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Table S1. Summary of crystallographic data for 1¢, 1d, and 2a.

1¢-0.5CH2CL, 1d 2a-CH,CL
CCDC 1952045 1952046 1952047
Crystal data
Chemical formula Ca6.50H46ClIrNy C39HaoIrNs C4sHa3ClLIrN4S,
M, 888.52 770.96 1003.08

Crystal system, space
group

Monoclinic, P2i/c

Monoclinic, P2i/c

Monoclinic, P2i/n

Temperature (K)

173

123

123

a, b, c(A) 18.501 (3),9.1561  |15.929 (3), 10.934 (2),|12.461 (4), 19.090 (6),
(16), 26.146 (5) 19.318 (4) 17.319 (6)

b (°) 107.620 (4) 107.740 (2) 91.902 (4)

V(A% 4221.3 (13) 3204.6 (12) 4118 (2)

m (mm™) 3.26 4.20 3.51

Crystal size (mm)

0.19 x 0.17 x 0.04

0.41 x0.25x0.19

0.33 x0.28 x0.19

Data collection

Tmin, Tmax

0.570, 0.746

0.542, 0.746

0.627,0.746

No. of measured,
independent and
observed [/ > 2s(/)]

36622, 9330, 7747

19757, 7396, 6784

25770, 9507, 8749

reflections

Rint 0.040 0.027 0.026
(sin q/Dmax (A1) 0.641 0.651 0.651
Refinement

R[F? > 2s(F%)], wR(F?), S

0.039, 0.100, 1.09

0.020, 0.048, 1.04

0.027, 0.075, 1.05

No. of reflections 9330 7396 9507

No. of parameters 494 412 520

No. of restraints 16 0 0
w=1/[s%(F%) + w=1/[s*(Fo) + w=1/[s%(F%) +
(0.0474P)* + (0.017P)* +2.1759P] [(0.0328P)* +
7.2873P] where P = (F,” + 12.1077P]
where P = (F,> + 2F2)/3 where P = (F,> +
2F2)/3 2F2)/3

Aprmax, Apmin (€ A7) 1.59,-0.99 0.94, -0.81 0.99, -1.84
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Table S2. Summary of crystallographic data for complexes 2b and 2d

2b-CsHi» 2d
CCDC 1952048 1952049
Crystal data
Chemical formula CsoHs1IrNeS: Cs5H36IrNsS;
M; 992.28 783.01

Crystal system, space group

Triclinic, P 1

Monoclinic, C2/c

a, b, ¢ (A)

11.551 (3), 13.444 (4),
15.248 (4)

20.457 (4), 9.7209 (18),
17.889 (3)

a,b,g(°) 111.457 (2), 101.216 (2), |90, 117.435 (2), 90
94.278 (2)

V(A% 2134.0 (10) 3157.5 (10)

Z 2 4

m (mm™) 3.27 4.39

Crystal size (mm)

0.23 x0.20 x 0.17

0.44 x 0.28 x 0.10

Data collection

T;m'n, Tmax

0.586, 0.746

0.512, 0.746

No. of measured, independent and
observed [/ > 2s(/)] reflections

37861, 9724, 9188

9112, 3490, 3402

Rint 0.027 0.019
(sin ¢/Dmax (A™) 0.649 0.641
Refinement

R[F? > 2s(F%)], wR(F?), S

0.019, 0.055, 1.22

0.016, 0.040, 1.05

No. of reflections 9724 3490
No. of parameters 538 199
ApPmax, Apmin (€ A7) 1.67,-0.85 0.95, -1.01
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< S(1A)

Figure S1. X-ray crystal structure of 1¢, 2b, and 2d. Hydrogen atoms and solvate molecules are omitted
for clarity. Ellipsoids are shown at the 50% probability level.
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Figure S2. Overlaid cyclic voltammograms of complexes 1a—e. CVs were recorded in acetonitrile with 0.1
M NBu4PF¢ supporting electrolyte, using a glassy carbon working electrode and a scan rate of 0.1 V/s. The
arrows indicate the scan direction. Concentrations were not carefully controlled, and currents are low in
some of plots because of the limited solubility of some of the compounds in acetonitrile.
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Figure S3. Overlaid cyclic voltammograms of complexes 2a—d. CVs were recorded in acetonitrile with 0.1
M NBu4PF¢ supporting electrolyte, using a glassy carbon working electrode and a scan rate of 0.1 V/s. The
arrows indicate the scan direction. Concentrations were not carefully controlled, and currents are low in
some of plots because of the limited solubility of some of the compounds in acetonitrile.

Table S3. Summary of cyclic voltammetry data recorded in MeCN solution.

(E vs. Fc¢'/Fe) / V*

C”N = piq (1) E™ E™
L"X = (dmp),NacNac"™® (1a) —2.22,-2.48 —0.07°
LAX = NacNac¥* (1b) —2.28 —2.52 —0.19°
LAX = dipba™® (1¢) ~2.24,-2.48 +0.14
L/X = dipg™* (1d) .26, -2.59° +0.03
L"X = (Cy)acNac™* (1e) —2.20, —2.42 +0.24°
CN = bip (2)
L~X = (dmp),NacNac'® (2a) —2.58° 0.06°
L"X = NacNac™* (2b) —2.62° —0.17
LAX = dipba™ (2¢) 2570 0.23
L X = dipg"™* (2d) —2.60° 0.12

* Experiments were performed in acetonitrile solvent with 0.1 M NBu4PFs electrolyte with scan rate of 0.1
V/s using a glassy carbon working electrode and a silver wire pseudo-reference electrode. Potentials are
referenced against the ferrocene/ferrocenium redox couple. ® Observed wave is irreversible, and the
respective E, . or Ep, peak potential is reported.
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Figure S4. Excitation spectrum of Ir(piq)>[(dmp)NacNac“¢] (1a), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with Acn = 660 nm for the excitation
spectrum.
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Figure S5. Excitation spectrum of Ir(piq)2(NacNac™™¢?) (1b), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with Aem = 707 nm for the excitation
spectrum.
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Figure S6. Excitation spectrum of Ir(piq)2(dipba™) (1¢), overlaid with its normalized absorption spectrum.
Spectra were recorded in THF at room temperature, with A.m = 661 nm for the excitation spectrum.
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Figure S7. Excitation spectrum of Ir(piq):(dipg™?) (1d), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with A.m = 683 nm for the excitation
spectrum.
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Figure S8. Excitation spectrum of Ir(piq)2[(Cy)acNac™®] (1e), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with Aem = 657 nm for the excitation
spectrum.
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Figure S9. Excitation spectrum of Ir(btp),[(dmp),NacNac¥¢] (2a), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with Aem = 624 nm for the excitation
spectrum.
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Figure S10. Excitation spectrum of Ir(btp),(NacNac™™) (2b), overlaid with its normalized absorption

spectrum. Spectra were recorded in THF at room temperature, with Acn = 633 nm for the excitation
spectrum.
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Figure S11. Excitation spectrum of Ir(btp).(dipba™) (2¢), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with Aem = 619 nm for the excitation
spectrum.
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Figure S12. Excitation spectrum of Ir(btp)a(dipg"™?) (2d), overlaid with its normalized absorption
spectrum. Spectra were recorded in THF at room temperature, with Aem = 626 nm for the excitation
spectrum.
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Figure S13. Emission spectrum of Ir(piq)2[(dmp),NacNac™] (1a), recorded at room temperature (298 K)
in THF (blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.
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Figure S14. Emission spectrum of Ir(piq)>(NacNac
THF (blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex =420 nm.
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Figure S15. Emission spectrum of Ir(piq)2(dipba™®) (1¢), recorded at room temperature (298 K) in THF
(blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.
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Figure S16. Emission spectrum of Ir(piq).(dipg™*?) (1d), recorded at room temperature (298 K) in THF
(blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.
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Figure S17. Emission spectrum of Ir(piq)2[(Cy)acNac™®] (1e), recorded at room temperature (298 K) in
THF (blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.
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Figure S18. Emission spectrum of Ir(btp).[(dmp).NacNac™¢] (2a), recorded at room temperature (298 K)
in THF (blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.
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Figure S19. Emission spectrum of Ir(btp),(NacNac"™?) (2b), recorded at room temperature (298 K) in
THF (blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex =420 nm.
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Figure S20. Emission spectrum of Ir(btp).(dipba™?®) (2¢), recorded at room temperature (298 K) in THF
(blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.

S15



1

Energy / cm”
20000 18000 16000 14000
lllIIlllIIIllllIlllllllllllllllllllll
2 | —m—2dRT
S —8—2d 77K
=
C
Q
[
2
S
LU
e
o)
N
©
£
o
pa
|IIIIIIIII|IIIIIII
500 600 700 800

Al nm

Figure S21. Emission spectrum of Ir(btp),(dipg™?) (2d), recorded at room temperature (298 K) in THF
(blue, squares) and at low temperature (77 K) in toluene (red, circles), with Aex = 420 nm.
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Figure S22. Photoluminescence decay trace for complex 1a, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S23. Photoluminescence decay trace for complex 1b, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S24. Photoluminescence decay trace for complex 1e¢, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S25. Photoluminescence decay trace for complex 1d, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S26. Photoluminescence decay trace for complex le, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S27. Photoluminescence decay trace for complex 2a, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S28. Photoluminescence decay trace for complex 2b, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.

10004

Intensity / a.u.
S
2

10

Figure S29. Photoluminescence decay trace for complex 2¢, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S30. Photoluminescence decay trace for complex 2d, recorded in THF at room temperature with
390-nm excitation. The raw decay trace is shown in black, with the best-fit line displayed in red.
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Figure S31. 1H NMR spectrum of ancillary ligand [(Cy)acNac“]H, recorded at 400 MHz in CDCls. Peak
positions are shown below the horizontal axis. Signals for residual CH»Cl, and acetone are marked.
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Figure S32. 'H NMR spectrum of Ir(piq)-[(dmp).NacNac™¢] (1a), recorded at 600 MHz in CDCl;. Peak
positions are shown below the horizontal axis. Signal for residual CH,Cl, is marked.
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Figure S33. “C{'H} NMR spectrum of Ir(piq):[(dmp)NacNac™¢] (1a), recorded at 151 MHz in CDCl;.
Peak positions are shown below the horizontal axis. Signal for CH,Cl, is marked.
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Figure S34. '"H NMR spectrum of Ir(piq)2(NacNac"™<?) (1b), recorded at 600 MHz in CDCl;. Peak
positions are shown below the horizontal axis. Signals for residual CH,Cl, and pentane are marked.
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Figure S35. *C{'H} NMR spectrum of Ir(piq)2(NacNac™*?) (1b), recorded at 151 MHz in CDCl;. Peak
positions are shown below the horizontal axis. Signals for residual pentane are marked.

3 g S
< —
S )
< <t
1c
'H NMR in CDCl4 ©
600 MHz “
Pentane.
S e SEIRE g/ g EtO
N « PRI IS | a P
Et,O
J CH,Cl, [ L
] NI
T T T T T T T T T T T
10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
A A AVAT AN AN N AN A
[ ) ~ n ool —~ —~ 0 W envo oI - v ol =~ O O Q0= O QAW O Vv ==}
Dl vy <t v vl <t <t T O 0 W~ O vy SR 2] — QN0 —~O O -
e a9 2o N A ®®® QM a TITITOS Tmaq N == S <

Figure S36. '"H NMR spectrum of Ir(piq)»(dipba™®) (1¢), recorded at 600 MHz in CDCl;. Peak positions

are shown below the horizontal axis. Signals for residual CH,Cl,, Et,O, and pentane are marked.
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Figure S37. “C{'H} NMR spectrum of Ir(piq).(dipba™®) (1c), recorded at 151 MHz in CDCl;. Peak
positions are shown below the horizontal axis.
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Figure S38. '"H NMR spectrum of Ir(piq)>(dipg™™?) (1d), recorded at 600 MHz in CDCl;. Peak positions
are shown below the horizontal axis. Signals for residual CH,Cl, and pentane are marked.
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3C{'H} NMR in CDCl,
151 MHz
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Figure S39. *C{'H} NMR spectrum of Ir(piq)(dipg"™?) (1d), recorded at 151 MHz in CDCl;. Peak
positions are shown below the horizontal axis. Signals for residual pentane are marked.
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Figure S40. '"H NMR spectrum of Ir(piq)2[(Cy)acNac™¢] (1e), recorded at 400 MHz in CD,Cl,. Peak
positions are shown below the horizontal axis.
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Figure S42. 'H NMR spectrum of Ir(btp).[(dmp).NacNac™¢] (2a), recorded at 600 MHz in CDCl;. Peak
positions are shown below the horizontal axis. Signal for residual CH,Cl, is marked.
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Figure S43. “C{'H} NMR spectrum of Ir(btp).[(dmp)NacNacV¢] (2a), recorded at 151 MHz in CDCl;.
Peak positions are shown below the horizontal axis. Signals for residual CH,Cl; is marked.
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Figure S44. '"H NMR spectrum of Ir(btp)(NacNac™¢?) (2b), recorded at 400 MHz in CDCls. Peak
positions are shown below the horizontal axis. Signal for residual toluene is marked.
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2b
13C{1H} NMR in CDC,
151 MHz
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Figure S45. >C{'H} NMR spectrum of Ir(btp),(NacNac™™?) (2b), recorded at 151 MHz in CDCl;. Peak
positions are shown below the horizontal axis. Signals for residual toluene is marked.
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Figure S46. '"H NMR spectrum of Ir(btp),(dipba™®) (2¢), recorded at 600 MHz in CDCl;. Peak positions
are shown below the horizontal axis. Signals for residual pentane are marked.
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13C{'H} NMR in CDCl,
151 MHz
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Figure S47. “C{'H} NMR spectrum of Ir(btp),(dipba™*) (2¢), recorded at 151 MHz in CDCl;. Peak
positions are shown below the horizontal axis.
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Figure S48. 'H NMR spectrum of Ir(btp),(dipg™*?) (2d), recorded at 600 MHz in CDCl;. Peak positions
are shown below the horizontal axis. Signals for residual CH,Cl,, tetrahydrofuran (THF), benzene, and
moisture (H,O) from NMR solvent are marked.
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BC{'H} NMR in CDCl,
151 MHz
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Figure S49. *C{'H} NMR spectrum of Ir(btp),(dipg"**) (2d), recorded at 151 MHz in CDCl;. Peak

positions are shown below the horizontal axis. Signals for residual pentane, acetone,

marked.
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