P2 ∠01-Co1-P3	117.784(6) 138.341(6) 111.835(6)
		∠Co1-P1-O1	134.535(7)

Figure S27. Solid-state structure of (PPP)Co(CN'Bu)₂ (5). Hydrogen atoms are omitted for clarity.

Table S7. Selected bond distances and angles for (PPP)Co(CN'Bu)₂ (Å and °).

Distance	(PPP)Co(CN'Bu) ₂	Angle	(PPP)Co(CN ^t Bu) ₂
d _{C01-P1} d _{C01-P2} d _{C01-P3}	2.2709(8) 2.1697(8) 2.1881(8)	∠P2-Co1-P3 ∠P2-Co1-P1 ∠P3-Co1-P1	130.20(3) 86.49(3) 84.96(3)
dco1-c25 dco1-c30	1.823(3) 1.832(3)	∠C30-Co1-P2 ∠C30-Co1-P3 ∠C30-Co1-P1	117.25(8) 111.61(8) 89.33(8)
d _{C25-N1} d _{C30-N2}	1.173(3) 1.169(3)	∠C25-Co1-C30 ∠C25-Co1-P2 ∠C25-Co1-P3 ∠C25-Co1-P1	88.13(1) 94.01(8) 96.68(8) 177.35(8)
		∠Co1-C25-N1 ∠Co1-C30-N2	174.7(2) 176.7(2)

Figure S28. Solid-state structure of (PP^{OPh}P)Co(OPh) (6). Hydrogen atoms are omitted for clarity.

Table S8. Selected bond distances and angles for (PP^{OPh}P)Co(OPh) (Å and °).

Distance	(PP ^{OPh} P)Co(OPh)	Angle	(PP ^{OPh} P)Co(OPh)
dC01-P1	2.1506(1)	∠O1-Co1-P1	144.77(1)
dC01-P2	2.2623(1)	∠O1-Co1-P3	105.62(1)
dC01-P3	2.2504(1)	∠P1-Co1-P3	85.93(5)
dco1-01 dco1-02	1.880(3) 1.679(3)	∠O1-Co1-P2 ∠P1-Co1-P2 ∠P3-Co1-P2	116.17(1) 84.74(4) 118.23(5)
do1-c25	1.257(5)	∠C25-O1-Co1	144.2(2)
do2-c31	1.383(5)	∠C31-O2-P1	119.6(2)

Figure S29. Solid-state structure of {(PPP)Co(CN^tBu)}₂ (7). Hydrogen atoms are omitted for clarity.

Table 57. Scienced Joing distances and angles for $\sqrt{111}$ (COVEN DU/(2) A and	Table S9. Selected bond	distances and	d angles for	{(PPP)Co	$(CN^{t}Bu)$	(Å and ^c
---	-------------------------	---------------	--------------	----------	--------------	---------------------

Distance	$\{(PPP)Co(CN'Bu)\}_2$	Angle	$\{(PPP)Co(CN'Bu)\}_2$
dc25-N1 dC01-C25	1.161(4) 1.821(3)	∠P1-Co1-P1' ∠P1-Co1-P2 ∠P1'-Co1-P2	72.28(3) 117.00(3) 87.58(3)
dC01-P1 dC01-P2 dC01-P3 dC01-P1\$	2.2321(9) 2.1860(9) 2.1890(9) 2.2099(8)	∠P1-Co1-P3 ∠P1'-Co1-P3 ∠P2-Co1-P3	112.53(3) 87.97(3) 126.00(4)
d _{Co1-Co1} ,	3.5819(6)	∠C25-Co1-P1 ∠C25-Co1-P1\$ ∠C25-Co1-P2 ∠C25-Co1-P3	95.28(1) 167.51(1) 97.50(1) 98.09(1)
d _{P1-P1} ,	2.6197(2)	∠Co1-C25-N1	177.0(3)

Figure S30. UV-Vis spectra of (P₂P–PP₂)(CoBr)₂ (**1-Br**) (red), (PP^HP)CoBr₂ (green) and (PP^{OAr}P)CoBr (**4-Br**) (blue) in THF.

Figure S31. UV-Vis spectra of (P_2P-PP_2) {Co(OPh)}₂ (1-OPh) (red) and (PP^{OAr}P)Co(OPh) (4-OPh) (blue) in THF.

Figure S32. UV-Vis spectra of $\{(\mu-PP_2)Co\}_2$ (3) (black), (PPP)Co(CN'Bu)₂ (5) (blue) and (PP^{OPh}P)Co(OPh) (6) (red) in THF.

Figure S33. UV-Vis spectra of (P_2P-PP_2) {Co(OTf)}₂ (1-OTf) (red) and {(PPP)Co(CN'Bu)}₂ (7) (blue) in THF.

Figure S34. IR spectra of PP^HP (black), (P₂P–PP₂)(CoBr)₂ (**1-Br**) (red) and (PP^HP)CoBr₂ (**2**) (green) (KBr pellet).

Figure S35. IR spectra of (P_2P-PP_2) {Co(OPh)}₂ (1-OPh) (black), (PPP)Co(CN'Bu)₂ (5) (red) and (PP^{OPh}P)Co(OPh) (6) (blue) (KBr pellet).

Figure S36. IR spectra of $\{(\mu-PP_2)Co\}_2$ (3) (black) and $\{(PPP)Co(CN'Bu)\}_2$ (7) (red) (KBr pellet).

Figure S37. CSI mass data of $\{(PPP)Co(CNtBu)\}_2$ (7); blue bars represent calculated values and red bars represent experiment values.

Figure S38. Cyclic voltammogram of $\{(P_2P-PP_2)CoBr\}_2$ (**1-Br**) with scan rates: 30, 40 and 50 mV/s. – 2.23 V vs. Fc/Fc⁺ were observed in THF with 0.3 M tetra-*n*-butylammonium hexafluorophosphate as an electrolyte.

Figure S39. Electronic structures for (PPP)CoBr₂ derived from the single point DFT calculations; energies in cm^{-1} .

Figure S40. Electronic structures for (PPP)CoBr with S = 1/2 derived from the single point DFT calculations; energies in cm⁻¹.

Figure S41. Electronic structures for (PPP)CoBr with S = 2/3 derived from the single point DFT calculations; energies in cm⁻¹.

Figure S42. Electronic structures for $(P_2P-PP_2)(CoBr)_2$ (**1-Br**) derived from the single point DFT calculations; energies in cm⁻¹.

Figure S43. Electronic structures for $\{(\mu-PP_2)Co\}_2$ (3) derived from the single point DFT calculations; energies in cm⁻¹.

Figure S44. Mulliken atomic spin density plots derived from the single-point DFT calculations of (a) (PPP)CoBr₂, (b) (PPP)CoBr with S = 1/2 and (c) (PPP)CoBr with S = 3/2. Lobal representations to the spin density by the number with 0.004 isocontours.

Figure S45. Optimized molecular structures for (PPP)CoBr with (a) S = 1/2 and (b) S = 3/2. Hydrogen atoms are omitted for clarity.

Table S10. Selected bond distances and angles for (PPP)CoBr with (a) S = 1/2 and (b) S = 3/2 of the calculated data based on the geometry optimization using DFT calculation.

Distance	S = 1/2	S = 3/2	Angle	S = 1/2	S = 3/2
de- p-	2 33053	2 34872	∠P1-Co-P2 ∠P1-Co-P3	86.929 83.983	86.500 84.825
uco-Br	2.33033	2.34072	∠P2-Co1-P3	127.473	122.614
d _{Co1-P1}	2.18485	2.25732	∠P1-Co-Br	152.327	137.685
d _{Co1-P2}	2.22622	2.34254	∠P2-Co-Br	107.066	110.909
d _{Co1-P3}	2.24080	2.31119	∠P3-Co-Br	104.422	113.156
			$ au_4$	0.57	0.71

Complex	kcal mol ⁻¹	ΔE (kcal mol ⁻¹)	$\begin{array}{c} \Delta\{(\textbf{1-Br})-2(\text{PPP})\text{CoBr}\}\\ (\text{kcal mol}^{-1}) \end{array}$
(PPP)CoBr ($S = 1/2$)	-3711554.169	0	-1.173
(PPP)CoBr ($S = 3/2$)	-3711543.873	+10.296	+19.418
$(P_2P-PP_2)(CoBr)_2 (S=1)$	-7423100.503	+6.662	_
$(P_2P-PP_2)(CoBr)_2 (S=2)$	-7423107.165	0	0

Table S11. Computed energies (kcal mol⁻¹) of (PPP)CoBr and (P₂P-PP₂){CoBr}₂ (1-Br).

Figure S46. LUMOs of (P_2P-PP_2) {CoBr}₂ (1-Br) with S = 2.

Figure S47. Mulliken atomic spin density plots derived from the single-point DFT calculations of (P₂P-PP₂){CoBr}₂ (**1-Br**) with S = 2. Lobal representations to the spin density by the number with 0.003 isocontours.

Co1 = 1.49 Co2 = 1.52 P1 = 0.16 P4 = 0.14