Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting information

Fabrication of redox-active polyoxometalates-based ionic crystals onto singlewalled carbon nanotubes for high-performance anode materials of lithium-ion batteries

Bushra Iqbal, Xueying Jia, Hanbin Hu, Lei He*, Wei Chen, and Yu-Fei Song*

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China.

*E-mail: songyf@mail.buct.edu.cn, helei@mail.buct.edu.cn; Tel/Fax: +86 10-64411832.

List of contents:

- Figure S1. FT-IR spectra of PMo₁₂O₄₀, Co₃ cluster, and Composite 1, respectively.
- Figure S2. Raman spectra of $PMo_{12}O_{40}$
- Figure S3. XRD spectra of Composite 1, SWNTs, and Composite 1/SWNTs nanocomposite
- Figure S4. HRTEM-EDX pattern of Composite 1/SWNTs nanocomposite
- Figure S5. Electrochemical performance of the Composite 1
- **Figure S6.** Nyquist plots of Composite 1, $PMo_{12}O_{40}$, and Co_3 cluster. (Inserted) The simulated equivalent circuit model of the electrode/electrolyte interface.

Table S1. Comparison of different anode materials and their LIBs performance.

Figure S1. FT-IR spectra of PMo₁₂O₄₀, Co₃ cluster, and Composite 1, respectively.

Fig. S2. Raman spectra of $PMo_{12}O_{40}$.

Figure S3. XRD spectra of Composite 1, SWNTs, and Composite 1/SWNTs nanocomposite.

Figure S4. HRTEM-EDX pattern of Composite 1/SWNTs nanocomposite.

Figure S5. (a) The discharge/charge curves of the Composite 1 at 100 mA g⁻¹, (b) cyclic performance of Composite 1, PMo₁₂O₄₀ and Co₃ cluster, (c) rate capability of Composite 1, and (d) CV of Composite 1 at a scan rate of 0.1 mV s⁻¹ within 0-3 V.

Figure S6. Nyquist plots of Composite 1, PMo₁₂O₄₀, and Co₃ cluster. (Inserted) The simulated equivalent circuit model of the electrode/electrolyte interface.

Electrode Materials	Current density	Reversible capacity (cycle times) /mAh g ⁻¹	Ref.
PMo ₁₀ V ₂ /PDA	100 mA g ⁻¹	915.3 (63)	1
TBA-PMo ₁₁ V/CNTs	0.5 mA cm ⁻²	850 (100)	2
CNTs–SiW ₁₁	0.2 mA cm ⁻²	650 (100)	3
SWNT-sFe ₃ O ₄ /CMC	450 mAg ⁻¹	687 (100)	4
p-SWNT/GNS	200 mAg ⁻¹		5
N-carbon/rGO	0.1 mAg ⁻¹	669 (200)	6
Py-Anderson-CNTs	0.5 mAcm ⁻²	665.3 (100)	7
GO-IL-P ₂ Mo ₁₈	100 mAg ⁻¹	973 (100)	8
GQD/metal oxide composites	100 mAg ⁻¹	970 (100)	9
TBA ₄ [Py-SiW ₁₁]-SWNTs	0.5 mAcm ⁻²	580 (100)	10
PMo ₁₂ -PPy/RGO	100 mAg ⁻¹	1000 (50)	11
Composite 1/SWNTs	100 mAg ⁻¹	1012 (100)	This work

Table S1. Comparison of different anode materials and their LIBs performance

References:

- Y.-H. Ding, J. Peng, S.-U. Khan and Y. Yuan, A new polyoxometalate (POM)-based composite: fabrication through POM-assisted polymerization of dopamine and properties as anode materials for high-performance lithium-ion batteries, *Chem. Eur. J.*, 2017, 23, 10338-10343.
- J. Hu, Y. Ji, W. Chen, C. Streb and Y.-F. Song, "Wiring" redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy, *Energy Environ. Sci.*, 2016, **9**, 1095-1101.
- W. Chen, L. Huang, J. Hu, T. Li, F. Jia and Y.-F. Song, Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials, *Phys. Chem. Chem. Phys.*, 2014, **16**, 19668-19673.
- Y. H. Kwon, K. Minnici, J. J. Park, S. R. Lee, G. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok and E. Reichmanis, SWNT anchored with carboxylated polythiophene "links" on high-capacity Li-ion battery anode materials, *J. Am. Chem. Soc.*, 2018, 140, 5666-5669.
- H. Kim, J. Kim, H. Jeong, H. Kim, H. Lee, J.-M. Ha, S.-M. Choi, T.-H. Kim, Y.-C. Nah, T. J. Shin, J. Bang, S. K. Satija and J. Koo, Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid-gas interface for Li-ion battery anodes, *Chem. Commun.*, 2018, 54, 5229-5232.
- 6 X. Liu, J. Zhang, S. Guo and N. Pinna, Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries, *J. Mater. Chem. A*, 2016, **4**, 1423-1431.
- 7 L. Huang, J. Hu, Y. Ji, C. Streb and Y.-F. Song, Pyrene-Anderson-modified CNTs as anode materials for lithium-ion batteries, *Chem. Eur. J.*, 2015, 21, 18799-18804.
- J. Hu, H. Diao, W. Luo and Y.-F. Song, Dawson-Type polyoxomolybdate anions (P₂Mo₁₈O₆₂⁶⁻) captured by ionic liquid on graphene oxide as high-capacity anode material for lithium-ion batteries, *Chem. Eur. J.*, 2017, 23, 8729-8735.
- Y. Ji, J. Hu, J. Biskupek, U. Kaiser, Y.-F. Song and C. Streb, Polyoxometalate-based bottom-up fabrication of graphene quantum dot/manganese vanadate composites as lithium ion battery anodes, *Chem. Eur. J.*, 2017, 23, 16637-16643.
- 10 D. Ma, L. Liang, W. Chen, H. Liu and Y.-F. Song, Covalently tethered polyoxometalate-pyrene hybrids for noncovalent sidewall functionalization of single-walled carbon nanotubes as high-performance anode material, *Adv. Funct. Mater.*, 2013, 23, 6100-6105.
- M. Zhang, T. Wei, A.-M. Zhang, S.-L. Li, F.-C. Shen, L.-Z. Dong, D.-S. Li and Y.-Q. Lan, Polyoxomolybdatepolypyrrole/reduced graphene oxide nanocomposite as high-capacity electrodes for lithium storage, ACS Omega, 2017, 2, 5684-5690.