Supporting information

Improving the Performance of Titanium Carbide MXene in Supercapacitor by Partial Oxidation Treatment

Miao Zhang,^a Xifan Chen,^a Jinyi Sui,^a Bahreselam Sielu Abraha,^a Yang Li,^a Wenchao Peng,^a GuoLiang Zhang,^a Fengbao Zhang,^a and Xiaobin Fan^{*a} ^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China *E-mail: xiaobinfan@tju.edu.cn

Contents:

Figure S1. CV curves of the different $Ti_3C_2T_x$ samples	pag. 2
Table S1. ICP analysis results of the Al in the Ti_3AlC_2 and $\text{Ti}_3\text{C}_2\text{T}_x$	pag. 2
Figure S2. HRTEM image of the F-Ti $_3C_2T_x$ sample	pag. 2
Figure S3. XPS survey spectra the different $Ti_3C_2T_x$ samples	pag. 3
Figure S4. The cycling stability of P-Ti $_3C_2T_x$ in range of $-0.55V \simeq 0.2V$	pag. 4
Figure S5. CV curves of the F-Ti $_3C_2T_x$ sample from –0.55 to 0.2 V	pag. 4
Figure S6. CV curves of the P-Ti $_3C_2T_x$ sample from –0.55 to 0.2 V	pag.4
Figure S7. The BET of the P-Ti $_3C_2T_x$ and F-Ti $_3C_2T_x$ samples	pag.5
Figure S8. Nyquist plots for the different Ti3C2Tx electrodes	pag.5
Figure S9. Cycle life performance of the Ti3C2Tx electrode	pag. 6
Table S2. Performance comparison of the electrochemical supercapacitors	pag. 6
Reference	pag. 6

Figure S1. CV curves of the different $Ti_3C_2T_x$ samples at 2 mV s⁻¹. 50 mL of 4 mg mL⁻¹ $Ti_3C_2T_x$ was treated with 0.5, 0.05, 1.5, 5 g ammonium persulfate, respectively. (b) the specific capacitance of the different $Ti_3C_2T_x$ samples.

Table S1. ICP analysis results of the Al in the Ti₃AlC₂ and Ti₃C₂T_x.

sample	Al (mg/kg)	wt.%		
Ti ₃ AlC ₂	128428	12.843		
Ti ₃ C ₂ T _x	7954	0.795		

Figure S2. HRTEM image of the $F-Ti_3C_2T_x$ sample.

Figure S3. (a) XPS survey spectra of $Ti_3C_2T_x$, P- $Ti_3C_2T_x$ -0.05, P- $Ti_3C_2T_x$, P- $Ti_3C_2T_x$ -1.5 and F- $Ti_3C_2T_x$. High-resolution C 1s (b), O 1s (c), and Ti 2p (d) XPS spectra of $Ti_3C_2T_x$, P- $Ti_3C_2T_x$ -0.05, P- $Ti_3C_2T_x$, P- $Ti_3C_2T_x$ -1.5 and F- $Ti_3C_2T_x$ samples.

High-resolution C 1s spectra (Figure S3b) and Ti 2p spectra (Figure S3d) reveals that the C–Ti signal of P-Ti₃C₂T_x-0.5 and P-Ti₃C₂T_x had no significant change, but the intensity of C–Ti signal signal obviously decreased in the P-Ti₃C₂T_x-0.5 and F-Ti₃C₂T_x samples after treatment with excessive ammonium persulfate. Meanwhile, the high-resolution O1s spectra (Figure S3c) and Ti 2p spectra (Figure S3d) show a much stronger TiO₂ peak in F-Ti₃C₂T_x, when compared with untreated Ti₃C₂T_x. In particular, in Figure S3c, the high-resolution O 1s spectra of the partially oxidized Ti₃C₂T_x possessed a much stronger C–Ti–O signal, confirming that the –O terminal could be formed in the partial oxidation treatment method.

Figure S4. The cycling stability of P-Ti₃C₂T_x in range of $-0.55V \sim 0.2V$ at 5 mV s⁻¹.

Figure S5. CV curves of the F-Ti₃C₂T_x sample from -0.55 to 0.2 V. Obvious hydrogen evolution reaction can be observed in F-Ti₃C₂T_x electrode near -0.4 V.

Figure S6. CV curves of the P-Ti $_3C_2T_x$ sample from -0.55 to 0.2 V. It is noted that no hydrogen

evolution reaction could be observed near -0.4 V.

Figure S7. The nitrogen adsorption and desorption isotherms of the $P-Ti_3C_2T_x$ and $F-Ti_3C_2T_x$ samples.

Figure S8. Nyquist plots for the different $Ti_3C_2T_x$ electrodes at open circuit potentials.

Figure S9. Cycle life performance of the $Ti_3C_2T_x$ electrode in 1 M H_2SO_4 electrolyte at 500 mV s⁻¹. The inset shows the CV curves before and after cycling at 5 mV s⁻¹.

Electrode material	Electrolyte	Capacitance	Cycling stability	Ref.
P-Ti ₃ C ₂ T _x	1 M H ₂ SO ₄	303 F/g (2 mV/s)	96.6%/9000 cycles	In this work
TiO ₂ -Ti ₃ C ₂	6 М КОН	143 F/g (5 mV/s)	96%/3000 cycles	1
$Ti_3C_2T_x$ (via Alkali Treatment)	1 M H ₂ SO ₄	314 F/g (2 mV/s)	89.1%/10 000 cycles	2
Ti ₃ C ₂ T _x	$1 \text{ M H}_2\text{SO}_4$	150 F/g (2 mV/s)	No reported	3
Ti ₃ C ₂ T _x -15M	1 M H ₂ SO ₄	192 F/g (2 mV/s)	No reported	4
PANI@TiO ₂ /Ti ₃ C ₂ T _x	1 M KOH	188.3 F/g (10 mV/s)	94%/8000 cycles	5
Ti₃C₂ film	3 M H ₂ SO ₄	210 F/g (10 V/s)	90%/10000 cycles	6
Ti ₃ C ₂ /TiO ₂ -nanowires	6 М КОН	143 F/g (2 mV/s)	88%/6000 cycles	7
hydrazine-treated $Ti_3C_2T_x$	$1 \text{ M H}_2\text{SO}_4$	250 F/g (2 mV/s)	≈100%/10000 cycles	8
$Functionalized-Ti_3C_2$	1M KOH	160 F/g (5 mV/s)	91%/10000 cycles	9

Table S2. Performance comparison of the electrochemical supercapacitors with other works.

Reference

- JianFeng Zhu, Yi Tang, ChenHui Yang, Fen Wang, and MinJuan Cao, Composites of TiO₂ Nanoparticles Deposited on Ti₃C₂ MXene Nanosheets with Enhanced Electrochemical Performance, *J. Electrochem. Soc.*, 2016, **163**, A785-A791.
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz and D. Zhang, Fluorine-Free Synthesis of High-Purity Ti₃C₂T_x(T=OH, O) via Alkali Treatment, *Angew. Chem.-Int. Edit.*, 2018, **57**, 6115-6119.
- 3. Y. Dall'Agnese, M. R. Lukatskaya, K. M. Cook, P.-L. Taberna, Y. Gogotsi and P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, *Electrochem*.

Commun., 2014, 48, 118-122.

- M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui and X. Wang, Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti₃C₂T_x MXene, ACS Nano, 2018, 12, 3578-3586.
- X. Lu, J. Zhu, W. Wu and B. Zhang, Hierarchical architecture of PANI@TiO₂/Ti₃C₂T_x ternary composite electrode for enhanced electrochemical performance, *Electrochim. Acta*, 2017, 228, 282-289.
- M. R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L. Taberna, M. W. Barsoum, P. Simon and Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, *Nature Energy*, 2017, 2, 17105.
- M. J. Cao, F. Wang, L. Wang, W. L. Wu, W. J. Lv and J. F. Zhu, Room Temperature Oxidation of Ti₃C₂ MXene for Supercapacitor Electrodes, *J. Electrochem. Soc.*, 2017, **164**, A3933-A3942.
- O. Mashtalir, M. R. Lukatskaya, A. I. Kolesnikov, E. Raymundo-Pinero, M. Naguib, M. W. Barsoum and Y. Gogotsi, The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene), *Nanoscale*, 2016, 8, 9128-9133.
- H. Wang, J. Zhang, Y. Wu, H. Huang and Q. Jiang, Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance, *J. Phys. Chem. Solids*, 2018, **115**, 172-179.