Electronic Supplementary Information

Inert Macrocyclic Eu³⁺ Complex with Affirmative paraCEST Features

Tanja Gambino,^a Laura Valencia,^b Paulo Pérez-Lourido,^b David Esteban-Gómez,^c Moritz Zaiss,^d Carlos Platas-Iglesias^{*c} and Goran Angelovski^{*a}

^a MR Neuroimaging Agents, MPI for Biological Cybernetics, Tuebingen Germany. Email: goran.angelovski@tuebingen.mpg.de

^b Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain.

^c Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña Spain. Email: carlos.platas.iglesias@udc.es

^d High-Field Magnetic Resonance, MPI for Biological Cybernetics, Tuebingen, Germany.

Table of Contents

Supplementary Figures	
Supplementary Tables	
References	

Supplementary Figures

Figure S1. ESI-MS spectrum of the $[Eu(L-2H)]^+$.

Figure S2. View of the structure of the $[YL]^{3+}$ cation present in crystals of $[YL](NO_3)_3 \cdot 3H_2O$. Hydrogen atoms are omitted for simplicity.

Figure S3. ¹H NMR spectra (400 MHz) of EuL recorded in 1 M HCl at 25 °C over time.

Figure S4. ¹H NMR spectra of **EuL** (5 mM, pH 7.0, 1 equiv. Zn^{2+} , phosphate buffer, $[NaH_2PO_4] = 0.026$ M; $[Na_2HPO_4] = 0.041$ M) recorded at different temperatures.

Figure S5. ¹H NMR spectra of EuL (25 °C, 15 mM) recorded at different pH values.

Figure S6. Emission spectra of EuL (5×10^{-5} M, pH 7.0, phosphate buffer, [NaH₂PO₄] = 0.026 M; [Na₂HPO₄] = 0.041 M, 25 °C) recorded before and after addition of ten equivalents of DTPA.

Figure S7. Phosphorescence decay curves of EuL (5×10^{-5} M, pH 7.0, phosphate buffer, [NaH₂PO₄] = 0.026 M; [Na₂HPO₄] = 0.041 M, 25 °C) recorded before (0 h) and 72 h after addition of ten equivalents of DTPA.

Figure S8. Z-spectra of EuL (5 mM in PBS) at variable pH and B_1 fields, irradiation time of 15 s and 37 °C.

Figure S9. MTR_{ind} as a function of pH (5 mM EuL in PBS, 37 $^{\circ}$ C).

Figure S10. Ratio of MTR_{ind} for **EuL** (5 mM in PBS, 37 °C, NMR spectrometer) at varying pH values: a) signals obtained at same frequency (8.5 ppm) and different B_1 ; b) signals obtained at same frequency (14 ppm) and different B_1 ; c) signals obtained at different frequencies and different B_1 ; d) signals obtained at different frequencies and same B_1 .

Figure S11. Exchange rate values obtained at different pH using the qCEST method (5 mM EuL in PBS, 37 °C).

Figure S12. Simulated MTR_{asym} effects at clinical ($B_1 = 5 \mu$ T, sat. time = 0.5 s, left) and preclinical settings ($B_1 = 10 \mu$ T, sat. time = 5 s, right) for group D paraCEST agents.

Figure S13. MTR_{ind} as a function of pH, obtained from experiments performed in the MRI scanner (3 mM **EuL** in PBS, RT).

Figure S14. pH maps (right) obtained from MTR_{ind} ratio (left) on MRI tube phantoms (3 mM **EuL** in PBS, RT).

Figure S15. MTR_{ind} ratio obtained from the MRI tube phantoms experiment reported in Figure 8 (left) and the table with set vs. calculated pH values from this experiment (right) (3 mM **EuL** in PBS, RT).

Supplementary Tables

2.594(15)	Y(1)-N(1)	2.568(4)
263(2)		
2.05(2)	Y(1)-N(2)	2.640(5)
2.644(19)	Y(1)-N(3)	2.641(5)
2.525(16)	Y(1)-N(4)	2.555(4)
2.511(15)	Y(1)-N(5)	2.652(5)
	Y(1)-N(6)	2.643(5)
	Y(1)-O(1)	2.527(4)
	Y(1)-O(2)	2.481(4)
	Y(1)-O(3)	2.445(4)
	Y(1)-O(4)	2.413(4)
	2.644(19) 2.525(16) 2.511(15)	$\begin{array}{rl} 2.644(19) & Y(1)-N(3) \\ 2.525(16) & Y(1)-N(4) \\ 2.511(15) & Y(1)-N(5) \\ & Y(1)-N(6) \\ & Y(1)-O(1) \\ & Y(1)-O(2) \\ & Y(1)-O(3) \\ & Y(1)-O(4) \end{array}$

Table S1. Bond distances (Å) of the metal-coordination environments observed in the X-ray structures of $[LnL]^{3+}$ complexes (Ln=Eu or Y).

 Table S2. Crystal Data and Structure Refinement for the complexes.

	[EuL](NO ₃) ₃ ·3H ₂ O	[YL](NO ₃) ₃ ·3H ₂ O
formula	$C_{26}H_{38}N_{10}O_4Eu$	$C_{26}H_{44}N_{13}O_{16}Y$
mol wt	706.63	883.65
cryst syst	Monoclinic	Monoclinic
space group	C2	C2
a (Å) α (deg)	24.258(13)	25.049(5)
b (Å) β (deg)	12.124(7) 133.831(4)	11.926(5) 91.946(5)
c (Å) γ (deg)	17.312(9)	23.702(5)
$V(Å^3)$	3673(3)	7077(4)
Ζ	4	8
$D(calc) (Mg/m^3)$	1.278	1.659
μ (mm ⁻¹)	1.748	1.741
Flack param.	0.10(3)	0.243(6)
R _{int}	0.1215	0.0559
$R_1^{[a]}$	0.0834	0.0569
wR ₂ (all data) ^[b]	0.2291	0.1524

^[a] R₁ = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^[b] wR₂ = { $\Sigma [w(||F_o|^2 - |F_c|^2|)^2] / \Sigma [w(F_o^4|)]$ }

Table S3. ¹H NMR shifts (D₂O, 25 °C, pH 7.0, 400 MHz) observed for EuL compared to those reported previously for EuL'.^{a)}

	H1	H2	$H3_{ax}$	$H3_{eq}$	H4 _{ax}	$H4_{eq}$	$H5_{ax}$	$H5_{eq}$	H6 _{ax}	H6 _{eq}
EuL	2.45	-0.77	-9.43	-15.05	-1.62	-19.13	18.50	0.72		
EuL' ^{b)}	1.45	-2.18	-12.00	-17.43	-1.85	-21.20	18.74	-3.51	10.59	33.58

^{a)} Structures of ligands L and L' and atom numbering is shown below. ^{b)} Data for **EuL'** from the reference No. 1.

Pos.	Group	Metal ion	Exchanging protons (#)	$k_{\rm ex}$ (Hz) $\delta_{\rm B}$ (ppm)		Reference
1	А	Fe ²⁺	4	400	50	2
2	А	Co ²⁺	4+4	400	68 and 102	3
3	А	Ni ²⁺	3	240-360	72-76	4
4	В	Eu ³⁺	4+4	1300 / 2600	14 / 8	This work
5	С	Tm ³⁺	4	3000	-46	5
6	С	Yb ³⁺	4+4	1100 - 1400 ^{b)}	-15 / -18	6
7	D	Eu ³⁺	2	10000	~ 50	7-8
8	D	Tb ³⁺	2	12000 ^{a)}	- 550	9

 $^{\rm a)}$ An estimated value for pH 7. $^{\rm b)}$ The range of values of two amide protons at pH 7.2 and 25 $^{\rm o}C.$

References

- 1. G. Castro, M. Regueiro-Figueroa, D. Esteban-Gomez, P. Perez-Lourido, C. Platas-Iglesias and L. Valencia, Magnetic Anisotropies in Rhombic Lanthanide(III) Complexes Do Not Conform to Bleaney's Theory, *Inorg. Chem.*, 2016, **55**, 3490-3497.
- 2. S. J. Dorazio and J. R. Morrow, Iron(II) Complexes Containing Octadentate Tetraazamacrocycles as ParaCEST Magnetic Resonance Imaging Contrast Agents, *Inorg. Chem.*, 2012, **51**, 7448-7450.
- A. E. Thorarinsdottir, K. Du, J. H. P. Collins and T. D. Harris, Ratiometric pH Imaging with a Co^{II2} MRI Probe via CEST Effects of Opposing pH Dependences, *J. Am. Chem. Soc.*, 2017, 139, 15836-15847.
- 4. A. O. Olatunde, S. J. Dorazio, J. A. Spernyak and J. R. Morrow, The NiCEST Approach: Nickel(II) ParaCEST MRI Contrast Agents, *J. Am. Chem. Soc.*, 2012, **134**, 18503-18505.
- 5. N. McVicar, A. X. Li, M. Suchy, R. H. E. Hudson, R. S. Menon and R. Bartha, Simultaneous In Vivo pH and Temperature Mapping Using a PARACEST-MRI Contrast Agent, *Magn. Reson. Med.*, 2013, **70**, 1016-1025.
- 6. S. R. Zhang, L. Michaudet, S. Burgess and A. D. Sherry, The Amide Protons of an Ytterbium(III) dota Tetraamide Complex Act as Efficient Antennae for Transfer of Magnetization to Bulk Water, *Angew. Chem. Int. Ed.*, 2002, **41**, 1919-1921.
- 7. Y. K. Wu, T. C. Soesbe, G. E. Kiefer, P. Y. Zhao and A. D. Sherry, A Responsive Europium(III) Chelate That Provides a Direct Readout of pH by MRI, *J. Am. Chem. Soc.*, 2010, **132**, 14002-14003.
- 8. Y. Wu, S. Zhang, T. C. Soesbe, J. Yu, E. Vinogradov, R. E. Lenkinski and A. D. Sherry, pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent, *Magn. Reson. Med.*, 2016, **75**, 2432-2441.
- 9. X. J. Wang, Y. K. Wu, T. C. Soesbe, J. Yu, P. Y. Zhao, G. E. Kiefer and A. D. Sherry, A pH-Responsive MRI Agent that Can Be Activated Beyond the Tissue Magnetization Transfer Window, *Angew. Chem. Int. Ed.*, 2015, **54**, 8662-8664.